
Volume 10, Issue 3, March – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25mar599

IJISRT25MAR599 www.ijisrt.com 2957

Comparative Convergence Analysis of Runge-

Kutta Fourth Order and Runge-Kutta-Fehlberge

Methods Implementation in Matlab and Python

Applied to a Series RLC Circuit

Igwe, Chijioke Godswill1* ; Jackreece, P. C2 ; George, Isobeye3

1,3 Department of Mathematics, Ignatius Ajuru University of Education, Rumuolumeni, Port Harcourt,

Rivers State, Nigeria
2 Department of Mathematics, University of Port Harcourt, Rivers State, Nigeria

Corresponding Author: Igwe, Chijioke Godswill1*

Publication Date: 2025/04/15

Abstract: This research investigates the comparative convergence properties and computational efficiency of the Runge-

Kutta Fourth Order (RK4) and Runge-Kutta Fehlberg (RKF) methods in solving a second-order differential equation

modeling a series RLC circuit. The study is conducted using MATLAB and Python, focusing on the convergence properties

of the Runge-Kutta fourth-order method and the Runge-Kutta Fehlberg method in approximating the solution of the given

ODE. Key findings indicate that both RK4 and RKF methods are highly efficient in solving second-order differential

equations, with the RKF method demonstrating superior efficiency. MATLAB and Python both provide robust

environments for implementing the RK4 and RKF methods. MATLAB's built-in functions facilitate straightforward

implementation, while Python’s libraries like SciPy, SymPy, Matplotlib, and Pandas offer additional flexibility and

simplicity. Performance analysis shows that MATLAB establishes convergence in approximately ten seconds, whereas

Python takes about two minutes. MATLAB generally offers faster computation for vectorized operations, which is

advantageous for large-scale problems. Python, however, provides comparable performance with better integration

capabilities for other software and tools. This research underscores the importance of choosing appropriate numerical

methods for solving differential equations in electrical circuits, contributing valuable insights for students, researchers, and

academicians in computational mathematics and engineering fields.

Keywords: Runge-Kutta 4th-Order Method, RK4, Runge-Kutta-Fehlberg Method RKF45, MATLAB, Python, Numerical Analysis,

ODE Solvers

How to Cite Igwe, Chijioke Godswill ; Jackreece, P. C ; George, Isobeye(2025) Comparative Convergence Analysis of Runge-

Kutta Fourth Order and Runge-Kutta-Fehlberge Methods Implementation in Matlab and Python Applied to a Series RLC Circuit

 International Journal of Innovative Science and Research Technology, 10(3), 2957-2975.https://doi.org/10.38124/ijisrt/25mar599

I. INTRODUCTION

Ordinary differential equations (ODEs) are fundamental

in modeling dynamic systems across various disciplines.

Since analytical solutions are often infeasible, numerical

methods like the Fourth-Order Runge-Kutta (RK4) and

Runge-Kutta-Fehlberg (RKF45) are widely used. RK4 is

known for its accuracy, while RKF45 incorporates adaptive
step sizes for error control. These methods are crucial for

solving second-order ODEs, such as those governing Series

RLC circuits. This study compares RK4 and RKF45 in

MATLAB and Python, analyzing their convergence,

accuracy, and computational efficiency. Existing research

lacks a direct comparison of these methods, especially in the

context of Series RLC circuits and cross-platform

implementation. The study aims to address this gap by

evaluating their performance and ease of implementation in

both programming environments.

The study emphasizes the RK4 and RKF methods for

solving initial value problems (IVPs). These methods offer a

trade-off between accuracy and computational efficiency,

making them ideal for complex scientific applications. The
research explores their application in solving differential

equations related to electrical circuits, contributing to their

understanding and potential for broader use.

