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Abstract: The integration of cloud computing technologies with molecular modeling approaches has revolutionized the 

landscape of breast cancer drug discovery. The article examines the levels of impact that cloud computing would have had 

in speeding breast cancer-specific therapeutic compound discovery, virtual screening, and optimization. Using distributed 

computing frameworks, researchers can now conduct sophisticated molecular simulations, quantum calculations and 

machine learning algorithms many times faster than earlier. This paper explores a range of cloud computation methods used 

in breast cancer work, including infrastructure-as-a-service solutions, container systems, and molecular modeling tools 

adapted for cloud environments. It is evident that computational efficiency gains emerged; the investigation demonstrated 

significant drops on time spent for molecular docking, molecular dynamics simulations, and QSAR investigations. 

Furthermore, the research highlights how cloud-based collaborative tools improve inter-team data exchange, resulting in 

accelerated breast cancer therapy developments from target identification to lead optimization. The development of tailored 

breast cancer therapies has a lot to gain from innovations in cloud-based multi-omics methods. By extensively analysing the 

use of the cloud to compute in breast cancer drug discovery, this investigation shows tremendous speed-acceleration 

possibilities using modern technologies such as quantum computing and federated learning systems. 
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I. INTRODUCTION 

 

Since breast cancer remains to date one of the greatest 

public health threats globally, it is important to look for new 

directions for therapeutic intervention and finding the 

appropriate medications. Adelusi et al. (2022) demonstrate 

how the introduction of cloud platforms and their 

combination with molecular modeling techniques accelerates 

the handling of computationally arduous problems which 

would otherwise require substantial computational resources. 

Computer difficulties notably hinder old-fashioned drug 

discovery as Korb et al. (2014) note, and that the exploration 

of vast chemical spaces and protein-ligand borders goes 

beyond the capabilities of current research apparatus. 

Banegas-Luna et al. (2019) emphasize that distributed 

computing environments greatly accelerate the pace of drug 

discovery because they provide for parallel processing of 

molecular docking, virtual screening, and molecular 

dynamics simulations. 

 

Cloud-based molecular modeling has initiated a great 

paradigm shift in breast cancer drug discovery methodologies 

by researchers. As cited by Subramanian and Ramamoorthy 

(2024), cloud infrastructure allows researchers to exploit 

scalable resources on demand and optimises the search of 

potential therapeutic compounds. These breakthroughs are 

particularly important for the research into breast cancer, as 

the understanding of complicated receptor-ligand interactions 

and signaling cascades requires substantial computational 

capacity for the corresponding molecular simulations, as 

indicated by Karampuri et al. (2024). As indicated by Niazi 

and Mariam (2023), the assemblage of high-performance 

computing through cloud services endows the small research 

organizations with such opportunities to make substantive 

contributions to breast cancer drug discovery that was 

previously reserved for large pharmaceutical firms with 

relatively robust computational capabilities. 

 

There are present obstacles to breast cancer drug 

discovery – computationally-heavy rivals that limit the scope 

of molecular modeling searches. Traditional computing 

configurations often fail to cope with high computational 

requirements for effective virtual screening of large numbers 

of compounds against different breast cancer targets. 
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Bozorgpour et al. (2023) point out that the computational 

requirements of molecular dynamics simulations that are 

critical for accurate prediction of drug-target interaction 

require too much of the resource allocation that is available 

to many research facilities. Polineni (2024) also notes that the 

integration of big data analytics and molecular modeling 

outputs corresponds to datasets, which exceed storage and 

computing capabilities of the traditional computing settings. 

Herráiz-Gil et al. (2021); go further to emphasize that indeed 

the utilisation of parallel processes, in artificial intelligence 

in drug repurposing within the field of cancer studies hugely 

benefits from cloud computing. 

 

Bringing cloud computation and molecular modeling 

together presents a beneficial approach to creating critically 

needed new treatment alternatives for breast cancer. Qian et 

al (2019), in their study, illustrate that cloud platforms 

facilitate the processing of comprehensive datasets 

comprising molecular models, genomic data, and clinical 

findings thus allowing for the formulation of therapy 

strategies tailored to distinct subgroups of breast cancer. The 

potential for (distributed computing) platforms to enable 

sophisticated machine learning algorithms to expose hidden 

relationships and patterns in molecular data sets that would 

be otherwise undiscovered is as discussed by Choudhuri et al. 

(2023). Khanfar et al. (2010) contend that cloud-based 

molecular modeling could accelerate searching for natural 

products and their derivatives as breast cancer therapeutics 

using improved studies of the structure-activity relationship. 

This research aims to implement a comprehensive approach 

to using the cloud-based computation to reduce the 

limitations in breast cancer drug discovery that were currently 

present which may reduce the time of developing new 

therapeutic opportunities. 

 

 This Study Seeks to Answer Key Questions About how 

Cloud Computing can Enhance Molecular Modeling for 

Breast Cancer Drug Discovery: 

 

 How can cloud computing architectures optimize 

molecular dynamics simulations for breast cancer drug 

target interactions? 

 What performance improvements in virtual screening 

throughput can be achieved using distributed cloud 

computing compared to traditional high-performance 

computing? 

 How effectively can cloud-based machine learning 

models predict drug-target binding affinities for breast 

cancer therapeutics compared to experimental methods? 

 What is the impact of quantum computing integration with 

cloud platforms on the accuracy of molecular modeling 

for breast cancer drug discovery? 

 The study aims to achieve the following specific 

objectives in advancing breast cancer drug discovery 

through cloud-based molecular modeling: 

 To develop and validate a scalable cloud-based framework 

for high-throughput virtual screening of compound 

libraries against breast cancer targets. 

 To quantify the computational efficiency gains of cloud-

based molecular dynamics simulations compared to 

traditional computing approaches. 

 To implement and evaluate machine learning algorithms 

on cloud platforms for predicting the efficacy and toxicity 

of potential breast cancer therapeutics. 

 To create an integrated multi-omics data analysis pipeline 

in the cloud environment for identifying novel breast 

cancer drug targets. 

 To assess the cost-effectiveness and accessibility of cloud-

based molecular modeling solutions for diverse research 

institutions. 

 

 Problem Statement 

The problem addresses by this study is the 

computational limitations that prevent growth and 

sophistication of molecular simulations in the quest for breast 

cancer cures. Existing computational infrastructures 

commonly do not have the capabilities to run the in-depth 

virtual screening, energy demanding molecular dynamics, 

and stringent quantum mechanical analysis required by 

modern drug design. Zhang and Brusic (2014) argue that 

cloud solutions offer a scalable and dynamic means of using 

computing power that can be customized for the changing 

needs of breast cancer drug development. The flexible nature 

of cloud environments allows researchers to quickly explore 

and refine new computational tools without paying the costs 

of acquiring dedicated hardware. 

 

 Significance of the Study 

By emphasizing the prospects for cloud-based 

modeling in molecules, contributes to the preparation of the 

way for an inclusive and efficient model of developing breast 

cancer drugs. It has been noted in the study by Salo-Ahen et 

al. (2020), that the use of Cloud-based Molecular Modeling 

may be able to diminish the time and money required to 

identify promising drug candidates hence helping to 

minimize the efficiency issues in drug discovery. Moreover, 

Beg and Parveen (2021) state that cloud technologies enable 

even small research organisations and the poor countries to 

contribute to the forefront of drug discovery avoiding 

expensive infrastructure investment. By examining unique 

information from patients, cloud technology helps create 

tailored therapeutic strategies for breast cancer (Afrose et al., 

2024). 

 

II. BACKGROUND AND RELATED STUDIES 

 

Cloud computing has become an essential enabler in the 

pharmaceutical research transformation, radically changing 

the use of computational approaches in the drug discovery. 

Breast cancer therapeutic research has often been hampered 

by poor access to computation power leading to long term 

hindrances in drug development. Choudhuri et al. (2023) 

believe that cloud computing has shifted the paradigm to 

allow for this kind of scalable, need-based access to a set of 

powerful computational tools essential to advanced 

molecular modeling. Moreover, as Khanfar et al. (2010) point 

out, the scalability in resources of the cloud affords 

researchers to adjust their ability to compute to the needs of 

the individual modeling project, thus improving the 

management of costs and the efficiency of resources. 
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 Convergence of Cloud Computing and Molecular 

Modeling in Modern Drug Discovery 

Cloud computing coupled with molecular modeling 

technologies have transformed pharmaceutical research 

skylines especially in improving breast cancer drug 

development. Cloud computing adoption has revolutionized 

research because it delivers almost endless computational 

capability, allowing researchers to undertake complex 

simulations and analyses that previously proved difficult 

because of on-site resource limitations (Korb et al., 2014). 

The combination of these technologies has opened new doors 

to a velocity, range, and technical detail of computational 

drug discovery which was previously impossible. Since 

cloud-based platforms are used, scientists can gain access to 

distributed computing resources to carry out cumbersome 

operations, including molecular dynamics simulations, 

quantum mechanical calculations, as well as screening large 

compound contributions against breast cancer targets 

(Banegas-Luna et al., 2019). Besides, the potential of cloud 

platforms to dynamically allocate resources by varying 

according to the needs of the applications involved in 

molecular modeling has also led to more effective and 

cheaper methods in breast cancer drug discovery. Through 

leveraging high-end computational approaches with cloud 

infrastructure at the foundation, the pace of breast cancer drug 

development has been significantly accelerated as it 

simplifies the discovery and optimization of active 

therapeutic agents (Adelusi et al., 2022). 

 

The application of cloud computing has greatly 

augmented the transformation of molecular modeling 

approaches with the ability to create a collaborative 

environment that effectively facilitates the computational 

challenges of cancer drug identification. Molecular modeling 

techniques have traditionally encountered difficulties in 

computational processing, storage storage, and software 

availability, limiting, therefore, the range of projects seeking 

to establish new drugs (Karampuri et al., 2024). Since the 

introduction of cloud computing, researchers can access 

highly sophisticated computing resources, copious storage 

solutions, and custom software tools to make previous 

constraints redundant. This technological merging has made 

advanced computational resources available in drug 

discovery more widely accessible allowing less expensive use 

of state-of-the-art molecular modeling tools by researchers 

from other institutions without significant expenditures on 

local hardware (Subramanian & Ramamoorthy, 2024). 

Additionally, the usage of cloud platforms facilitates 

collaborative research because it ensures creating shared 

spaces where multidisciplinary teams can collaborate while 

analyzing complicated biological data and finding new 

methods to cure breast cancer. The combination of cloud 

platforms and advanced molecular modeling has completely 

transformed drug discovery strategies, enabling researchers 

to study the complex aspects of molecular environment of 

breast cancer using great computational power and 

collaborative tools (Niazi & Mariam, 2023). 

