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Abstract: In this study, an artificial intelligence-assisted image processing system was developed to prevent errors in part 

feeding processes within an industrial robot cell. Using the YOLOv7-tiny model, accurate detection of parts was ensured, 

enabling effective quality control. While PLC communication was established via the ModBus protocol, the system hardware 

included an NVIDIA JETSON AGX ORIN, a BASLER acA2500-60uc camera, and a Raspberry Pi WaveShare monitor. A 

total of 2400 data samples were used for model training, achieving an accuracy rate of 98.07%. The developed system 

minimized human errors by preventing incorrect part feeding issues and significantly improved efficiency in production 

processes. Notably, the system's superior accuracy and processing speed demonstrated its suitability for real-time 

applications. In conclusion, this study highlights the effective implementation of artificial intelligence and image processing 

techniques in industrial manufacturing processes. 
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I. INTRODUCTION 

 

The industrial sector has increasingly turned to industrial 

robots to optimize production processes and enhance 

efficiency during the Fourth and Fifth Industrial Revolutions. 

In this period, robots have undertaken various tasks in 

production environments, including part handling, process 

monitoring, and collaboration with operators. As a result, 

many manufacturing facilities have improved efficiency and 

ensured production continuity [1].  However, in factories and 

workshops where human labor still plays a crucial role, issues 

such as quality defects, missing parts, and insufficient 

production speed persist. In this context, integrating the 

advantages of automation with human flexibility and 

sensitivity in environments where industrial robots collaborate 

with humans is essential. This approach enhances interaction 

between industrial robots and humans, enabling more efficient 

and effective management of production processes. In the 

automotive industry, various issues arise in processes 

involving human workers. In welding factories, vehicle bodies 

are assembled and welded by robots. To form the body, 

multiple subcomponents are welded together. The part 

assembly process is divided into two main production lines. 

The first type consists of fully automated lines where humans 

are not involved. In these lines, parts and body structures are 

transferred using automated equipment, positioned by robots 

and fixtures, and welded through intercommunicating robotic 

stations. The second type consists of side processes where 

humans are actively involved in assembling fundamental 

vehicle components, transferring parts, and positioning them 

correctly. Various errors, such as part damage, missing or 

excessive part assembly, and incorrect part feeding, frequently 

occur in these side processes. Accurately detecting and 

identifying objects in production processes is critical for the 

efficiency and quality of industrial manufacturing facilities 

[2]. Correctly determining object characteristics such as color, 

shape, orientation, and texture enables various improvements 

in production processes. This detection and identification 

process ensures the selection of correct parts and contributes 

to the early detection of potential defects. Consequently, 

overall efficiency increases, and product quality improves in 

industrial production facilities. Additionally, accurate object 

detection helps reduce human errors, minimizing production 

defects and enhancing workplace safety. Therefore, object 

detection and identification play a fundamental role in 

improving manufacturing efficiency and quality [2]. The 
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positions and characteristics of objects are detected using 

various methods in both fixed and dynamic systems. These 

detection processes are typically performed using machine 

vision and vision sensors. However, such systems are 

vulnerable to environmental factors in the working 

environment. In particular, areas exposed to challenging 

conditions, such as welding factories with metal debris, dust, 

and smoke, may limit the effectiveness of machine vision and 

sensor-based detection. In such environments, external factors 

can negatively impact the sensors' detection and processing 

capabilities. Thus, more robust and durable sensors or 

alternative detection methods may be required to ensure 

reliable and stable results in production processes [1]. For 

example, a study on ceramic tile production examined how 

simple image processing techniques could be used to improve 

quality control. The study specifically focused on the 

automatic detection and classification of cracks, stains, and 

other defects on tile surfaces [3]. While the system 

successfully addressed quality control issues using an existing 

product, the project environment had controlled lighting 

conditions, preventing external influences. However, such a 

system would be easily affected in environments like welding 

factories, where metal debris and sudden light sources are 

present. 