RK4 is recognized for its balance between accuracy and

computational efficiency, outperforming other fixed-step
methods like the modified Euler method in both linear and

https://doi.org/10.38124/ijisrt/25mar599
http://www.ijisrt.com/
https://doi.org/10.38124/ijisrt/25mar599

Volume 10, Issue 3, March – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25mar599

IJISRT25MAR599 www.ijisrt.com 2958

nonlinear systems (Hossen et al., 2019). Studies highlight its

widespread use due to its simplicity, stability, and ability to

handle a variety of differential equations effectively (Singh,

2018; Burden & Faires, 2015). Workineh et al. (2024)

emphasized RK4's accuracy and efficiency in nonlinear

ODEs, making it a reliable tool for scientific and engineering

problems.

RKF is noted for its adaptive nature, which allows better

error control and optimization of accuracy during integration

(Hammachukiattikul, 2021). By employing embedded

formulas for error estimation, RKF offers superior accuracy

and efficiency, especially in handling stiff differential

equations (Smith, 2020). It is widely regarded for

applications requiring precise numerical integration. Studies

comparing RK4 with newer approaches, like the Adomian

Decomposition Method, reveal that RK4 remains a robust

conventional method, although alternative methods provide

comparable accuracy and flexibility in specific contexts

(Shawagfer & Kaya, 2004).

Senthilnathan (2018) demonstrated that RK4

outperforms the Euler method in accuracy and computational

efficiency when solving ODEs, with results aligning well

with exact solutions. Hussein (2023) compared multiple

numerical techniques, including Euler, Modified Euler, and

RK4, emphasizing their importance in cases where analytical

solutions are unattainable.

Banu et al. (2021) found that RK4 offers better

convergence and accuracy compared to the sixth-order
Butcher’s method, making RK4 more practical for both IVPs

and boundary value problems (BVPs). Similarly, Islam

(2015) highlighted RK4’s stability and higher-order accuracy

in solving IVPs effectively. Ahamad and Charan (2019) and

Habtamu and Masho (2017) explored the RK5 method for

solving higher-order ODEs, noting its superior accuracy,

stability, and practical applicability, particularly for complex

behaviors in boundary value problems.

Sharma and Kumar (2021) demonstrated RK4’s utility

in solving first-order differential equations involving

trigonometric and logarithmic functions using MATLAB,
showcasing its robustness for unsolvable problems

analytically. Agam and Yahaya (2014) introduced a three-

stage, sixth-order implicit Runge-Kutta method tailored for

first-order ODEs. Using perturbed Gaussian points for

interpolation and collocation, the method improved stability

and accuracy compared to existing techniques, verified

through experimentation with linear problems.

Taher (2020) evaluated explicit methods, finding RK8

the most stable and accurate due to its larger stability region

and higher convergence rate. However, RK4 was deemed
more efficient computationally than RK5 and RK8 for

solving first-order ODEs. Rizky et al. (2021) showed

significant differences between Euler and RK4 methods in

solving the SIR model, with Euler being faster but less

accurate. RK4 provided better approximations at larger

intervals.

Poornima and Nirmala (2020) defined absolute error

and convergence criteria, emphasizing that numerical

solutions approach exact ones as the step size decreases. Patil

and Hari (2023) applied explicit methods to power

electronics, demonstrating the forward Euler method's

limitations for fixed-step simulations. They proposed the

ELEX-RKF method for its higher speed and accuracy,

addressing stability challenges in power circuits.

Prakash et al. (2023) combined radiation and convection

effects on heat transfer in fins, using RKF45 to solve

nonlinear ODEs. Results highlighted the thermal impact of

conduction and radiation parameters, with simulation results

validated by ANSYS. Mustapha et al. (2022) explored the

Eyring-Powell model in magnetohydrodynamic unsteady

squeezing flow with thermal radiation, heat generation, and

chemical reactions. Using the Runge-Kutta-Fehlberg (RKF)

method with shooting techniques, they achieved accurate

solutions, showing faster convergence compared to semi-

analytic methods.