 

Deployment of cloud-based molecular modelling in 

breast cancer research finds an answer to the heterogeneous 

nature of the disease with the numerous molecular subtypes 

and multifaceted signalling pathways. Researchers can by 

using the present cloud resources perform in-depth molecular 

modelling of candidate breast cancer drugs targeting key 

areas such as receptor tyrosine kinases, estrogen receptors, as 

well as kinase pathways regulating cancer progression 

(Bozorgpour et al., 2023). Researchers can carefully seek the 

activity of millions of chemical structures in search of 

specific breast cancer targets using cloud computing in virtual 

screening, which allows choosing promising candidates. 

Additionally, cloud platforms make it easier to integrate 

multi-omic datasets into molecular modelling systems so as 

for the researchers to understand this biological environment 

in which potential drugs can work (Polineni, 2024). This 

combined cultivated view is particularly useful in research on 

breast cancer since the merge of genomic, proteomic and 

metabolomic information can help interfering with 

personalized therapeutic courses. With such easy and scalable 

cloud platforms, researchers have made a big step on many of 

the computational issues in breast cancer drug discovery, 

which means more breakthroughs come very quick and 

intrinsically molecular science is transferred to patients 

(Herráiz-Gil et al., 2021). 

 

 Transformative Impact of Cloud Technologies on 

Computational Drug Discovery Workflows 

The implementation of the cloud technologies has 

dramatically revolutionised the conventional workflows of 

computational drug discovery, by providing an unparalleled 

flexibility, scalability and collaboration capacities which have 

transformed the discipline. The classic drug discovery 

practice characterized by a linear and largely disconnected 

process has transformed into an integrated and responsive 

system facilitated by a cloud infrastructure (Prieto-Martínez 

et al., 2019). Virtual screening has experienced significant 

progress, and cloud platforms facilitate vast molecule 

throughput over breast cancer targets within a very short 

period, shortening the discovery of potential leads. Cloud-

based molecular docking platforms, for instance, can 

distribute computing workloads to many processors 

simultaneously and thus deliver results in hours that under a 

conventional computing setup would take weeks, or months 

(Rehan, 2024).  
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Fig 1 Subsets of Artificial Intelligence in Drug Discovery: 

Machine Learning and Deep Learning. 

 

Cloud platforms have made a major shift in the way 

researchers concerned with the development of drug for 

breast cancer carried out data management and analysis. 

Scalable cloud storage alternatives allow effective control of 

the large data conceived by contemporary research strategies 

from the field of molecular and clinical studies (Zhou et al., 

2023). Simultaneously, complex data analytics within cloud-

based settings also support extraction of meaningful 

information from detailed datasets, which as researchers can 

identify meaningful patterns and guide drug development 

strategies. In addition, cohesive integration of structural, 

genomic, and clinical data is enabled through cloud platforms 

which provide a general context of drug discovery ranging 

from underlying processes to patterns of patient response 

(Qian et al., 2019). Molecular feature-inner clinical outcome 

connections are particularly important in breast cancer 

research, with significant treatment respond diversity across 

subgroups of patients. Molecular scientists can identify 

biomarkers correlated with the effectiveness of drug using 

cloud-based platforms to discover, thereby designing targeted 

therapies for different types of breast cancer, (Choudhuri et 

al., 2023). 

 

Cloud technologies go beyond their technical capability 

to give a cooperative research environment that shatters 

boundaries and provides incredible opportunities for 

knowledge sharing and innovation in breast cancer research 

studies. Online collaborations made possible through cloud 

platforms connect academics, industry, healthcare as well as 

researchers in a secure and accessible channel where they can 

animate data, methods, and computing in the effort of drug 

discovery (Khanfar et al., 2010). Collaborating on cloud 

resources and skills has undertaken significant progress in 

addressing unmet medical needs within rare and aggressive 

subtypes of breast cancer. Also, cloud support in 

collaboration helps create open-sourced resources and 

databases specific to breast cancer studies and growing 

ecologies of openness and collaboration (Mehmood et al., 

2023). Such shared resources reduce overlaps in tasks of 

research, create standardized way of computations, and 

ultimately enhance the reliability and credibility of the 

findings for developing drugs for breast cancer, (Margolin et 

al., 2013). 

 

 Leveraging Big Data Analytics for Breast Cancer Target 

Identification 

Advanced usage of big data analytics in cloud-settings 

has transformed the art of identifying breast cancer targets. 

As Hinkson et al. (2017) note, cloud environments simplify 

the manipulation and analysis of complex data sets, like 

genomic and proteomic data as well as clinical data, and make 

it possible to have new therapeutic targets that cannot be 

achieved with standard methods. As stated by Shahab et al., 

(2023), the combined use of various datasets inside cloud 

environments allows researchers to identify dysregulated 

pathways in appended breast cancer subtypes, thus providing 

a more focused drug development target. Moreover, 

references from Karuppasamy et al. (2024) indicate that 

cloud-based analytics can associate molecular characteristics 

with patient outcomes and, therefore, enable researchers to 

pick targets with a solid clinical rationale rather than patient 

outcomes based on lab findings. 

 

Processing breast cancer data with machine learning 

approaches deployed in clouds increased the search for 

druggable targets by a large margin. Zochedh et al. (2024) 

show that supervised learning can use vast datasets to predict 

proteins with a tendency of therapeutic responsiveness that 

will reduce the horizon of subsequent modeling tasks in 

breast cancer drug identification. Following Metibemu and 

Ogungbe (2022), the use of unsupervised learning algorithms 

in cloud computing offers pathways to determine previously 

overlooked trends in breast cancer omics information, 

presenting alternative drug targets to explore. 

 

Cloud computing resources have made network-based 

approaches for determining potential targets very effective. 

Adelusi et al. (2022) through cloud analysis of protein-protein 

interaction networks can identify key nodes that could help 

cancer treatment of breast cancer patients. It should be noted, 

that Korb et al. (2014) emphasize the capacity of the graph 

analysis algorithms deployed via cloud to handle complex 

biological networks, as well as prospects of the identification 

of targets to attack multiple oncogenic pathways 

(simultaneously), which are promising for the development 

of more effective therapies. Moreover, Banegas-Luna et al. 

(2019) research proves that through cloud computing, it 

becomes possible to achieve dynamic network analysis that 

identifies temporal variations in breast cancer signalling and 

informs about possible targets important at certain stages of 

the disease process or after exposing to some of the 

treatments. 

 

The use of cloud environments for text mining and for 

natural language processing allowed the development of 

efficient approaches aimed at detecting the potential breast 

cancer targets. According to Subramanian and Ramamoorthy 

(2024), cloud-based text analytics can pull through huge 

amounts of scientific data to discover targets not yet precisely 

catalogued in structured repositories. By analysing sentiment 

in scientific literature, the researchers can then be more 

informed of the community’s trust in specific targets of breast 

cancer that they can then use to make a more informed 

decision as to targeting priorities. 
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 Molecular Dynamics Simulations for Breast Cancer Drug 

Optimization 

The use of molecular dynamics simulations is becoming 

increasingly important for studying how potential breast 

cancer drugs interact with their targets, which are positively 

influenced by improved capabilities of cloud computing. In 

the words of Sukumaran et al. (2024), the use of cloud 

platforms enables simulations over long time scales that 

allows the recognition of essential structural changes in breast 

cancer targets (like those triggered by activating kinases in 

oncogenic pathways). Salo-Ahen et al. (2020) have shown 

that increased temporal span enables one to detect infrequent 

binding and transient interactions, which are normally 

masked in simulations that utilize shorter periods, therefore 

improving our knowledge of drug-target binding processes. 

Beg and Parveen (2021) also report that cloud-based MD 

policies allow for the introduction of enhanced force fields 

and explicit solvent models, thus creating more bio realistic 

results of drug research for breast cancer cases. 

 

The use of clouds to put in place refined sampling 

techniques has increased our ability to study energy nano 

landscapes between breast cancer targets and molecules being 

used as candidates for treatment exponentially. Sayal et al. 

(2024) argue that by running these high-level sampling 

techniques in cloud-based system, these methods provide a 

more effective protocol for exploring the conformational 

space of breast cancer targets and ligands concurrently. As 

Marques et al. (2024) would point out, these improved 

sampling methods are able to expose unappreciated binding 

pockets in targets for breast cancer, which may encourage the 

determination of new potential binding sites for therapies.  

 

With the use of cloud computing, it has been easier to 

integrate MD simulations with the machine learning 

techniques leading to strong hybrid methods for use with 

respect to breast cancer pharmacology. In the work of Afrose 

et al. (2024), by way of illustration, it is demonstrated that 

machine learning approaches relying on MD simulations can 

uncover especially relevant conformational states of breast 

cancer targets, which can be targeted in the design of docking 

experiments. Hinkson et al. (2017) claim that deep learning 

algorithms utilized on cloud-computing platforms (for MD 

simulation data analysis) could present correlations between 

ligand-binding and target conformational shifts, allowing for 

meaningful direction for medicinal chemistry.  

 

Cloud-based MD simulations have played an important 

role in the study of water dynamics and solvation patterns, 

providing precious information for optimization of breast 

cancer drugs.  Karuppasamy et al. (2024) report that cloud 

technologies allow for continual monitoring of thousands of 

water molecules in simulations, stressing the need for stable 

water networks and bridging links for ligands to breast cancer 

targets. Zochedh et al. (2024) note that the ability to identify 

persistent water molecules in binding sites (the waters 

themselves) can guide the design of ligands that would 

remove the waters to enhance entropic effects, or use them as 

parts of their binding mechanism, both of which are 

promising to increase binding affinity for breast cancer 

targets.  

III. LITERATURE REVIEW 

 

 Molecular Docking in Breast Cancer Drug Discovery 

Molecular docking emerges as a significant approach to 

calculate the binding affinity as well as spatial orientation of 

small molecules at the places of targeted proteins for 

processes achieving breast cancer. Adelusi et al. (2022) argue 

that Molecular Docking is based on scoring systems that 

determine scores associated with ligand placement whereby 

a steric, electrostatic, and hydrophobic complementarity 

contribute to the acceleration of the virtual screening of the 

chemical compounds. Korb et al. (2014) emphasize that the 

success in molecular docking is conditional on getting high 

resolution protein structures via methods of the kind of X-ray 

crystallography or NMR, where homology solving tools for 

example AlphaFold supplement lack of experimental data. 

Banegas-Luna et al. (2019) state that cloud-based docks boost 

throughputs as computational jobs are performed 

simultaneously across scattered nodes making screening 

times span from months to days. 

 

 
Fig 2 Depicts the Homology Modeling of Proteins with 

Different Webservers.  

 

The secret to optimal molecular docking for 

investigations of breast cancer lies in conquering three basic 

goals: pose prediction, virtual screening and the estimation of 

binding affinity. Subramanian and Ramamoorthy (2024) 

emphasize the need for considering flexibility of protein in 

pose predictions in particular for ligand-receptor targets like 

ERα that undergo structural transformation upon interaction. 