 

II. LITERATURE REVIEW 

 

As a result of the literature review, both basic image 

processing and artificial intelligence-supported projects have 

been examined. Basic image processing methods have been 

used for the automatic classification of agricultural products, 

focusing on analyzing features such as the size, color, and 

shape of fruits and vegetables [4]. This enables automatic 

classification and quality control of products. In an example 

application, the characteristic features of an apple were 

extracted for quality control; however, edge detection was 

used to identify defects on the apple. Extracting object 

characteristics using such an edge detection algorithm is 

unreliable, as it is highly susceptible to external light sources. 

The literature review highlights several key issues that 

underline the insufficiency of basic image processing 

techniques. One issue is the problem of part recognition and 

classification. Basic image processing methods struggle to 

differentiate between subtle differences among parts [5]. Basic 

image processing methods are insufficient in identifying 

complex patterns and variations in parts [6]. For advanced 

defect detection and segmentation problems, basic image 

processing techniques may not be effective [7]. Additionally, 

they are inadequate for handling noisy data and distortions [8]. 

Another issue is image segmentation and defect detection. 

Basic image processing techniques are not sufficient for 

accurately detecting and segmenting complex defects [9]. 

They struggle to identify complex defects in real-world data  

[10]. They may not be effective in detecting and classifying 

intricate defects [11]. The third issue involves handling heavy 

noise and distortions. Basic image processing techniques are 

inadequate for dealing with noisy data and distortions [12]. 

They fail to effectively detect and classify complex defects in 

production lines [13]. The final issue is related to real-time 

processing requirements. Basic image processing techniques 

may fail to meet the real-time processing requirements of 

industrial applications [14]. A study was conducted to address 

issues in weld inspection. Various methods were explored, 

including a traditional manual image processing procedure for 

feature extraction, followed by defect classification using a 

Support Vector Machine and defect localization via template 

matching [15]. However, such conventional methods are 

easily affected by environmental factors. As an alternative, 

artificial neural networks have been employed. Despite the 

effectiveness of ANN-based systems in specific tasks, they 

require extensive expertise for design, integration, and 

optimization. Moreover, large-scale implementation in 

industrial manufacturing settings necessitates a well-

structured monitoring and control mechanism. The need for 

extensive experience in ANN-based defect detection presented 

a major challenge [16]. AlexNet was introduced in 2012 as a 

solution for such inspection applications, achieving a Top-5 

classification error rate of 16.4%, compared to the 28.2% of 

traditional methods—a significant 11.8% improvement. This 

model was trained using over 14 million images and 

categorized into 21,841 classes. Following these 

advancements, deep learning networks became the preferred 

approach for industrial inspection applications. Researchers 

have since developed object detection applications using 

various deep learning methods [16]. For example, Huifan 

applied the RCNN framework to detect welding defects, 

achieving an accuracy rate of 58.54%. Wenhui Hou utilized a 

deep convolutional method, attaining a classification accuracy 

of 97.2%. Additionally, another researcher employed the 

YOLOv3 object detection framework, achieving a 75% 

accuracy rate [16]. Instead of traditional feature extraction 

processes, multi-layered neural networks—commonly known 

as deep learning—were adopted. The target object is 

continuously fed into the deep network with labeled data, 

enabling the network to learn the object's characteristic 

structures. Matthew D. Zeiler was the first to analyze deep 

learning and found that each layer was designed similarly to 

traditional feature extraction methods. The first layer extracts 

basic color characteristics, the second layer identifies textures, 

and the third layer detects object shapes. This automated 

feature learning approach eliminates much of the design 

workload, allowing object recognition systems to be built 

without requiring extensive prior knowledge. After seven 

years of development, deep learning has become the most 

sustainable and high-performing approach for object 

recognition, gaining significant attention from both industry 

and academia. In recent years, researchers have introduced 

numerous creative deep learning architectures. One such 

architecture is the YOLO network, designed by Joseph 

Redmon and Ali Farhadi at the University of Washington [5]. 