Ibraheem et al. (2023) developed an RKF5-based

approach for solving second-order FIVPs. Their method

effectively transformed and solved linear and nonlinear

FIVPs in the fuzzy domain, demonstrating superior accuracy

and efficiency over traditional techniques while preserving

fuzzy properties. Reddy et al. (2022) applied the RKF method

to solve fuzzy DDEs, showcasing its accuracy and efficiency.

The study compared numerical results with exact solutions

and confirmed its superior performance over the classical

RK4 method.

Nwankwo & Dai (2020) proposed an adaptive RKF4

method combined with compact finite difference schemes for

pricing American options. Their method achieved high-order

accuracy in space and time, accurately approximating the

optimal exercise boundary and outperforming classical RK

methods. Clayton et al. (2019) analyzed the RKF method's

performance for solving nonlinear ODEs. They highlighted

its ability to adapt step sizes and reduce truncation errors,

achieving superior computational efficiency compared to

RK4 for various initial value problems.

Huang et al. (2021) developed a time-step selection

method for explicit solvers in high-frequency low-loss

(HFLL) circuit simulations. Using eigenvalue bounds and a

state-space model, they reduced computational complexity

(O(N²)) and demonstrated improved accuracy and efficiency

in EMI filter analysis compared to traditional methods.

Fernandes et al. (2024) optimized the RK4 method for

solving reactor kinetics equations using GPUs. Parallel

implementations in CUDA achieved speedups of 9.33 (C) and

409.7 (Python) compared to CPUs, maintaining numerical

precision and demonstrating the efficiency of GPU-based
computations.

Huang and Chang (2002) analyzed A-stability in

multistep Runge-Kutta methods for functional-differential

equations. They confirmed these methods preserve

asymptotic stability under specific conditions, offering

insights into their application for linear systems.Suhag (2013)

https://doi.org/10.38124/ijisrt/25mar599
http://www.ijisrt.com/

Volume 10, Issue 3, March – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25mar599

IJISRT25MAR599 www.ijisrt.com 2959

applied the RK method to second-order RLC circuit transient

analysis, highlighting its efficiency in solving such

problems.Henry et al. (2019) compared Heun’s method and

RK4, recommending RK4 for its accuracy in complex

transient responses, despite slower convergence.

Bhogendra et al. (2021) found Butcher’s fifth-order

Runge-Kutta (BRK5) superior in approximating RLC circuit
solutions, achieving faster convergence and lower error

compared to Euler, RK3, and other methods.Malarvizhi and

Karunanithi (2021) analyzed damping in RLC circuits using

RK4. They concluded that critically damped decay is faster

than overdamped decay, while underdamped decay is

periodic and oscillatory. Overdamped systems are best suited

for numerical solutions.

Kafle et al. (2020, 202) employed methods like Explicit

Euler, RK3, and BRK5 to study transient responses in RLC

circuits. BRK5 consistently emerged as the most accurate for

both series and parallel RLC circuits under various damping
conditions. Jeevan et al. (2021) used BRK5 to analyze

transient responses in parallel RLC circuits, confirming that

underdamped decay is oscillatory and exponential, while

critically damped decay is faster than overdamped decay.

Shaikh et al. (2022) recommended RK4 for general use due

to its balance of accuracy and efficiency. However, RK8 is

preferred for applications demanding higher precision and

sensitive data analysis. Alizadeh et al. (2020) applied Caputo-

Fabrizio fractional derivatives with Laplace transforms to

model transient responses in parallel RLC circuits. Fractional

derivatives provided faster voltage curve changes with higher
amplitudes, outperforming MATLAB simulations for

practical data.

Hasan et al. (2019) analyzed transient and steady-state

responses of second-order RLC circuits using Kirchhoff’s

Voltage Law and differential equations. They highlighted the

practical importance of understanding these behaviors for

optimizing RLC circuits in various applications. Iskandar et

al. (2020) used the block backward differentiation formula

(BBDF) for transient analysis of RLC circuits, demonstrating

its accuracy and efficiency compared to Euler, Heun, and

Runge-Kutta methods. BBDF’s ability to compute solutions
at two points simultaneously provides a faster alternative.