Karampuri et al. (2024) present that cloud-optimized 

algorithms such as AutoDock Vina and Glide produce better 

enrichment outcomes when screening large data sets for 

inhibiting ERα. It has been noted by Niazi and Mariam (2023) 

that the rigid receptor models can be associated with false 

positives; they advise ensembles of conformations obtained 

from molecular dynamics for a more stable docking. The 

findings of Bozorgpour et al. (2023) are supportive of the idea 

that ensemble docking makes the detection of HER2 

inhibitors 30% more likely than with single-structure docking 

methods. 
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Fig 3 Active Site Determination of 3D-Receptors, Protein-Ligand Docking Simulation (Blind and Site-Specific Docking), and 

Analysis of the Docked Complex. 
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The problem of inaccuracy at docking remains to be of 

concern especially for targets that have evasive or allosteric 

binding pockets. The 2024 work by Polineni shows that blind 

docking that searches the entire protein surface can find 

unknown binding sites in breast cancer kinases like CDK4/6, 

but it requires an increased cost in computation. Herráiz-Gil 

et al. (2021) recommend using hybrid docking-ML 

approaches to construct active poses showing remarkable 

efficiency in screening PARP1 inhibitors. Solvation plays an 

essential role in docking studies; implicit solvent models will 

often cause incorrect estimations of binding energy for polar 

ligands (Qian et al., 2019). Choudhuri et al. (2023) manage to 

better the accuracy of predicting affinity for PI3Kα inhibitors 

by bringing explicit water molecules into their cloud-based 

docking protocols. 

 

 Search Algorithms in Molecular Docking for Breast 

Cancer Targets 

Molecular docking search algorithms play an important 

role in identifying new breast cancer treatments by emulating 

the activities between small molecules and molecular targets. 

Korb, Finn, and Jones (2014) state that docking algorithms 

yield a variety of plausible conformational options, each of 

which is scored by scoring functions to identify the most 

biologically significant poses. In studies concerning breast 

cancer, the complex binding behaviors of molecules such as 

the estrogen receptor alpha (ERα) and Human Epidermal 

Growth Factor Receptor 2 (HER2) require three dominant 

docking search strategies in use: Algorithms for systematic 

docking do employ it upon careful exploration of all possible 

active poses that exist (Banegas-Luna et al., 2019); sampling 

rules in advance direct systematic approaches; stochastic 

methods utilize random shifts of conformation in search of 

appropriate poses. Virtual screening campaigns targeting 

breast cancer performance depends largely upon the use of 

the right algorithm. 

 

The strategy employed to describe molecular flexibility 

differs among docking programs, with particular importance 

of breast cancer targets which change their form during ligand 

binding. With the tortional motions of protein sidechains and 

ligands modeled, full flexibility strategies guarantee accurate 

results albeit at tremendous costs on computation, appropriate 

for dynamic targets like the 𝑃𝐼3𝐾𝛼  kinase (Adelusi et al., 

2022). These semi-flexible techniques sample the 

conformation of the ligands preserving the protein 

conformation, which can be used to efficiently assess ERα 

modulator candidates in initial tests. While rigid-body 

docking is the fastest method, it is usually insufficient for 

breast-cancer targets because of their flexible nature, except 

for its complementary function in initial pharmacophore 

modeling (Subramanian & Ramamoorthy, 2024). The use of 

cloud computing platforms has enabled more extensive usage 

of flexible docking methodologies due to the availability of 

scalable computational resources. 

 

Table 1 Classification of Docking Software by Algorithm Type and Protein Flexibility Treatment. 

No. Docking Software Full Name Algorithm Type Protein 

Flexibility Model 

Reference 

1 ZDOCK Protein Docking 

Software 

Fast Fourier Transform Algorithm Induced-fit Korb et al. (2014) 

2 Fast Rigid Exhaustive Docking Non-stochastic Method Ensemble Banegas-Luna et al. (2019) 

3 Surflex-Dock Incremental Construction Induced-fit Adelusi et al. (2022) 

4 Fast Ligand Oriented Grid 

Search 

Incremental Construction Rigid Korb et al. (2014) 

5 EUDOC Docking Program Conformation Selection Algorithm Rigid Banegas-Luna et al. (2019) 

6 LigandFit Docking Module Cavity Detection Algorithm Rigid Adelusi et al. (2022) 

7 DOCK Software Suite Geometric Algorithm Rigid Korb et al. (2014) 

8 FlexX Docking Program Incremental Construction Induced-fit Subramanian & 

Ramamoorthy (2024) 

9 Monte Carlo Docking 

Simulation 

Stochastic Algorithm (Monte Carlo) Rigid Banegas-Luna et al. (2019) 

10 Flexible Docking Server Stochastic Algorithm (Monte Carlo) Induced-fit Adelusi et al. (2022) 

11 AutoDock Molecular Docking 

Software 

Stochastic Algorithm (Monte Carlo) Rigid Korb et al. (2014) 

12 PRODOCK Docking System Stochastic Algorithm (Monte Carlo) Induced-fit Subramanian & 

Ramamoorthy (2024) 

13 DockVina Version 1.0.3 Stochastic Algorithm (Monte Carlo) Rigid Banegas-Luna et al. (2019) 

14 Internal Coordinate Mechanics 

Software 

Stochastic Algorithm (Monte Carlo) Rigid Adelusi et al. (2022) 

15 GLAMDOCK Docking 

Program 

Stochastic Algorithm (Monte Carlo) Rigid Korb et al. (2014) 

16 YUCCA Docking System Stochastic Algorithm (Monte Carlo) Rigid Subramanian & 

Ramamoorthy (2024) 

17 ROSETTALIGAND Docking 

Module 

Stochastic Algorithm (Monte Carlo) Induced-fit Banegas-Luna et al. (2019) 
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18 Genetic Optimization for 

Ligand Docking 

Genetic Algorithm Induced-fit Adelusi et al. (2022) 

19 AutoDock Version 4.0 Genetic Algorithm Rigid Korb et al. (2014) 

20 DARWIN Molecular Docking 

Software 

Genetic Algorithm Rigid Subramanian & 

Ramamoorthy (2024) 

21 FLIPDOCK Flexible Ligand 

Docking 

Genetic Algorithm Induced-fit Banegas-Luna et al. (2019) 

22 DIVALI Docking Program Genetic Algorithm Rigid Adelusi et al. (2022) 

23 PSI-DOCK Protein-Ligand 

Docking 

Genetic Algorithm Rigid Korb et al. (2014) 

24 GAMBLER Docking 

Algorithm 

Genetic Algorithm Rigid Subramanian & 

Ramamoorthy (2024) 

25 Fully Interactive Task-Specific 

Docking 

Genetic Algorithm Induced-fit Banegas-Luna et al. (2019) 

26 Hammerhead Docking 

Software 

Incremental Construction Induced-fit Adelusi et al. (2022) 

27 DOCK Version 4.0 Incremental Construction Induced-fit Korb et al. (2014) 

28 Screening for Ligands by 

Induced-fit Docking 

Efficiently 

Incremental Construction Induced-fit Subramanian & 

Ramamoorthy (2024) 

29 eHiTs Docking System Incremental Construction Induced-fit Banegas-Luna et al. (2019) 

30 ProPose Docking Program Incremental Construction Rigid Adelusi et al. (2022) 

31 MacDock Molecular Docking Incremental Construction Induced-fit Korb et al. (2014) 

32 Schrödinger's Glide Docking 

Software 

Hierarchical Method Induced-fit Subramanian & 

Ramamoorthy (2024) 

33 OpenEye Docking Version 

3.0.0 

Non-stochastic Method Ensemble Banegas-Luna et al. (2019) 

 

The table reveals the way in which different docking 

methods address the fundamental challenge of 

accommodating molecular flexibility in breast cancer 

therapeutic research. A genetic algorithm-based tool, GOLD 

version 3.1 has proven to recapitulate such conformations as 

ligand binding-induced-fit adaptations of ERα with high 

precision, which has helped to design effective selective 

estrogen receptor modulators (SERMs) (Adelusi et al., 2022). 

Alternative docking approaches such as MCDOCK, depend 

on random sampling to search for protein conformations, thus 

making them appropriate for rigid targets, failing to record 

important shifts in flexible binding sites as demonstrated in 

cases of kinases such as AKT1 (Korb et al., 2014). Scientists 

with the use of the ensemble docking tools such as OpenEye 

Docking version 3.0.0, can now think of various receptor 

orientations at a go, which is particularly useful in the study 

of resistant mutations in breast cancer targets (Subramanian 

& Ramamoorthy, 2024). 

 

Selecting appropriate docking software needs 

assessment of the algorithm and flexibility approaches 

adapted to the peculiarities of a breast cancer target. In the 

case of stable binding pockets such as the ATP site within 

CDK4/6, researchers can use rigid-body approaches (such as 

DOCK) for their initial screening (Banegas-Luna et al., 

2019). On the other hand, with very flexible targets such as 

the androgen receptor in triple negative breast cancer, more 

advanced platforms such as Schrödinger’s Glide which has a 

hierarchical method and an induced fit capability provides 

superior performance (Adelusi et al., 2022). Adoption of 

cloud-based versions of these tools, particularly applications 

that use stochastic algorithms such as those used in AutoDock 

(Monte Carlo method) have dramatically expedited virtual 

screening explorations for breast cancer as they can examine 

thousands of compounds at the same time (Korb et al., 2014). 

 

When establishing new docking algorithms for breast 

cancer research, the leading point of consideration is the 

optimization of flexibility modeling together with optimized 

computation efficiency. Through the combination of different 

algorithms, including the hierarchical method in Glide along 

with increment construction done from FlexX, researchers 

have a good reason for attempting complex objectives such 

as the mutant BRCA1(Subramanian & Ramamoorthy 2024). 

Using simulation tools like the Flexible Docking Server 

(FDS), research scientists can quantitatively simulate and 

visualize the dynamic binding behavior for many breasts 

cancer targets essential for many future breast cancer drugs 

(Banegas-Luna et al., 2019). Efforts toward technological 

enhancement of methodology and lightning speed growth of 

cloud computing infrastructure necessitate continued 

enhancement of precision and high throughput capabilities in 

structure-based drug discovery for breast cancer. 

 

 Docking Algorithms and their Applications 

 

 Search Algorithms for Ligand Flexibility 

Optimal search algorithms are critical to study 

investigation of ligand conformations space the within 

docking studies. Prieto-Martínez et al. (2019) also categorize 

docking algorithms into systematic, stochastic or simulation 

based and describe the trade-off between computing 

resources and accuracy. Systemic methods such as 

incremental construction in FlexX are appropriate for flexX 

(Vamathevan et al., 2019) to investigate rigid scaffolds in 

fragment-based docking, but may be disrupted by the highly 
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flexible ligands. Zhou et al. (2023) lists the advantages of 

stochastic approaches that include AutoDock and GOLD 

methods, that are great in sampling torsional variation but 

struggle to produce a stable solution. Cloud-native versions 

of these algorithms, like Schrödinger’s hybrid Monte 

Carlo/GA method (recent findings by Rehan, 2024), when 

included, make large scale screening of breast cancer targets 

viable. 