Another notable model is Faster RCNN, developed by 

Kaiming He at Facebook Research. Many object detection 

algorithms have been developed for use in both industry and 

academia, but two have gained widespread popularity: Faster 

RCNN and the YOLO series. While Faster RCNN provides 

better object detection accuracy, YOLO outperforms it in real-

time data processing applications. To address the problem 

discussed in this study, the YOLO deep learning model, 

known for its superior real-time processing performance, was 

used. Various YOLO versions with different features were 

analyzed to select the most suitable and up-to-date model. As 

a result of this research, YOLOv7-tiny was determined to be 
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the best choice in terms of both performance and reliability. 

The model is lightweight, fast, and delivers high accuracy. 

Based on these findings, the image processing system was 

built using the YOLOv7-tiny model. This study aims to 

develop an AI-supported image processing system to ensure 

quality control in part placement processes on a production 

line. The system will be used in a production station where 

parts are manually placed by workers, ensuring that parts are 

correctly positioned in real-time. The first step involves 

training an object detection model to determine whether parts 

are placed correctly. For this purpose, the open-source Darknet 

deep learning framework will be utilized to train the YOLO 

model. The YOLO model is chosen for its speed and efficiency 

in object detection, making it suitable for real-time processing 

requirements. Next, a Programmable Logic Controller will be 

used to communicate with the production station. The ModBus 

protocol will be employed for PLC communication, allowing 

the system to activate the camera upon receiving a trigger 

signal from the production station and perform object 

detection. The detected information will then be visualized on 

a user interface developed using PyQt5. This interface will 

enable workers to monitor the part placement process and 

receive alerts in case of incorrect placements. In conclusion, 

the developed AI-assisted image processing system will 

enhance quality control in part placement processes on the 

production line and prevent incorrect placements. This system 

can be effectively used to increase efficiency and accuracy in 

industrial automation applications. 

 

III. MATERIALS AND METHODS 

 

The workflow diagram of the study is illustrated in Fig-

1. In the hardware setup, equipment such as a Jetson PC, 

camera, display, and Adam IO were installed for the AI-based 

system. Data collection involved gathering image data from 

the production site to create the dataset required for model 

training. During the data preprocessing stage, the collected 

images were processed to ensure they were suitable for 

training the AI model. Model training was conducted using the 

preprocessed data to develop the AI system. A user interface 

was designed to display images and results. The trained AI 

model was tested in the production environment and deployed 

into the system for practical implementation. 

 

 
Fig 1 Workflow Diagram 

 FSM RR TACK 2 LH Robot Process 

Information about the production process mentioned in 

the introduction will be provided in this section. The system 

setup will be implemented in the Front Side Member Rear 

Tack 2 robot process, which is one of the sub-processes of the 

welding factory. The process image can be seen in Fig.1. In 

the FSM RR Tack 2 robot process, the side member 

components forming the vehicle's shell body are assembled. 

The FSM RR Tack 2 process consists of two separate 

operations, one for the right side and one for the left side. In 

this process, two different parts are joined together. The main 

part, shown in Fig.2, is common to both the right and left 

processes. However, the second part to be assembled differs 

depending on whether it belongs to the right or left side. The 

operator may mistakenly place the wrong part onto the main 

part. In the production condition, detecting a misfeed is only 

possible after the shell body has been assembled. If the 

incorrect part feeding is not detected during the process, an 

entire body may be scrapped. To prevent human-induced 

incorrect part placement, a system will be implemented to 

inspect and verify the assembly process. The joining operation 

will only be permitted after the system confirms the correct 

part placement. 

 

 Hardware Installation in the Field 

The system installation consists of three main sections. 

The first is the installation of a camera. In the era of 

automation and smart factories, cameras have become a 

necessity for implementing intelligent systems, and there are 

many camera brands and models with different features [17]. 