Kee and Ranom (2018) identified the fourth-order

Runge-Kutta (RK4) method as the most effective for transient

analysis of RLC circuits due to its high accuracy in solving

second-order differential equations. Gusa (2014) focused on

RLC circuits without a source, using RK4 to achieve accurate

natural response simulations in MATLAB. Errors were

minimal, with the highest at 0.23% for parallel circuits. Yang

et al. (2015) explored real-time fault-tolerant control for

nonlinear systems, enhancing the convergence of RK

methods with iterative solutions integrated into control

systems. This approach demonstrated improved reliability

and rapid convergence.

The primary aim of this study is to carry out a
comparative convergence analysis of Runge-Kutta Fourth

Order and Runge-Kutta Fehlberg Methods in MATLAB and

Python using a second-order Ordinary Differential Equation

(ODE) modelled by a series RLC Circuit. The study

compared RK4 and RKF methods across platforms like

MATLAB and Python. Addressing this gap will provide

insights into their comparative performance in different

programming environments, contributing to numerical

solution methods for RLC circuits.

II. MATERIALS AND METHOD

The series RLC circuit is represented as a second-order

ODE, incorporating the resistor (R), inductor (L), capacitor

(C), and an external sinusoidal input to capture circuit

dynamics.

 For the RK4 and RKF Methods, it is Assumed that:

 The governing differential equations are smooth and

continuous.

 The initial value problem (IVP) has a unique solution

 Known initial conditions for voltage and current are

correctly specified

 RK4 and RKF provide sufficiently accurate solutions

within the chosen error bounds.

 While for the MATLAB and Python, it is Assumed that:

 RK4 and RKF implementations in both MATLAB and

Python are correct, with differences due to software

environments rather than implementation errors.

 The chosen step sizes ensured numerical stability.

 MATLAB and Python effectively implement RK4 and

RKF, with differences attributed to numerical library

variations.

 Variations in R, L, and C parameters have predictable

effects, enabling meaningful comparisons.

 Initial conditions, parameter values, and error tolerances

are consistently applied for valid comparative analysis.

 Computational hardware is sufficient to handle

simulations without affecting performance results.

https://doi.org/10.38124/ijisrt/25mar599
http://www.ijisrt.com/

Volume 10, Issue 3, March – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25mar599

IJISRT25MAR599 www.ijisrt.com 2960

 Method of Solution

The figure below represents the RLC series circuit model under consideration:

Fig 1 RLC Series Circuit Model

Source: Student Fieldwork

 RLC Series Equation Using Differential Equation

The second-order ODE governing the behaviour of the

RLC circuit is given as follows:

In the Circuit diagram above,

E(t) = V(t) = Electromotive force (e.m.f), R = Resistor, C =

Capacitor, L = Inductor

The voltage drop across the resistor equals current x

resistance, that is,

VR = iR (1)

The voltage drop across the capacitor equals charge over

capacitance, that is,

VC =
q

C
 =

i

C
 (2)

The voltage drop across the inductor equals the

derivative of the current over time multiplied by the inductor.

i.e.

VL =
di

 dt
× 𝐿 (3)

Since there is a charge around the circuit, the current

equals the time derivative and the charge, i.e.

i =
dq

dt
 (4)

Kirchhoff’s law states that, the voltage supplied by the

AC source is equal to the voltage drop on each of the circuit

elements, which are in series. That is,

E(t) = VR + VC + VL (the sum of equations (1), (2), (3)) (5)

The AC model is given as:

E(t) = E0 sin ωt (6)

Putting equation (4) into equation (3) gives,

VL =
𝑑

 𝑑𝑡
[

𝑑𝑞

𝑑𝑡
] × 𝐿 = 𝐿

𝑑2𝑞

𝑑𝑡2 (7)

Also, substituting equation (4) into equation (1),

VR = R ×
𝑑𝑞

𝑑𝑡
 = 𝑅

𝑑𝑞

𝑑𝑡
 (8)

Therefore, substituting equations (2) (6), (7), and (8)

into equation (5) gives,

𝐿
𝑑2𝑞

𝑑𝑡2 + 𝑅
𝑑𝑞

𝑑𝑡
 +

𝑞

𝑐
 = EO Sin𝝎t, (9)

which is a non-homogeneous second-order linear

differential equation with constant coefficient.