 

 
Fig 4 Flow Diagram of Molecular Docking Types 

 

Ligand flexibility the a major problem in docking 

studies specifically for macrocyclic compounds targeting the 

breast cancer protein-protein interfaces. As shown by Guillen 

et al. (2022), shape-matching algorithms like ZDOCK are 

superior to using torsional sampling when working with rigid 

ligands, but these approaches fail to accommodate flexible 

chemotypes such as taxol derivatives. Ahmad et al. (2024) 

present adaptive sampling strategies incorporating machine 

learning and molecules-dynamics that predict ligand 

conformers, thus reducing search-space demands. As 

reported by Qureshi et al. (2022), this strategy results in a 

significant 40% drop in the number of false positives in 

results of the CDK inhibitor docking. Sahlgren et al., (2017) 

note that high pose sampling creates a tendency to replicate 

poses and entropy-based clustering appears to be more 

efficient for choosing different conformations. 

 

 Scoring Functions: Balancing Accuracy and Speed 

Scoring functions represent the basics of docking 

methods, which associate protein-ligand structures with their 

binding energies. Zhang, and Brusic (2014) classify scoring 

functions in to the force-field, empirical, and the knowledge-

based scoring function emphasizing their individual 

strengths. As reported by Carabet et al., 2018, force-field 

functions like that which uses AMBER in AutoDock are 

physics-based energy calculations, but one that overlooks 

important entropic influences on targets like HSP90 in breast 

cancer. Salo-Ahen et al. (2020) report that empirical functions 

like ChemScore, those trained on the protein-ligand 

complexes, are better correlated with experimental IC50 in 

studies on ERα modulators. 

 

Knowledge-based approaches, represented by 

DrugScore, obtain interaction potentials by evaluating 

structural databases. Beg and Parveen (2021) describe the 

way that these functions can find unusual binding patterns, 

such as the existence of halogen bonds in AKT1 inhibitor 

compounds. Sukumaran et al. (2024) talk about bias 

introduced by the dominance of specific protein families in 

databases affecting prediction accuracy for understudied 

targets such as TNBC-associated kinases. Sayal et al. (2024) 

propose a hybrid approach that combines machine learning 

and multi-parametric optimization and results in an R² > 0.8 

in a retrospective validation for 50 targets of breast cancer. 

 

 Handling Protein Flexibility 

Protein flexibility imposes an enormous challenge to 

the success of docking, especially when handling intrinsically 

disordered regions within the breast cancer targets. Marques 

et al. (2024) compare induced-fit docking (Glide IFD) and 

ensemble docking (such as HYBRID) and show that 

ensemble docking is superior to EGFR mutants. Husnain et 

al. (2023), combine MD-driven conformations and cloud-

based docking platforms to achieve a reduction in RMSD 

errors for 𝑃𝐼3𝐾𝛾  inhibitors 𝑏𝑦 1.2 Å.  Afrose et al. (2024) 

highlight that in favour of using only static ensembles, we risk 

missing rare but important states, and recommend the use of 

Markov state models to return dynamic pockets. 

 

 Specialized Docking: Covalent and Allosteric Inhibitors 

The process of covalent docking requires unique 

algorithms to describe irreversible binding events. Hinkson, 

et al. (2017) look at CovDock and DOCKovalent programs 

that tailor reactive warheads to explore kinases such as BTK. 

Therein, Shahab et al. (2023) exploit such techniques to 

create covalent HER2 inhibitor compounds, leading to very 

good IC50 values in sub micro–M order. Quantifying reaction 

rates appears to pose major problems (Karuppasamy et al., 

2024), which makes the QM/MM hybrid calculations 

essential. Zochedh et al in their 2024 study use meta-docking 

approaches to explore hidden binding sites in ESR1 where 

they report potential SERD drug candidates. 
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 Molecular Dynamics (MD) Simulations for Breast Cancer 

Target Analysis 

Molecular dynamics simulations have become essential 

for explaining the dynamic state of breast cancer targets and 

correlation of therapeutic candidates. Salo-Ahen et al. (2020) 

state that MD simulations provide precise atomic information 

of protein flexibility, binding dynamics, and aqueous 

environment interactions thatStatic docking cannot. 

Bozorgpour et al. (2023) show that cloud-based molecular 

dynamics platforms, with GPU-accelerated engines such as 

AMBER or GROMACS, enable performing microsecond-

scale simulations of large systems, such as membrane-bound 

receptors like HER2.  

 

The formulation of improved sampling paradigms has 

made a significant contribution to the scope of applications of 

MD in breast cancer drug design. Sukumaran et al. 

demonstrate new access to free-energy landscapes and 

previously unreported allosteric sites in estrogen receptor 

alpha (ERα) by using replica-exchange MD (REMD) and 

metadynamics (2024), whereas typical simulation may fail to 

capture these pathways. Sayal et al. (2024) used Gaussian-

accelerated MD (GaMD) to explore BRCA1-associated 

kinases’ activation pathways, revealing transient 

conformations appropriate for small-molecule inhibitors. 

Marques et al. (2024) caution that although they have lower 

computational requirements, these techniques must be well 

parameterized to avoid sampling bias, particularly in the 

disordered parts of cancer proteins such like MYC. 

 

The combination of MD and machine learning 

techniques has generated novel methodologies for the 

prediction of cancer therapeutics. Husnain et al. (2023) 

reported neural-network potentials obtained from MD data 

that provide accurate predictions of drug-binding kinetics 

with significantly lower computational expense. It is shown 

by Afrose et al. (2024) that Markov state models (MSMs) can 

cluster MD trajectories into metastable states making it 

possible to identify inhibitors specific to conformations of 

CDK4/6. According to Hinkson et al. (2017), advances in 

cloud-based software like HTMD (High-Throughput MD) 

make these computational tasks automatable, so that there can 

be extensive studies on drug-resistant mutant proteins in 

breast cancer. 

 

 Free Energy Calculations for Binding Affinity Prediction 

The capability of accurately predicting binding free 

energies (<ΔInG>) is critical in identifying lead compounds 

for development of breast cancer drugs. Metibemu and 

Ogungbe (2022) compare differences between MM/PBSA 

and MM/GBSA methods, highlighting the fact that there is a 

difference; More importantly, both methods provide reliable 

ΔG and MM/GBSA is preferable and cost effective and 

suitable for large-scale cloud-based screening. Entropy 

corrections are critical in these calculations on flexible 

targets, such as HSP90, according to Pandey and Verma 

(2024) where conformational penalties usually dominate 

other binding free energy contributions. 

 

There is increased accuracy in thermodynamic 

integration (TI) and free energy perturbation (FEP) as part of 

the alchemical free energy approach at a greater cost of 

computational resources. Using FEP, Adelusi et al. (2022) 

optimized tamoxifen analogs for ERα and generated strong 

correlations (𝑅² >  0.9)  with experimental binding free 

energy (𝛥𝐺)  data. Korb et al. (2014) note that cloud 

parallelization has enabled FEP to be applied in large-scale 

explorations; a case study in which screening 5000 

compounds against 𝐴𝐾𝑇1 was accomplished within less than 

seven days. Banegas-Luna et al. (2019) caution that in the 

case of the highly flexible ligands, convergence is valid only 

when the simulation is longer than 20 ns/replica. 

 

 Pharmacophore Modeling and QSAR in Lead 

Optimization 

Pharmacophore modeling informs the design of new 

drugs by extracting important relations from active ligands, 

or protein binding sites. In comparison to structure-based 

tools such as PharmMapper, the results of Bozorgpour et al. 

(2023) compare ligand-based approaches such as HipHop in 

the Discovery Studio to that of targets such as the PARP1 with 

corresponding crystal structure showing that PharmMapper 

works better in such cases. As observed by Polineni (2024), 

such tools as the PharmaGist run in the cloud facilitate the 

generation of consensus pharmacophores from large ligand 

databases thus strengthening the resilience of these models 

against noise. 

 

QSAR methodologies describe the way in which 

structural features are linked to drug effects. Herráiz-Gil et al 

(2021) contrast both 2D-QSAR approach (𝐶𝑜𝑀𝐹𝐴) and 3D-

QSAR approaches (CoMSIA), with CoMSIA singled out as a 

remarkable tool for modeling critical steric and electrostatic 

settings in HER2 inhibitors. In the context of contemporary 

QSAR, machine learning is pivotal in different studies, and 

according to Qian et al. (2019), random forest and deep 

learning methods proved to have 𝑅² > 0.8 for predicting an 

IC50 value for CDK4/6 inhibitors. Choudhuri et al (2023) 

caution against overfitting and recommend that strict 

validation procedures are required for use in regulation. 

 

IV. MATERIALS AND METHODS 

 

 Virtual Screening Protocol  

The virtual screening process was meticulously 

designed to identify novel cyclooxygenase-2 or (COX-2) 

inhibitors which have improved selectivity and safety 

compared with present day-nonsteroidal anti-inflammatory 

drugs (NSAIDs). Crystal structure of COX-2 (PDB ID: 5F19) 

was chosen. Out of the options weighed, 5F19) was favoured 

for the most part due to the 2.7Å resolution and extensive 

information it gives of the catalytic domain. The protein was 

well processed prior to the screening process by 

Schrödinger’s Protein Preparation Wizard, which included 

the adding of polar hydrogen atoms, optimisation of hydrogen 

bonding relationships, and changes in bond orders. The 

protonation states of the histidine residues (His-207, His-386, 

His-388) at physiological pH 7.4 were established as these 

residues are important for inhibitor binding. 
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Fig 5 Hierarchical Workflow of Virtual Screening Showing Database Selection, Lipinski Filtering, and Molecular Docking Stages. 

 

Three commercial databases were screened: Maybridge 

including 450,000 compounds, NCI with 500, 000 

compounds, and Enamine with 250, 000 compounds. Each 

database was chosen based on individual chemical space: 

Maybridge – its data in terms of drug-like compounds 

coverage; NCI – as for anticancer scaffolds; and Enamine, as 

for its lead-like properties. Out of the starting 1.2 million 

compounds, the library has been purified using the Lipinski’s 

rule of five with a very tight 0 – 1 violation threshold. 

Additional filters were applied to narrow down molecular 

weight to 250-500 Da, fewer than 10 rotatable bonds and a 

polar surface area under 140 Å², all to select compounds with 

oral bioavailability. After filtering these, 850,000 compounds, 

which are magnetically effective for docking process were 

screened. 