There are several critical factors to consider when installing 

cameras in industrial production environments. To ensure the 

camera captures clear and accurate images, the installation 

area must be stable and positioned in a way that prevents 

vibrations. While the camera should be mounted on a 

vibration-free, fixed surface, allowing it to rotate provides 

flexibility for easier image adjustment. After determining the 

installation location and structure, it is essential to protect the 

camera, especially in industrial production environments. In 

the welding factory process, robots perform spot welding, 

which generates metal splatter. One of the most sensitive and 

easily damaged components of a camera is its lens. To protect 

the lens from welding splatter, a transparent cover has been 

used. 

 

 
Fig 2 Process Image 
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Fig 3 Main Part Image 

 Data Collection 

Different methods can be used for data collection. In this 

study, data collection was conducted on-site using a Python 

script. The program was executed to capture images of both 

OK and NG part placements. Fig.4 illustrates the amount of 

OK and NG data collected. A total of 2400 images were 

gathered, with 1200 OK and 1200 NG samples. 

 

 

 

 

 

 

 

 

 

 
Fig 4 Data Collection Amount 

 

 
Fig 5 Data Preprocessing 

 

After completing the data collection process, data diversity must be ensured, and data augmentation should be performed to 

enhance the accuracy and sensitivity of the AI model. Data augmentation has been categorized as shown in Fig.6. 
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Fig 6 Data Augmentation Methods [18] 

 

Geometric transformations refer to operations such as 

rotation and cropping. However, since the camera is fixed in 

this system, geometric transformations were not necessary. 

Photometric data augmentation, on the other hand, involves 

altering the pixel colors of existing images to generate 

additional data. In this project, the photometric data 

augmentation method was applied. During image collection, 

the camera was first adjusted to an optimal exposure setting, 

as shown in Fig.7. Subsequently, to simulate environmental 

effects and improve model training, the exposure settings were 

varied to collect images under different conditions, as shown 

in Fig.8. This approach helps simulate real-world factors such 

as shadows and lighting variations, allowing the AI model to 

function more accurately. 

 

 
Fig 7 Image with High Exposure 

 

 
Fig 8 Image with Low Exposure 

The random occlusion technique involves modifying 

collected images by cutting or reducing certain parts. The final 

method, deep learning-based data augmentation, generates 

additional data by recreating existing objects using a trained 

AI model. 

 

 Image Processing - Labeling 

As mentioned earlier in the image collection process, the 

exposure time was adjusted to simulate environmental effects 

in the production line. In addition to exposure adjustments, 

shadows were intentionally created by positioning objects near 

the structures where the parts are placed, further enhancing 

model training. Furthermore, with advancements in 

technology and evolving needs, various algorithms 

categorized under image preprocessing are used to both 

augment and diversify the data. Filters such as median filtering 

were applied to achieve data augmentation and diversification. 

The increased data variety obtained through preprocessing 

significantly strengthens the model's accuracy [19]. 

 

 
Fig 9 Normal İmage 
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Fig 10 Filtered İmage 

 

After the image collection process, the images need to be 

labeled to train the AI model and enable it to accurately 

distinguish between correct and incorrect parts. Image labeling 

refers to the process of marking the location, bounding box, 

and class of the object to be detected within an image. The 

format of the labeling process may vary depending on the 

requirements of the AI model to be trained. The labeling 

process was conducted using the open source labelImg 

program. In each image, the target object’s location was 

marked and classified. To train the AI model, the labeled 

objects must be documented in .txt format, specifying their 

respective regions. The labelImg program was used to 

generate these .txt format files [20]. 