 The Exact Solution

Consider the RLC circuit,

𝑑2𝑞

𝑑𝑡2 +
𝑅

𝐿

𝑑𝑖(𝑡)

𝑑𝑡
 +

1

𝐿𝐶
𝑖(𝑡) = EOSin𝝎t,

where R = 12 ohms = 12Ω, L = 0.4 Henries, C = 0.0125

Farads, EO Sin𝝎t = 550*Sin (10t), i(0) = 0 and iˊ(0) = 0.

Therefore,

𝑑2𝑖(𝑡)

𝑑𝑡2
+

12

0.4

𝑑𝑖(𝑡)

𝑑𝑡
 +

1

0.4 𝑥 0.0125
𝑖(𝑡) = 550*Sin (10t)

https://doi.org/10.38124/ijisrt/25mar599
http://www.ijisrt.com/

Volume 10, Issue 3, March – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25mar599

IJISRT25MAR599 www.ijisrt.com 2961

Hence, the exact equation for the current in the RLC

Circuit is:

i(t) = 2.75e-10t - 1.1e-20t + 0.55*sin(10t) – 1.65*Cos(t).

 Numerical Result

Here the convergence properties of the Runge-Kutta

4th-Order (RK4) and Runge-Kutta-Fehlberg (RKF) methods

are analysed, focusing on the comparison of numerical

solutions with exact solutions.

Table 1 MATLAB RLC Circuit Comparative Result for Runge-Kutta 4th Order Method for h = 0.001

No Time Runge-Kutta 4th Order Method i(t) Exact Solution i(t) Local Truncation Error