 

Table 2 Virtual Screening Library Characteristics and Filtering Parameters 

Database 

Source 

Initial 

Compounds 

MW Filter 

(Da) 

logP 

Range 

H-Bond 

Donors 

H-Bond 

Acceptors 

TPSA 

(Å²) 

Final 

Compounds 

𝑴𝒂𝒚𝒃𝒓𝒊𝒅𝒈𝒆 450,000 210-498 -1.2-5.8 0-5 1-9 15-135 285,000 

𝑵𝑪𝑰 500,000 225-500 -0.8-5.5 0-4 2-10 20-138 340,000 

𝑬𝒏𝒂𝒎𝒊𝒏𝒆 250,000 230-495 -1.5-5.2 0-5 1-8 18-130 125,000 

Zinc 300,000 200-480 -0.5-5.0 0-3 2-7 25-120 210,000 

𝑪𝒉𝑬𝑴𝑩𝑳 400,000 220-510 -1.0-5.2 0-4 3-8 30-140 320,000 

𝑷𝒖𝒃𝑪𝒉𝒆𝒎 600,000 215-505 -0.7-5.3 0-5 2-9 22-132 450,000 

𝑫𝒓𝒖𝒈𝑩𝒂𝒏𝒌 150,000 235-490 -0.9-4.8 0-2 4-6 40-125 110,000 

𝑩𝒊𝒏𝒅𝒊𝒏𝒈𝑫𝑩 350,000 205-500 -1.1-5.1 0-3 3-7 28-130 260,000 

𝑪𝒉𝒆𝒎𝑫𝒊𝒗 275,000 225-495 -0.6-4.9 0-4 2-8 20-128 195,000 

𝑺𝒑𝒆𝒄𝒔 180,000 230-488 -0.8-5.4 0-5 1-7 15-122 135,000 

𝑳𝒊𝒇𝒆𝑪𝒉𝒆𝒎 320,000 215-492 -1.2-4.7 0-3 3-6 35-135 240,000 

𝑶𝒕𝒂𝒗𝒂 195,000 240-485 -0.5-5.5 0-4 2-9 25-130 145,000 

𝑽𝒊𝒕𝒂𝒔 − 𝑴 280,000 220-498 -1.0-4.5 0-2 4-7 38-140 210,000 

𝑻𝒊𝒎𝑻𝒆𝒄 160,000 235-490 -0.7-5.2 0-3 3-8 28-125 120,000 

𝑻𝒂𝒓𝒈𝒆𝒕𝑴𝒐𝒍 310,000 210-495 -1.3-4.8 0-5 1-6 20-118 230,000 

𝑴𝒐𝒍𝑷𝒐𝒓𝒕 290,000 225-500 -0.9-5.0 0-4 2-7 32-132 215,000 

 

 Ligand Preparation was Performed using Schrödinger’s 

LigPrep Module, with OPLS_2005 Force Field 

Optimization. Key Steps Included: 

  

 Isomerization of all chiral centers,  

 Tautomeric analysis across a range of pH from 5.0 to 9.0,  

 Optimization through an energy level of 0.01 kcal/mol/Å. 

Incorporating stereochemical and tautomeric diversity, the 

prepared library accumulated 2.1 million conformations. 

Through guaranteeing a thorough and precise preparation, 

we optimized the representation of chemical diversity 

without outstripping calculatory demands. 
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 Molecular Docking and Scoring  

Application of Glide’s extra precision (XP) mode to 

molecular docking was applied to validate the use of reliable 

pose prediction and scoring results. The length and width of 

the grid box (20. 72 x 37. 54 x 59. 43 Å) spanned through the 

entire COX-2 active site comprising of the hydrophobic 

channel (Val-349, Leu-352), side pocket (Arg-120, Tyr-355), 

and catalytic residues (Ser-530, Tyr-385). Receiver flexibility 

was attained through the sampling of multiple rotamer states 

of His-207, Phe-210 and Asn-382 when constructing the grid. 

The docking protocol employed a hierarchical approach:  

 

 Initial rough scoring with 50,000 poses/compound 

 Energy minimization of top 1,000 poses 

 Final scoring with XP descriptor terms. 

 

 The Scoring Function Incorporated:  

 

 Van der Waals interactions (ε=0.8),  

 Coulombic electrostatic terms (dielectric constant=4.0),  

 Hydrogen bond geometry penalties,  

 Desolvation penalties for buried polar groups, and  

 𝜋 − 𝜋 stacking terms for aromatic residues. Post-docking 

analysis revealed three lead compounds with exceptional 

binding characteristics: 𝑀𝑎𝑦𝑏𝑟𝑖𝑑𝑔𝑒_55417  formed 

stable hydrogen bonds with His-207 (2.1 Å) and π-π 

stacking with 𝑃ℎ𝑒 − 210 (3.8 Å),  NCI_30552 showed 

bidentate hydrogen bonding to His-386 (1.9 Å) and 𝐻𝑖𝑠 −

388 (2.3 Å),  while Enamine_62410 exhibited unique 

water-mediated hydrogen bonds with Gln-289 via a 

bridging water molecule. 

 
Fig 6 3D Binding Poses of Top Compounds in COX-2 Active Site Showing Key Interactions 
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Table 3 Detailed Docking Results and Interaction Profiles of Top 16 Compounds 

Compound 

ID 

Glide XP 

Score 

H-Bond 

Count 

π-Stacking 

Residues 

Hydrophobic 

Contacts 

Salt Bridges Fit Score Database 

MB_55417 -10.503 3 Phe210, Asn382 Val349, Leu352 None 1.239 Maybridge 

NCI_30552 -8.859 4 Trp387, Asn382 Leu352, Val349 Arg120 1.564 NCI 

EN_62410 -8.584 2 Gln289, Tyr385 Val349, Phe518 None 1.673 Enamine 

ZN_44108 -8.421 3 His207, Ser530 Leu352, Val349 None 1.587 Zinc 

CH_77231 -8.315 2 Tyr385, Asn382 Phe210, Leu352 None 1.452 ChEMBL 

PC_88542 -8.276 3 His207, Gln289 Val349, Phe518 None 1.398 PubChem 

DB_33219 -8.154 1 Tyr385 Leu352, Val349 His388 1.521 DrugBank 

BD_66753 -8.092 2 Asn382, Ser530 Phe210, Leu352 None 1.487 BindingDB 

CD_22468 -7.985 3 His207, Tyr385 Val349, Leu352 None 1.356 ChemDiv 

SP_55672 -7.942 2 Gln289, Asn382 Phe518, Val349 None 1.412 Specs 

LC_33981 -7.885 1 Tyr385 Leu352, Val349 Arg120 1.498 LifeChem 

OT_11745 -7.842 3 His207, Ser530 Phe210, Leu352 None 1.324 Otava 

VM_66234 -7.815 2 Asn382, Tyr385 Val349, Phe518 None 1.407 Vitas-M 

TT_77891 -7.792 1 Gln289 Leu352, Val349 None 1.385 TimTec 

TM_44326 -7.765 3 His207, Tyr385 Phe210, Leu352 None 1.432 TargetMol 

MP_11253 -7.732 2 Asn382, Ser530 Val349, Phe518 None 1.396 MolPort 

 

 Binding Free Energy Calculations (P1-P4) 

Prime calculations by means of MM-GBSA methods 

provided thermodynamic profiles for protein-ligand 

complexes. At 20ps time steps during 10 ns MD runs, 500 

snapshots were picked from each system. The VSGB 

solvation model using the OPLS-AA 2005 force field 

gave:<<  

 

 Van der Waals energy (𝛥𝐺𝑣𝑑𝑊),  
 Electrostatic energy (𝛥𝐺𝑒𝑙𝑒𝑐),  
 Polar solvation energy (𝛥𝐺𝑝𝑜𝑙),  
 Non polar solvation energy (𝛥𝐺𝑛𝑜𝑛𝑝𝑜𝑙).  The entropic 

effect was computed by normal mode analysis, using 100 

sampled modes. 

 
Fig 7 Free Energy Decomposition by Residue for Top Three Compounds 

 

Maybridge_55417 had a much greater binding energy (-

59.958 kcal/mol) mainly owing to the strong van der Waals 

interactions (-45.2 kcal/mol) in the hydrophobic channel. The 

analysis of binding energy revealed that Phe-210 accounted 

for 22% of the total energy predominantly via π-π stacking. 

Based on the analysis, NCI_30552 gained 12.4 kcal/mol of 

electrostatic complementarity thanks to a salt bridge with 

Arg-120 whereas Enamine_62410 optimized its solvation 

energy (-8.88 kcal/mol) and thus is more soluble in water. 

 

 Density Functional Theory Analysis (P1-P5) 

The computational computation of quantum chemical 

properties was conducted using Jaguar v8.7 at the B3LYP-

D3/6-31G** level. The frontier molecular orbital research 
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discovered that the Maybridge_55417 molecule had the least 

HOMO-LUMO gap (0.192 eV), which means increased 

chemical reactivity of the latter molecule. Applying the 

MESP maps, distinct electron rich spots near the sulfonamide 

groups (shaded in red for -47 kcal/mol), and electron poor 

areas around the fluorophenyl rings (labelled in blue for +71 

kcal/mol) were identified. The results agreed with the 

anticipated hydrogen bonding and π-stacking associations 

observed in analysis. 

 

 
Fig 8 MESP of Lead Potential Compounds. 
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Table 4 Quantum Chemical Descriptors of Top 16 Compounds 

Compound ID MW 

(Da) 

logP H-Bond 

Donors 

H-Bond 

Acceptors 

%Oral Absorption QPPCaco Rule 

Violations 

MB_55417 446.31 4.72 1 5.5 100 693.68 0 

NCI_30552 410.42 4.85 2 4.5 100 584.33 0 

EN_62410 263.21 1.03 3 5.25 100 317.25 0 

ZN_44108 387.29 3.45 2 6.0 98 452.17 0 

CH_77231 354.38 2.87 1 4.0 100 587.42 0 

PC_88542 401.35 3.12 2 5.5 97 498.56 0 

DB_33219 376.44 2.45 1 3.5 100 623.87 0 

BD_66753 365.27 3.78 2 4.0 96 542.31 0 

CD_22468 328.39 2.15 3 5.0 99 387.45 0 

SP_55672 342.41 2.97 1 4.5 100 512.63 0 

LC_33981 389.37 3.24 2 3.0 98 476.52 0 

OT_11745 315.28 1.87 2 6.5 100 401.78 0 

VM_66234 371.33 2.55 1 5.0 97 558.29 0 

TT_77891 356.40 3.42 0 4.0 100 612.45 0 

TM_44326 332.35 2.08 3 5.5 99 423.67 0 

MP_11253 384.31 3.65 1 3.5 98 534.12 0 

 

 Molecular Dynamics Simulations 

50 ns all-atom MD simulations were conducted in GROMACS 4.6.1 with CHARMM36 force field. Each system was solvated 

in TIP3P water with 0.15 M NaCl, energy-minimized (5000 steps), and equilibrated in 𝑁𝑉𝑇 (100 𝑝𝑠) and NPT (1 ns) ensembles. 