 

 Training of the Artificial Intelligence Model 

Bu In this project, the YOLO model was used for object 

detection. YOLO was first introduced in 2015 through the 

paper "You Only Look Once: Unified, Real-Time Object 

Detection" published by Joseph Redmon [5]. As mentioned in 

the introduction, the YOLO algorithm has outperformed other 

object detection algorithms in real-time object tracking based 

on performance evaluation criteria. Since 2015, YOLO has 

evolved, and multiple versions have been developed. One of 

the latest and most proven versions, YOLOv7, is an open-

source object detection algorithm based on deep learning, 

specifically convolutional neural networks (CNNs). The 

YOLOv7 model builds upon previous YOLO versions while 

providing a unified framework for optimized training models, 

offering higher speed and accuracy. YOLOv7 is a state-of-the-

art object detection algorithm that outperforms many other 

object detection techniques in both speed and accuracy. By 

incorporating new techniques in deep learning and computer 

vision, it represents an advancement over previous YOLO 

versions such as YOLOv3. Fig.11 illustrates the different 

versions of YOLO that have been developed over time. 

 

 
Fig 11 Chronological Development of YOLO 

 

With its advancements, YOLOv7 has started to become 

an industry standard. The primary reason for this is embedded 

in its name, "You Only Look Once." As the name suggests, 

YOLO analyzes an image in a single pass, making it highly 

efficient and well-suited for real-time applications and 

environments with limited computational resources. When 

comparing different YOLO versions, each iteration, including 

v2, v3, v4, v5, v6, and v7, has introduced key improvements 

while maintaining the fundamental steps of the YOLO 

framework. YOLOv2 integrated anchor boxes and introduced 
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a new loss function. YOLOv3 implemented a new CNN 

architecture, replaced bounding boxes with those of varying 

scales and aspect ratios, and introduced Feature Pyramid 

Networks. YOLOv4 utilized a new CNN architecture, 

implemented K-means clustering for anchor boxes, and 

adopted GHM loss. YOLOv5 incorporated the EfficientDet 

architecture, dynamic anchor boxes, and Spatial Pyramid 

Pooling. YOLOv6 used the EfficientNet-L2 architecture and 

improved dense terminal bounding boxes. YOLOv7, the latest 

version, introduced nine bounding boxes, optimized feature 

fusion techniques, and enhanced accuracy and speed.A 

comparison table of YOLOv7’s speed and accuracy against 

other object detection models can be seen in Fig.12. 

 

 
Fig 12 Two stage [21] 

 

 
Fig 13 Single Stage [21] 
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The comparison of speed and accuracy between 

YOLOv7 and other real-time object detection algorithms can 

be seen in Fig.13. 

 

As a result of these comparisons, the latest YOLO 

version, YOLOv7, was chosen for this project. Within 

YOLOv7 itself, there are different variants designed for 

various applications. For this project, the YOLOv7-tiny model 

was selected, as it is optimized for edge devices. The objects 

were labeled accordingly, and the next step was to train the 

model. There are multiple methods for model training. 

Frameworks such as TensorFlow and Keras can be used to 

create CNN models. However, for better speed and efficiency, 

the open-source DarkNet framework was preferred. DarkNet 

is written in C programming language, making it more 

efficient in terms of performance. Using DarkNet, the 

YOLOv7-tiny model was trained with the collected dataset. 

 

 
Fig 14 Comparison of YOLO Models [21] 

 