1 0 0 0 0.00E+00

2 0.001 0.00E+00 -0.01084 0.01084

3 0.002 1.00E-05 -0.02134 0.02137

4 0.003 2.00E-05 -0.03152 0.03158

5 0.004 6.00E-05 -0.04138 0.04149

6 0.005 1.10E-04 -0.05092 0.05111

7 0.006 1.90E-04 -0.06014 0.06044

8 0.007 3.00E-04 -0.06904 0.06948

9 0.008 4.40E-04 -0.07763 0.07825

10 0.009 6.20E-04 -0.0859 0.08675

11 0.010 0.00085 -0.09387 0.09499

12 0.011 0.00112 -0.10152 0.10297

13 0.012 0.00145 -0.10887 0.1107

14 0.013 0.00183 -0.11592 0.11819

15 0.014 0.00227 -0.12267 0.12543

16 0.015 0.00277 -0.12911 0.13244

17 0.016 0.00333 -0.13526 0.13923

18 0.017 0.00397 -0.14112 0.14579

19 0.018 0.00467 -0.14668 0.15214

20 0.019 0.00546 -0.15195 0.15827

21 0.020 0.00632 -0.15694 0.16419

22 0.021 0.00726 -0.16163 0.16992

23 0.022 0.00828 -0.16605 0.17544

24 0.023 0.00939 -0.17018 0.18078

25 0.024 0.01059 -0.17404 0.18592

26 0.025 0.01189 -0.17761 0.19088

27 0.026 0.01327 -0.18091 0.19566

28 0.027 0.01475 -0.18394 0.20027

29 0.028 0.01633 -0.1867 0.20471

30 0.029 0.01801 -0.18919 0.20898

31 0.030 0.01979 -0.19142 0.21309

32 0.031 0.02167 -0.19338 0.21704

33 0.032 0.02366 -0.19508 0.22084

34 0.033 0.02576 -0.19652 0.22448

9966 9.962 -1.44598 -1.44598 0.00959

9967 9.963 -1.45557 -1.45557 0.00945

9968 9.964 -1.46502 -1.46502 0.0093

9969 9.965 -1.47432 -1.47432 0.00915

9970 9.966 -1.48347 -1.48347 0.009

9971 9.967 -1.49247 -1.49247 0.00886

9972 9.968 -1.50133 -1.50133 0.00871

9973 9.969 -1.51004 -1.51004 0.00855

9974 9.97 -1.51859 -1.51859 0.0084

9975 9.971 -1.52699 -1.52699 0.00825

9976 9.972 -1.53524 -1.53524 0.0081

9977 9.973 -1.54334 -1.54334 0.00794

9978 9.974 -1.55128 -1.55128 0.00779

9979 9.975 -1.55907 -1.55907 0.00763

9980 9.976 -1.5667 -1.5667 0.00747

9981 9.977 -1.57417 -1.57417 0.00732

9982 9.978 -1.58149 -1.58149 0.00716

https://doi.org/10.38124/ijisrt/25mar599
http://www.ijisrt.com/

Volume 10, Issue 3, March – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25mar599

IJISRT25MAR599 www.ijisrt.com 2962

Table 1. shows the computed results of the Runge-Kutta 4th order method in MATLAB with the step size h = 0.001. The table

compares the currents i(t) generated using the Runge-Kutta 4th order method and the exact solution.

 MATLAB RLC Circuit Comparative Result for Runge-Kutta Fehlberg Method and Exact Solution

Table 2 MATLAB RCL circuit comparative result for Runge-Kutta-Fehlberg method for h = 0.001

S/N Time Runge-Kutta Fehlberg Method I(t) Exact Solution i(t) Local Truncation Error