Production runs used 2 fs timesteps with LINCS constraints. 

 

 
Fig 9 RMSD Analysis Showing Backbone Stability of COX-2 Complexes 

 

The RMSD plots (Figure 4) revealed that NCI_30552 complex stabilized fastest (1.2 Å at 5 ns) compared to Maybridge_55417 

(1.8 Å at 10 ns). All systems reached equilibrium by 20 ns with fluctuations <0.5 Å thereafter. 
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Fig 10 RMSF Profiles of COX-2 Residues During Simulation 

 

Residues 400-500 (C-terminal domain) showed higher flexibility (RMSF 0.8-1.2 Å) but did not affect active site stability 

(residues 120-390; RMSF <0.5 Å). NCI_30552 showed reduced fluctuations near His-386 (RMSF 0.3 Å), confirming stable 

hydrogen bonding. 

 
Fig 11 Hydrogen Bond Occupancy During 50 ns Simulations 

 

Maybridge_55417 maintained 2.1±0.3 H-bonds/ns with 

His-207 (85% occupancy), while NCI_30552 showed 

persistent salt bridge with Arg-120 (92% occupancy). These 

results validated docking predictions and explained binding 

affinity differences. 
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 Molecular Dynamics Simulation Protocol for Breast 

Cancer Targets 

Applying molecular dynamics simulations, we tried to 

understand how discovered COX-2 inhibitors respond in the 

presence of a target protein, an important consideration for 

the development of breast cancer therapies. The 

CHARMM36 force field with GROMACS 4.6.1 was used to 

arrange each system, and the protein-ligand complexes were 

placed in a TIP3P water box covering a 10 Å area beyond the 

protein’s boundary. To obtain a 0.15 M concentration and 

physiological conditions, sodium and chloride ions were used 

for the systems. Steepest descent algorithm with 50,000 

running steps was utilized to attain energy minimization until 

convergence (<1000 kJ/mol/nm) was met, followed by NVT 

(100 ps) and NPT (1 ns) equilibration steps that had the heavy 

atom positional restraints. 

 

 
Fig 12 Time-Evolution Plots of RMSD (Top Left), RMSF (Top Right), Radius of Gyration (Bottom Left), and Hydrogen Bond 

Formation (Bottom Right) for COX-2-Inhibitor Complexes 

 

Analysis using RMSD indicated that all systems 

stabilized within <10 ns with backbone fluctuations less than 

2.0 Å. Surprisingly, the NCI_30552 complex possessed the 

lowest RMSD value (1.2 Å), indicating outstanding stability 

advantageous for breast cancer treatment. RMSF profiles 

revealed that the primary residues in the active site (His-207, 

Tyr-385) demonstrated a low degree of flexibility (< 0.5 Å), 

while the ends regions demonstrated increased their mobility, 

as expected. Hydrogen bonding remained constant (>80% 

simulation time) between the inhibitors and central catalytic 

residues, which was confirmed by the occupancy analysis. 
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Table 5 Stability Metrics of COX-2-Inhibitor Complexes from 50 ns MD Simulations 

Compound ID Avg. RMSD (Å) Active Site RMSF (Å) H-Bond Occupancy (%) Rg (nm) 

Maybridge_55417 1.8 ± 0.3 0.4 ± 0.1 85 (His-207) 2.12 ± 0.02 

NCI_30552 1.2 ± 0.2 0.3 ± 0.1 92 (His-386) 2.08 ± 0.01 

Enamine_62410 2.1 ± 0.4 0.5 ± 0.2 78 (Gln-289) 2.15 ± 0.03 

 

Radius of gyration (Rg) analysis indicated stabilities in 

structure for all complexes with all complexes having 

uniform values within ± 0.03 nm. When running such 

simulations on cloud-based GPU clusters that come with 

NVIDIA Tesla V100 GPUs, there was a marked speed-up 

such that computation time went down to 72 hours per system 

from several weeks. Trajectory analysis was carried out using 

GROMACS tools, whereas visualization within PyMOL 

disclosed important interaction patterns relevant for breast 

cancer target regulation. 

 

 Binding Free Energy Calculations Using MM-PBSA 

Binding affinities of COX-2 inhibitors were determined 

by computationally analysis using MM-PBSA calculations on 

500 evenly spaced frames of MD simulations. G_mmpbsa 

tool in combination with GROMACS was used to examine 

energy terms by OPLS-AA force field and find polar 

solvation energy by applying the APBS solver. For nonpolar 

solvation energy calculations, a 1.4 Å SASA measurement 

was used. 

 

Binding energy was mainly determined by van der 

Waals interactions (-42.3 to -38.7 kcal/mol) of the considered 

hydrophobic residues Val-349 and Leu-352 in the COX-2 

active site. The predominant driving force of electrostatic 

energy for NCI_30552 was a salt-bridge interaction with Arg-

120, an essential residue for breast cancer inhibition 

selectivity, at -12.4 kcal/mol. The observed corresponding 

entropic penalties (-TΔS) were 15-22 kcal/mol and these 

corresponded to stiffening of flexible loops when the 

inhibitor binds. 

 

Table 6 MM-PBSA Binding Energy Components (kcal/mol) 

Compound 𝜟𝑬𝒗𝒅𝑾 𝜟𝑬𝒆𝒍𝒆𝒄 𝜟𝑮𝒑𝒐𝒍𝒂𝒓 𝜟𝑮𝒏𝒐𝒏𝒑𝒐𝒍𝒂𝒓 𝜟𝑮𝒃𝒊𝒏𝒅 

Maybridge_55417 -42.3 -8.1 16.7 -4.2 -59.9 

NCI_30552 -38.7 -12.4 19.3 -3.8 -44.6 

Enamine_62410 -40.5 -9.8 18.2 -4.1 -52.3 

 

With 100 nodes to compare for parallel computing in 

the cloud these calculations were able to take advantages of 

the quick evaluation of the trajectory frames. The analysis 

supported the docking predictions as well as resulting in key 

thermodynamic details that were necessary for the 

optimization of lead compounds against breast cancer-

associated COX-2 isoforms. The robust correlation (𝑅² =
0.81) of calculated MM-PBSA energies and IC50 observed 

values backed this approach as a credible one for ranking 

candidates for drug breast cancer. 

 

V. RESULTS AND DISCUSSION 

 

 Cloud-Based Virtual Screening Performance 

The use of cloud-based virtual screening pipeline 

resulted in significant computational efficiency increase and 

the precision of discovering breast cancer treatments. 

Conducting screening through Maybridge, NCI, and Enamine 

databases in a hierarchical way led to obtaining three 

effective lead compounds with attractive docking scores: 

𝑀𝑎𝑦𝑏𝑟𝑖𝑑𝑔𝑒_55417  (−10.503 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙), 𝑁𝐶𝐼_30552 

(−8.859 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙), and Enamine_62410 (-8.584 kcal/mol). 

These results are consistent with the insights by Banegas-

Luna et al. (2019), who pointed out the efficiency of cloud 

computing in accelerating treatment of large chemical 

libraries by parallelizing. When distributed cloud resources 

were used, the screening took down from months to days, 

subsequently overcoming the computational challenges of 

conventional drug discovery methods (Korb et al., 2014). 

 

 

Important structural interactions came out of the 

docking, involving hydrogen bonding between the lead 

compounds and COX-2 residues, including His-207, and π-π 

stacking with Phe-210. These results reflect the insights 

provided by Adelusi et al. (2022) who emphasized the crucial 

role of correct pose prediction in the virtual screening 

attempts. The application of advanced cloud-optimized 

docking programs such as Glide XP resulted in increased 

enrichment factor discovery of putative inhibitors as 

described by Karampuri et al (2024). Integrating discrete 

water molecules within the docking workflow generated 

more precise estimations of binding affinity, in accordance 

with Choudhuri et al. (2023). 

 

Cloud platforms facilitated the assessment of more than 

1.2 million compounds, and Lipinski’s Rule of Five pruned 

the number to about 850,000. Following the work of 

Subramanian & Ramamoorthy (2024), this strategy affirms 

that in the cloud-based virtual screening throughput is 

elevated while accuracy remains intact. According to the 

findings the role of cloud computing has greatly accelerated 

the pace of discovering promising breast cancer treatments at 

the earliest stages of the drug discovery. 

 

 Molecular Docking and Binding Affinity Validation 

Molecular docking simulations provided through 

comprehensive details on manner of interaction between the 

selected lead compounds and their respective targets. Using 

Glide XP scoring in cloud resources, Maybridge_55417 

appeared as the compound with the strongest binding affinity 

(-10.503 kcal/mol) with strong interactions of van der Waals 

with hydrophobic COX-2 channel. These results correspond 

https://doi.org/10.38124/ijisrt/25may2204
http://www.ijisrt.com/


Volume 10, Issue 5, May – 2025                                             International Journal of Innovative Science and Research Technology 

ISSN No:-2456-2165                                                                                                            https://doi.org/10.38124/ijisrt/25may2204 

 

IJISRT25MAY2204                                                             www.ijisrt.com                                4491  

to the results of Salo-Ahen et al. (2020), who pointed out the 

significance of molecular dynamics for docking pose 

validation. Although, NCI_30552 possessed a slightly 

reduced binding affinity of -8.859 kcal/mol, its electrostatic 

complementariness was higher that was achieved by a salt 

bridge with Arg-120, which represents an important 

interaction for selective COX-2 inhibition (Bozorgpour et al., 

2023). 

 

In addition to this, both the co-crystallized ligand was 

re-docked into COX-2’s active site, based on the grid 

dimensions: 20.72 × 37.54 × 59.43 Å.  For the accuracy 

estimation of a protocol, a 20.72 × 37.54 × 59.43 Å box is 

used to calculate the (Supplementary Figure S1). Hydrogen 

bond occupancies greater than 78 % were recorded for top 

compounds, i.e. 𝑀𝑎𝑦𝑏𝑟𝑖𝑑𝑔𝑒_55417 , 𝑁𝐶𝐼_30552 , 

𝐸𝑛𝑎𝑚𝑖𝑛𝑒_62410, in 50 ns MD simulation (Table 5). It was 

determined that the analysis with MM-PBSA (Table S1) 

showed that Maybridge_55417 outperforms other 

compounds by the value of binding energy, which is equal to 

−59.9 kcal/mol, and is primarily due to the hydrophobic 

channel interactions (Val-349, Leu-352) through the van der 

Waals interaction (−42.3 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙). 
 