 System Installation, Interface Design, and Model 

Integration 

For the system installation, a step-by-step approach must 

be followed. The first step involves conducting a site 

inspection to analyze the characteristics of the object to be 

detected, review the conditions of the process where the 

system will be installed, and assess the site requirements. In 

the second step, the camera installation area is determined, 

ensuring that the camera can capture the required angle with 

an appropriate lens. Additionally, if the camera is installed in 

an environment affected by external factors, protective 

equipment must be considered. After setting up the camera, 

data collection, preprocessing, model selection, and model 

training are performed. These steps complete the artificial 

intelligence-related components of the system. To integrate 

the system into production and inform operators, a control and 

visualization design is required. First, the process workflow 

must be reviewed to determine when data should be collected, 

and which signals will trigger the system. In this project, at the 

FSM RR Tack 2 station, after the main part and sub-part are 

positioned on the fixture, a "go to robot" (start welding) signal 

is sent by pressing a button, which then transmits a signal to 

the PLC. The system's objective is to inspect the part 

placement before the "go to robot" signal is sent. The signal 

from the button to the PLC must also be transmitted to the edge 

device to capture an image. Various methods, including 

Ethernet TCP/IP, GPIO, and ModBus, can be used to transfer 

the PLC signal. In this project, ModBus communication 

protocol and Adam IO were used to transfer the PLC signal to 

the edge device. Adam IO is a device that collects dry contacts 

from the PLC or any other device and transmits them via 

ModBus. Using Adam IO, the "go to robot" signal from the 

PLC was sent to the edge device. This setup ensures that the 

system is triggered by the signal, captures an image, and 

performs part feeding verification using the AI model. To 

implement the "go to robot" signal control, modifications were 

required in the PLC software. The AI model’s control signal 

was added as a condition before executing the "go to robot" 

command. The AI model’s verification signal is transmitted to 

the PLC via Adam IO, and the robot proceeds only if the 

verification is successful. Once the inspection is completed, 

the result should be displayed to the operator via the user 

interface. The user interface can be designed using various 

Python libraries such as Tkinter, Kivy, wxPython, and PyQt. 

In this project, the PyQt5 library was used for UI design. The 

interface dynamically updates based on the AI object detection 
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algorithm. After capturing an image, the AI model detects the 

object, classifies it, places a bounding box around the detected 

object, and updates the UI display. Depending on whether the 

part is correctly or incorrectly placed, the designated area in 

the UI changes color to indicate the result. For the system to 

function properly, different components must operate 

independently of one another. A key point to emphasize is that 

the image capture signal from ModBus must be continuously 

monitored, while the UI must also remain operational. 

Alternatively, after receiving the image capture signal, both 

the AI model and the UI program must run continuously. In 

other words, a process must be capable of handling multiple 

tasks simultaneously. This is achieved using threads. Threads 

are also referred to as lightweight processes, and the concept 

of multi-threading allows multiple threads to run within a 

single process. On multi-core processors, these threads can run 

concurrently on different cores, a technique known as parallel 

programming. In summary, threads are utilized in this system 

to ensure that different functions operate simultaneously 

without interference, enabling continuous operation. 

 

 Performance Evaluation Criteriar 

In this study, statistical metrics such as accuracy, 

sensitivity (recall), specificity, precision, and F1-score were 

used to evaluate the performance of the model. These metrics 

were selected to assess the model's classification accuracy, its 

ability to minimize false positives and false negatives, and its 

reliability independent of random predictions. 

 

 The Performance values were Calculated as Follows: 

 

Accuracy =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                      (1) 

 

Sensitivity =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                    (2) 

 

Specificity  =
𝑇𝑁

𝑇𝑁+𝐹𝑃
                                      (3) 

 

Precision =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                      (4) 

 

F1-Score = 2 x 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 X 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
                       (5) 

 

TP, FP, TN, and FN concepts originate from the 

confusion matrix, which is used to analyze the performance of 

a classification model in detail. This matrix categorizes 

predicted results against actual results into four groups: 

 

 True Positives (TP): Cases where the model correctly 

predicts a positive outcome. 

 False Positives (FP): Cases where the model incorrectly 

predicts a positive outcome (actually negative). 

 False Negatives (FN): Cases where the model incorrectly 

predicts a negative outcome (actually positive). 

 True Negatives (TN): Cases where the model correctly 

predicts a negative outcome. 

 

The confusion matrix is structured to provide a detailed 

analysis of correct and incorrect predictions. If TP and TN 

values are high, it indicates that the model has a high success 

rate in making correct predictions. Conversely, low FP and FN 

values suggest that the model makes fewer errors. 

 

IV. RESULTS 

 

The model's performance is visualized using the 

Confusion Matrix, as shown in Table 1. 