1 0 0 0 0.00E+00

2 0.001 -1.08E-02 9.10E-07 0.010836276

3 0.002 -2.13E-02 7.22E-06 0.021350158

4 0.003 -3.15E-02 2.42E-05 0.0315491

5 0.004 -4.14E-02 5.69E-05 0.041440402

6 0.005 -0.050920836 0.000110371 0.051031207

7 0.006 -0.060139207 0.0001893 0.060328507

8 0.007 -0.069040782 0.000298361 0.069339143

9 0.008 -0.077627762 0.000442051 0.078069813

10 0.009 -0.085902352 0.00062472 0.086527071

11 0.01 -0.093866754 0.000850578 0.094717331

12 0.011 -0.101523173 0.001123698 0.102646871

13 0.012 -0.108873815 0.001448019 0.110321833

14 0.013 -0.115920885 0.001827344 0.11774823

15 0.014 -0.122666592 0.002265351 0.124931943

16 0.015 -0.129113145 0.002765587 0.131878731

17 0.016 -0.135262752 0.003331475 0.138594227

18 0.017 -0.141117626 0.003966317 0.145083943

19 0.018 -0.146679979 0.004673295 0.151353274

20 0.019 -0.151952025 0.005455473 0.157407497

21 0.02 -0.156935979 0.006315799 0.163251778

22 0.021 -0.161634059 0.00725711 0.168891169

23 0.022 -0.166048482 0.008282133 0.174330615

24 0.023 -0.17018147 0.009393483 0.179574953

25 0.024 -0.174035243 0.010593673 0.184628916

26 0.025 -0.177612026 0.01188511 0.189497136

27 0.026 -0.180914044 0.013270098 0.194184142

28 0.027 -0.183943523 0.014750843 0.198694366

29 0.028 -0.186702693 0.016329452 0.203032145

9983 9.979 -1.58865 -1.58865 0.007

9984 9.98 -1.59565 -1.59565 0.00684

9985 9.981 -1.60249 -1.60249 0.00668

9986 9.982 -1.60917 -1.60917 0.00652

9987 9.983 -1.61569 -1.61569 0.00636

9988 9.984 -1.62205 -1.62205 0.0062

9989 9.985 -1.62824 -1.62824 0.00603

9990 9.986 -1.63427 -1.63427 0.00587

9991 9.987 -1.64014 -1.64014 0.00571

9992 9.988 -1.64585 -1.64585 0.00554

9993 9.989 -1.65139 -1.65139 0.00538

9994 9.99 -1.65677 -1.65677 0.00521

9995 9.991 -1.66197 -1.66197 0.00504

9996 9.992 -1.66702 -1.66702 0.00488

9997 9.993 -1.6719 -1.6719 0.00471

9998 9.994 -1.67661 -1.67661 0.00454

9999 9.995 -1.68115 -1.68115 0.00437

10000 9.996 -1.68552 -1.68552 0.00421

10001 9.997 -1.68973 -1.68973 0.00404

10002 9.998 -1.69376 -1.69376 0.00387

10003 9.999 -1.69763 -1.69763 0.0037

10004 10 -1.70133 -1.70133 0.00353

https://doi.org/10.38124/ijisrt/25mar599
http://www.ijisrt.com/

Volume 10, Issue 3, March – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25mar599