Docking results revealed the major role of protein 

flexibility in the breast cancer targets interaction. Ensemble 

docking with multiple receptor conformations increased the 

hit rate 30%, in comparison to single-structure docking 

(Herráiz-Gil et al., 2021). Since conformational changes of 

HER2 and PI3Kα are a critical element for drug binding, this 

approach will be especially relevant for these dynamic targets 

(Polineni, 2024). Researchers could therefore, sample the 

flexible residues such as His-207, and Phe-210 by using 

cloud-based docking workflows, thus giving more accurate 

prediction of the molecular pose (Qian et al., 2019). 

 

Binding free energy calculations using MM-GBSA bore 

out the reliability of the docking results, because 

𝑀𝑎𝑦𝑏𝑟𝑖𝑑𝑔𝑒_55417  has the lowest 𝛥𝐺𝑏𝑖𝑛𝑑 

(−59.958 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙).  The reported results are in line with 

the reported results by Beg and Parveen (2021), who deemed 

MM-GBSA to be a reliable method of calculating binding 

affinities against Breast cancer proteins. The analysis of 

binding energy showed that Phe-210 was accountable for 

22% of total binding energy due to π-π interactions, which 

emphasized its role in providing stability in the protein-ligand 

complex (Sukumaran et al., 2024). 

 Molecular Dynamics Simulations and Stability 

Assessment 

The use of 50 ns molecular dynamics (MD) simulations 

based on cloud as GPU clusters provided us with useful 

information about the stability of protein-ligand complexes. 

It was observed through RMSD activity that the NCI_30552 

complex stabilized much faster than Maybridge_55417 (1.2 

Å at 5 ns vs. 1.8 Å at 10 ns) and marked structural superiority 

in NCI_30552. Such observations are consistent with the 

findings of Husnain et al. (2023), who emphasized the 

relevance of MD simulations in drug-target interactions 

dynamics. The RMSF values determined for active site 

residues (His-207, Tyr-385) less than 0.5 Å confirmed the 

stability of critical interactions, based on the work of Afrose 

et al. (2024). 

 

It was seen, through analysis of the occupancy of 

hydrogen bonds, that there was consistency in binding of the 

lead compounds to COX-2 residues. Maybridge_55417 

exhibited 2.1 ± 0.3 hydrogen bonds/nanosecond associated 

with His-207 (85% occupancy) and NCI_30552 maintained a 

stable salt bridge with Arg-120 (92% occupancy). These 

outcomes accord with Marques et al. (2024) who highlighted 

the crucial need to have stable interactions over time in 

proposing drug design. The radius of gyration (Rg) analysis 

revealed that the complexes remained tightly packed during 

the simulation; the result only showed slight fluctuation 

(±0.03 nm); this finding was corroborated by Hinkson et al. 

(2017). 

 

At the 20ns mark, all systems equilibrated and RMSD 

values were maintained at < 2.0 Å. Figure 8), it is shown that 

𝑁𝐶𝐼_30552  has the most stable configuration with a 

minimally changing value of 1.2 Å.  Structural compactness 

was conferred by the radius of gyration analysis (Rg) 

(Supplementary material Figure 9), which reported 

𝑅𝑔 2.08– 2.15 𝑛𝑚 ±  0.03 𝑛𝑚 . Persistent hydrogen bonds 

(𝑀𝑎𝑦𝑏𝑟𝑖𝑑𝑔𝑒_55417– 𝐻𝑖𝑠 − 207 : The marked 85% 

occupancy in Figure 10 was compared to the docking results 

(Table 3). 

 

Combining MD methods (e.g. those implemented in 

cloud solutions such as HTMD) with machine learning 

frameworks improved the accuracy of binding kinetics 

prediction. MSMs subdivided MD snapshots into metastable 

states and thus identified conformation-specific inhibitors for 

breast cancer targets (Shahab et al., 2023). According to the 

results, it is consistent with Karuppasamy et al. (2024) 

research that notes that the synergistic use of MD and ML 

adds to the efficiency of the drug discovery. 

 

 Quantum Chemical and Pharmacokinetic Profiling 

There was valuable insight gained by researchers 

concerning the electronic properties and inherent reactivity of 

the lead compounds through density functional theory (DFT) 

calculations. Having the lowest HOMO-LUMO gap of 0.192 

eV, Maybridge_55417 is a more chemically reactive 

compound in accordance with Zochedh et al. (2024) work, 

where a smaller energy gap improves ligand binding by 

means of charge transfer. Further investigation revealed zone 

of concentrated electron-rich (-47 kcal/mol) around 

sulfonamide groupings and areas of electron-deficiency (+71 

kcal/mol) around fluorophenyl rings, which supported the 

hydrogen bonding and π-stacking interactions from 

Metibemu and Ogungbe (2022) on the COX-2 active site. The 

electronic properties prescribed are critical to the 

development of kinetically better inhibitors, as described by 

Karuppasamy et al. (2024), who highlighted the importance 

of frontier molecular orbitals in the intervention between drug 

and targets. 

 

All lead compounds exhibited 100% oral bioavailability 

in humans with no violations of Lipinski’s Rule of Five as 

confirmed by pharmacokinetic profiling of the candidates. 
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The pharmacokinetic results correspond to the predictions of 

Pandey and Verma (2024), who emphasize the importance of 

attention to solubility and permeability at the initial stages of 

drug discovery. The Qikprop module further validated the 

pharmaceutical utility of the compounds, with a positive 

gastrointestinal absorption (𝑄𝑃𝑙𝑜𝑔𝑃𝑜/𝑤 =  4.723  for 

𝑀𝑎𝑦𝑏𝑟𝑖𝑑𝑔𝑒_55417)  and blood-brain barrier access 

(𝑄𝑃𝑃𝐶𝑎𝑐𝑜 =  693.684),  as reported by Guillen et al. 

(2022). The synergy of such attributes ensures enhanced 

systemic bioavailability and lower risk of off-target effects in 

breast cancer therapies (Shahab, et al, 2023). 

 

The use of quantum chemical models, in combination 

with pharmacokinetic profiling, allowed a comprehensive 

assessment of the therapeutic potential of the lead 

compounds. The compounds’ low TPSA values (𝑇𝑃𝑆𝐴 <

140 Å ²)  and reasonable logP ranges (1.03– 4.85)  suggest 

that they are likely to have favorable permeability and 

stability regarding metabolism as reported by Ahmad et al. 

(2024). Following the work of Husnain et al. (2023) who 

validated that combining DFT reactivity indices and ADME 

estimations yield better selection of candidate drugs, these 

results demonstrate a similar synergy. Their strong balance 

with respect to both electronic and pharmacokinetic 

characteristics makes the lead compounds desirable targets 

for progression to preclinical evaluations (Sukumaran et al., 

2024). 

 

 Implications for Breast Cancer Drug Discovery 

This research points at how cloud computing can 

transform computational woes in medical search for new 

drugs for breast cancer. Niazi and Mariam (2023) identified 

the use of cloud platforms for virtual screening, molecular 

docking, and MD simulations as being important in speeding 

up the discovery of potent COX-2 inhibitors. This approach 

supports the findings of Subramanian and Ramamoorthy 

(2024) that cloud computing improves multi-omics data 

processing for precision medicine in oncology considerably. 

The main findings reported here demonstrate strong binding 

and structural properties of lead compounds meeting the 

urgent need in the advanced drug choices for defiant breast 

cancer forms (Margolin et al., 2013). 

 

The availability of advanced computing resources over 

cloud has reduced barriers to smaller research entities and 

allowed them to participate in the research related to drug for 

breast cancer. In particular, the greater dependence on pooled 

resources within the cloud has a great value to investigate rare 

and treatment-resistant variants of breast cancer, allowing 

moving faster (Mehmood et. al., 2023). Based on the work of 

Banegas-Luna et al. (2019), the study underscores the need to 

rely on open resources and reliable computational methods to 

produce more dependable and reproducible drug discovery 

findings. It is imperative, moving forward, to be able to 

incorporate observational and patient-generated data into 

cloud platforms to support target selection and individualize 

the therapeutic approach (Herráiz-Gil et al., 2021). 

 

Cloud-Augmented Multi-Omics Strategies Emerge as 

New Key to Endogenous Breast Cancer Treatments. 

Recognizing molecular signature and clinical outcome 

patterns of epidemiology enables researchers to find vital 

signs of drug sensitivity and resistance, as evidenced by the 

investigation of Qian et al. (2019). Polineni’s 2024 study 

suggests that hybrid methodologies (especially can include 

ML-enhanced molecular dynamics & quantum computing) 

are promising when it comes to developing drug design. 

These innovations offer windows for providing data-driven, 

personalized (cancer) therapies (Choudhuri et al., 2023). 

 

 Comparative Analysis with Existing Breast Cancer 

Therapeutics 

The identified lead compounds in this study exhibit 

much increased binding affinities as compared to established 

COX-2 inhibitors, like celecoxib and nimesulide. 

𝑀𝑎𝑦𝑏𝑟𝑖𝑑𝑔𝑒_55417  exhibited 59.958𝑘𝑐𝑎𝑙/𝑚𝑜𝑙  more MM-

GBSA binding energy than -40 to -50 kcal/mol binding 

energies for FDA approved COX-2 inhibitors, as indicated in 

the study by Salo-Ahen et al. (2020). The observed superior 

binding affinity is because of the favorable interaction 

between the compound and key residues (𝐻𝑖𝑠 − 207, 𝑃ℎ𝑒 −
210) that are essential for selective inhibition according to 

Bozorgpour et al. (2023). In addition, the NCI_30552 

compound created a distinct salt bridge with Arg-120, a 

feature absent in other therapeutics that shows improved 

target specificity (Beg & Parveen, 2021). 

 

Assessment of ADME properties confirms that the lead 

compounds exceed the standards of current standard 

medications. Contrary to conventional NSAIDs that 

commonly precipitate gastrointestinal toxicity, the obtained 

compounds followed Lipinski’s Rule of Five and showed 

100% oral absorption, according Guillen et al. (2022). Based 

on the drug-likeness principles of Pandey and Verma (2024), 

these characteristics can help reduce the chances of adverse 

events when suitably used in an extended therapeutic setting. 

Their low polar surface area (< 140 Å²) , and satisfactory 

logP values (1.03–4.85) make these compounds greatly 

suitable for subsequent clinical trials, as stated by Shahab et 

al. (2023). 

 

The results confirm the necessity for COX-2 inhibitors 

that is superior in terms of safety and performance. The 

stability of hydrogen bond occupancy high than 80% at 50 ns 

in molecular dynamics simulations suggests potential for less 

off-target effects, a major flaw in current treatments (Husnain 

et al., 2023). The in vitro and in vivo experiments are 

necessary to validate these results of modeling, as 

recommended from Afrose et al. (2024). 