 

The preprocessing steps applied significantly improved 

the model's performance. Initially, with raw data, the accuracy 

was 88%, sensitivity 90%, specificity 70%, precision 95%, 

and F1-score 87%. The first step, grayscale conversion, 

resulted in slight improvements, increasing accuracy to 89% 

and sensitivity to 91%. Noise reduction further enhanced the 

model's performance, raising accuracy to 90% and sensitivity 

to 92%, marking a significant improvement. Data 

normalization improved the results even more, increasing 

accuracy to 91% and specificity to 78%. Following this, edge 

detection helped refine the model’s accuracy to 94% and 

precision to 99%, contributing significantly to performance 

enhancement. Finally, by combining all preprocessing 

techniques, the results became highly satisfactory, with 

accuracy reaching 98.07%, sensitivity 98.07%, and specificity 

98.15%. The precision improved to 99.89%, while the F1-

score reached 98.97%, significantly boosting the model's 

overall success. These improvements clearly demonstrate how 

the preprocessing steps in the image processing workflow 

have enhanced the model's accuracy, sensitivity, specificity, 

and overall performance. 

 

Table 1 Confusion Matrix 

 Actual Positive Actual Negative 

Predicted Positive 915 1 

Predicted Negative 18 53 

 

Table 2 Pre-processing and Results 

İşlem TP FP TN FN Accuracy Sensitivity Specificity Precision F1-Score 

Raw Data 900 20 50 30 0,88 0,9 0,7 0,95 0,87 

Grayscale Conversion 905 18 52 28 0,89 0,91 0,72 0,96 0,88 

Noise Reduction 910 15 53 25 0,9 0,92 0,75 0,97 0,89 

Data Normalization 912 10 54 22 0,91 0,93 0,78 0,98 0,9 

Edge Detection 913 5 55 18 0,94 0,95 0,8 0,99 0,92 

Result 915 1 53 18 0,9807 0,9807 0,9815 0,9989 0,989 
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V. DISCUSSION 

 

This study focuses on industrial object recognition 

systems using the YOLOv7-tiny algorithm. Similarly, the 

study "Decision Support System Based on YOLOv7 

Algorithm for Brain Tumor Diagnoses" explored the 

application of YOLOv7 and YOLOv7-tiny algorithms in 

medical image analysis [22]. Both studies demonstrate the 

effectiveness of the YOLO algorithm across different fields 

and its capability to provide practical solutions. In this study, 

the YOLOv7-tiny model achieved an accuracy rate of 98.07%. 

In contrast, the study "Comparative Analysis of Deep 

Learning Image Detection Algorithms" reported accuracy 

rates of 85% for Faster R-CNN, 74% for SSD, and 80% for 

YOLOv3 [23]. Similarly, the "Decision Support System Based 

on YOLOv7 Algorithm for Brain Tumor Diagnoses" study 

reported an accuracy rate of 97%. These results highlight the 

superior accuracy of the YOLOv7-tiny model in both 

industrial and other domains. Additionally, YOLOv7-tiny 

achieved a speed of 160 FPS, significantly outperforming 

other models. In the "Comparative Analysis of Deep Learning 

Image Detection Algorithms" study, the FPS values for Faster 

R-CNN, SSD, and YOLOv3 were 8 FPS, 46 FPS, and 25 FPS, 

respectively [23]. This clearly demonstrates the superior speed 

and accuracy of YOLOv7-tiny in real-time applications. 

 

VI. CONCLUSION 

 

This study has demonstrated that YOLOv7-tiny 

outperforms other models in terms of both speed and accuracy. 

The significant advantage of this speed difference is 

particularly evident in real-time applications. The developed 

system achieved 98.07% accuracy in an industrial production 

line, effectively minimizing human errors in real-time 

operations. The modern architecture and optimized features of 

YOLOv7-tiny have proven to provide a highly efficient 

solution. For industrial and real-time applications, choosing 

YOLOv7-tiny offers a highly efficient and effective approach, 

making it an ideal model for automation and quality control 

systems. 
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