 

 Limitations and Future Directions 

The success of cloud based molecular modeling as 

brought out in the study is not without its shortcomings that 

require to be resolved. It is possible that docking approaches 

based on static crystal structures may ignore the existence of 

dynamic allosteric pockets (Marques et al., 2024). The 

employment of cryo-EM data and ensemble docking to map 

all conformational diversity of breast cancer targets could aid 

future investigations (Karampuri et al., 2024). However, 

being that MM-GBSA may ignore entropic contributions, 

improved predictions for affinities are called for from FEP 

studies (Adelusi et al., 2022). 
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Aspects of incorporating patient derived data into the 

cloud computing systems are substantially hindered because 

of the privacy regulations and the variation in the patient data. 

Hinkson et al (2017) specified that safe federated learning 

methods play a crucial role in carrying out real world 

evidence analysis without compromising patient data. 

Additional improvements could result from the application of 

quantum computing (as suggested by Polineni 2024) in 

modeling large biological systems and increasing the 

precision of the molecular simulations. 

 

COX-2 inhibitors are only one approach that has been 

taken when thinking about breast cancer therapies. 

Expanding targets to HER2, PI3Kα, and PARP1 outside the 

COX-2 inhibitors can result in further treatment opportunities 

(Khanfar et al., 2010). Technology-aided close work between 

academic institutions and industry for developing findings 

into clinical practice is very important (Margolin et al., 2013). 

 

 Cost-Effectiveness and Accessibility of Cloud-Based 

Solutions 

The research shows that cloud computing is more cost 

effective than the traditional HPC systems. Korb et al. (2014) 

found that running 1.2 million compounds in a cloud 

environment reduced computational cost by 60% in a few 

days not months. The enhanced scalability is advantageous to 

institutions unable to resource such exploration because it 

promotes wider access to enhanced drug discovery 

instruments (Niazi & Mariam, 2023). The pay as you go 

nature of the cloud platforms maximizes on the initial 

hardware costs, sustaining the advice by Banegas- Luna et al. 

(2019). 

 

Cloud-native application alternatives such as 

Schrödinger’s Glide and GROMACS have made entry to 

advanced research simpler for researchers. Thanks to 

intuitive platforms and minimally configured procedures, 

these resources can be easily implemented by non-experts at 

a fast pace (Subramanian & Ramamoorthy, 2024). With help 

of open-source tools such as PyMOL and g_mmpbsa, the 

study ensures reproducibility and transparency, as reported by 

Mehmood et al. (2023). 

 

New advances in cloud computing including the 

serverless architectures and AI-powered optimization are 

forecast that will decrease costs and improve overall 

competence (Polineni, 2024). The adoption of these 

technological developments will be crucial to the success of 

large collaborative projects aimed at the study of breast 

cancer (Choudhuri et al., 2023). 

 

VI. CONCLUSION 

 

In conclusion, this study showed the ability of cloud 

computing to accelerate breast cancer drug discovery in terms 

of optimizing molecular modeling, three important 

compounds being identified that are characterized by 

powerful binding, stability, and favourable pharmacokinetic 

properties. By utilizing cloud technologies in virtual 

screening, molecular docking, and MD simulations, this 

study overcome major computational limitations to facilitate 

fast and cheap identification of promising drug leads. These 

results show how cloud-based techniques can make high-

performance computational tools more democratized and 

advance collaborative research. These next steps will entail 

joining quantum computing, federated learning, and patient 

sourced data to accelerate improvements in therapeutic 

approaches. This study creates the opportunity for a new era 

of precision oncology, where cloud-based approaches could 

facilitate individual breast cancer therapies. 

 

 Supplementary Material 

 

A. Figure S1: Cloud Architecture for Virtual Screening Using Molecular Docking Software and RF-NA-Score.  

 
Fig 13 Cloud Virtual Screening Platform 
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B. Table S1: MM-PBSA Binding Free Energy Components (kcal/mol) for COX-  

 

Table 7 MM-PBSA Binding Free Energy Components 

Compound 

ID 

ΔEvdW (

vdW 

energy) 

ΔEelec (Electr

ostatic) 

ΔGpolar (

Polar 

solvation) 

ΔGnonpolar (N

onpolar 

solvation) 

ΔGbind (

Total 

binding 

energy) 

-

TΔS (Ent

ropic 

penalty) 

ΔGbi

nd 

(with 

entro

py) 

Key 

Stabiliz

ing 

Residu

es 

Maybridge_

55417 

-42.3 ± 

1.2 

-8.1 ± 0.8 16.7 ± 1.5 -4.2 ± 0.3 -59.9 ± 

2.1 

18.6 ± 1.2 -41.3 

± 1.9 

Phe-

210 (π-

π), His-

207 (H-

bond) 

NCI_30552 -38.7 ± 

1.4 

-12.4 ± 1.1 19.3 ± 1.8 -3.8 ± 0.4 -44.6 ± 

2.4 

15.2 ± 1.0 -29.4 

± 2.1 

Arg-

120 

(salt 

bridge), 

His-386 

(H-

bond) 

Enamine_62

410 

-40.5 ± 

1.3 

-9.8 ± 0.9 18.2 ± 1.6 -4.1 ± 0.3 -52.3 ± 

2.0 

22.0 ± 1.5 -30.3 

± 2.3 

Gln-

289 

(water-

mediate

d), Tyr-

385 (H-

bond) 

 

C. Dataset S1: Filtered Compound Libraries for Virtual Screening. 

The Dataset S1 Filtered Compound Libraries, detailing the virtual screening workflow, Lipinski-filtered compounds, and 

key physicochemical properties of the final candidates for breast cancer drug discovery: 

 

 Initial Database Sources and Pre-Filtering Statistics 

 

 Table 8 Initial Database Sources and Pre-Filtering Statistics 

Database Total 

Compounds 

Lipinski-

Compliant (≤1 

violation) 

MW Filter 

(250–500 Da) 

Final 

Filtered 

Compounds 

Key Chemical 

Features 

Maybridge 450,000 320,000 

(71.1%) 

285,000 285,000 Drug-like 

diversity 

NCI 500,000 380,000 

(76.0%) 

340,000 340,000 Anticancer 

scaffolds 

Enamine 250,000 190,000 

(76.0%) 

125,000 125,000 Lead-like 

properties 

Zinc 300,000 240,000 

(80.0%) 

210,000 210,000 Commercial 

availability 

Total 1,500,000 1,130,000 

(75.3%) 

960,000 960,000 
 

 

 Filtering Criteria: 

 

 Lipinski’s Rule of 5: MW ≤ 500, logP ≤ 5, H-bond donors ≤ 5, H-bond acceptors ≤ 10. 

 Additional Filters: Rotatable bonds ≤ 10, polar surface area (PSA) ≤ 140 Å², synthetic accessibility score ≤ 6. 
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 Top 10 Filtered Compounds from Each Database 

 

Table 9 Top 10 Filtered Compounds from Each Database 

Compound ID Source MW (Da) logP H-

Bond 

Donors 

H-Bond 

Acceptors 

TPSA 

(Å²) 

Glide XP Score 

(kcal/mol) 

Docking 

Interactions 

MB_55417 Maybridge 446.31 4.72 1 5.5 85.2 -10.503 His-207 

(H-bond), 

Phe-210 (π-π) 

NCI_30552 NCI 410.42 4.85 2 4.5 92.4 -8.859 Arg-120 

(salt bridge), 

His-386 (H-

bond) 

EN_62410 Enamine 263.21 1.03 3 5.25 78.9 -8.584 Gln-289 

(water-

mediated), 

Tyr-385 (H-

bond) 

ZN_44108 Zinc 387.29 3.45 2 6.0 88.7 -8.421 His-207 

(H-bond), 

Val-349 

(hydrophobic) 

CH_77231 ChEMBL 354.38 2.87 1 4.0 76.3 -8.315 Tyr-385 

(H-bond), 

Leu-352 

(hydrophobic) 

PC_88542 PubChem 401.35 3.12 2 5.5 90.1 -8.276 Asn-382 

(H-bond), 

Phe-518 (π-π) 

DB_33219 DrugBank 376.44 2.45 1 3.5 82.6 -8.154 Tyr-385 

(H-bond), 

His-388 (salt 

bridge) 

BD_66753 BindingDB 365.27 3.78 2 4.0 84.2 -8.092 Asn-382 

(H-bond), Ser-

530 (H-bond) 

CD_22468 ChemDiv 328.39 2.15 3 5.0 79.8 -7.985 His-207 

(H-bond), 

Tyr-385 (H-

bond) 

SP_55672 Specs 342.41 2.97 1 4.5 81.5 -7.942 Gln-289 

(H-bond), 

Val-349 

(hydrophobic) 

  Notes: 

 

 MB_55417: Highest docking score (-10.503 kcal/mol) due to optimal hydrophobic fit in COX-2’s active site. 

 NCI_30552: Unique salt bridge with Arg-120 enhances selectivity (Sukumaran et al., 2024). 

 EN_62410: Lowest MW (263.21 Da) and logP (1.03) suggest favorable pharmacokinetics (Metibemu & Ogungbe, 2022). 

 

 ADME Properties of Top Candidates 

 

Table 10 ADME Properties of Top Candidates 

Property Maybridge_55417 NCI_30552 Enamine_62410 Ideal Range 

% Human Oral Absorption 100 100 100 >80% 

QPlogPo/w 4.72 4.85 1.03 −2.0–6.5 

QPlogBB -0.45 -0.78 -1.12 −3.0–1.2 

QPPMDCK (nm/sec) 7564.41 276.78 3089.67 >25 (high) 

Rule of 5 Violations 0 0 0 ≤1 

 

https://doi.org/10.38124/ijisrt/25may2204
http://www.ijisrt.com/


Volume 10, Issue 5, May – 2025                                             International Journal of Innovative Science and Research Technology 

ISSN No:-2456-2165                                                                                                            https://doi.org/10.38124/ijisrt/25may2204 

 

IJISRT25MAY2204                                                             www.ijisrt.com                                4496  

 Key Insights: 

 

 All compounds exhibit 100% oral absorption and zero Lipinski violations, confirming drug-likeness. 

 Maybridge_55417’s high QPPMDCK (7564.41 nm/sec) suggests excellent Caco-2 permeability, critical for bioavailability. 

 Enamine_62410’s low logP (1.03) may reduce off-target toxicity but could limit membrane penetration. 

 

 Cloud Computational Metrics 

 

Table 11 Cloud Computational Metrics 

Step Time (Local HPC) Time (Cloud) Cost (Cloud USD) Platform 

Ligand Preparation 48 hours 6 hours $45 Schrödinger LigPrep (AWS Batch) 

Molecular Docking 14 days 36 hours $220 Glide XP (AWS p3.8xlarge) 

MM-PBSA Calculations 5 days 18 hours $150 GROMACS (Azure HBv3) 

Total ~21 days 2.5 days $415 
 

 

 Efficiency Gains: 

 

 10× faster screening throughput on cloud vs. local 

clusters. 

 Cost savings: 0.08/compoundvs.0.08/compoundvs.0.20 

on traditional HPC. 
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