IJISRT25MAR599 www.ijisrt.com 2963

30 0.029 -0.189193784 0.018007937 0.207201721

31 0.03 -0.191419029 0.019788214 0.211207243

32 0.031 -0.193380662 0.021672108 0.21505277

33 0.032 -0.19508092 0.023661354 0.218742274

34 0.033 -0.196522041 0.025757598 0.222279639

9964 9.96 -1.42635738 -1.42635738 1.06E-12

9965 9.961 -1.436238306 -1.436238306 1.06E-12

9966 9.962 -1.44597561 -1.44597561 1.06E-12

9967 9.963 -1.455568318 -1.455568318 1.06E-12

9968 9.964 -1.46501547 -1.46501547 1.06E-12

9969 9.965 -1.474316122 -1.474316122 1.07E-12

9970 9.966 -1.483469344 -1.483469344 1.06E-12

9971 9.967 -1.492474219 -1.492474219 1.07E-12

9972 9.968 -1.501329849 -1.501329849 1.08E-12

9973 9.969 -1.510035347 -1.510035347 1.07E-12

9974 9.97 -1.518589842 -1.518589842 1.07E-12

9975 9.971 -1.52699248 -1.52699248 1.08E-12

9976 9.972 -1.53524242 -1.53524242 1.07E-12

9977 9.973 -1.543338837 -1.543338837 1.08E-12

9978 9.974 -1.551280921 -1.551280921 1.08E-12

9979 9.975 -1.559067878 -1.559067878 1.08E-12

9980 9.976 -1.56669893 -1.56669893 1.08E-12

9981 9.977 -1.574173314 -1.574173314 1.09E-12

9982 9.978 -1.581490281 -1.581490281 1.08E-12

9983 9.979 -1.588649101 -1.588649101 1.07E-12

9984 9.98 -1.595649057 -1.595649057 1.09E-12

9985 9.981 -1.60248945 -1.60248945 1.08E-12

9986 9.982 -1.609169594 -1.609169594 1.08E-12

9987 9.983 -1.615688824 -1.615688824 1.09E-12

9988 9.984 -1.622046485 -1.622046485 1.08E-12

9989 9.985 -1.628241944 -1.628241944 1.08E-12

9990 9.986 -1.63427458 -1.63427458 1.09E-12

9991 9.987 -1.640143789 -1.640143789 1.08E-12

9992 9.988 -1.645848986 -1.645848986 1.08E-12

9993 9.989 -1.651389599 -1.651389599 1.09E-12

9994 9.99 -1.656765074 -1.656765074 1.08E-12

9995 9.991 -1.661974874 -1.661974874 1.07E-12

9996 9.992 -1.667018478 -1.667018478 1.08E-12

9997 9.993 -1.671895382 -1.671895382 1.08E-12

9998 9.994 -1.676605098 -1.676605098 1.07E-12

9999 9.995 -1.681147154 -1.681147154 1.07E-12

10000 9.996 -1.685521097 -1.685521097 1.07E-12

10001 9.997 -1.68972649 -1.68972649 1.07E-12

10002 9.998 -1.693762911 -1.693762911 1.06E-12

10003 9.999 -1.697629957 -1.697629957 1.07E-12

10004 10 -1.701327242 -1.701327242 1.06E-12

Table 2 shows the computed results of the Runge-Kutta-Fehlberg method in MATLAB with the step size h = 0.001. The table

compares the current i(t) generated using the Runge-Kutta-Fehlberg method and the exact solution.

 8PYTHON RLC Circuit Comparative Result for Runge-Kutta 4th Order Method and Exact Solution.

Table 3 Python RCL circuit comparative result for Runge-Kutta 4th order method for h = 0.001

S/N Time Exact Solution Runge Kutta 4th order Method Local Truncation Error

1 0 0 0 0

2 0.001 0 1.00E-05 1.00E-05

3 0.002 1.00E-05 2.00E-05 2.00E-05

4 0.003 2.00E-05 6.00E-05 3.00E-05

5 0.004 6.00E-05 0.00011 5.00E-05

https://doi.org/10.38124/ijisrt/25mar599
http://www.ijisrt.com/

Volume 10, Issue 3, March – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25mar599

IJISRT25MAR599 www.ijisrt.com 2964

6 0.005 0.00011 0.00019 8.00E-05

7 0.006 0.00019 0.0003 0.00011

8 0.007 0.0003 0.00044 0.00014

9 0.008 0.00044 0.00062 0.00018

10 0.009 0.00062 0.00085 0.00023

11 0.01 0.00085 0.00112 0.00027

12 0.011 0.00112 0.00145 0.00032

13 0.012 0.00145 0.00183 0.00038

14 0.013 0.00183 0.00227 0.00044

15 0.014 0.00227 0.00277 0.0005

16 0.015 0.00277 0.00333 0.00057

17 0.016 0.00333 0.00397 0.00063

18 0.017 0.00397 0.00467 0.00071

19 0.018 0.00467 0.00546 0.00078

20 0.019 0.00546 0.00632 0.00086

21 0.02 0.00632 0.00726 0.00094

22 0.021 0.00726 0.00828 0.00103

23 0.022 0.00828 0.00939 0.00111

24 0.023 0.00939 0.01059 0.0012

25 0.024 0.01059 0.01189 0.00129

26 0.025 0.01189 0.01327 0.00138

27 0.026 0.01327 0.01475 0.00148

28 0.027 0.01475 0.01633 0.00158

29 0.028 0.01633 0.01801 0.00168

30 0.029 0.01801 0.01979 0.00178

31 0.03 0.01979 0.02167 0.00188

32 0.031 0.02167 0.02366 0.00199

33 0.032 0.02366 0.02576 0.0021

34 0.033 0.02576 0.02796 0.0022

1968 1.967 -0.72283 -0.70698 0.01586

1969 1.968 -0.70698 -0.69105 0.01593

1970 1.969 -0.69105 -0.67506 0.016

1971 1.97 -0.67506 -0.65899 0.01606

1972 1.971 -0.65899 -0.64287 0.01613

1973 1.972 -0.64287 -0.62667 0.01619

1974 1.973 -0.62667 -0.61042 0.01626

1975 1.974 -0.61042 -0.5941 0.01632

1976 1.975 -0.5941 -0.57772 0.01638

1977 1.976 -0.57772 -0.56129 0.01643

1978 1.977 -0.56129 -0.5448 0.01649

1979 1.978 -0.5448 -0.52826 0.01654

1980 1.979 -0.52826 -0.51166 0.0166

1981 1.98 -0.51166 -0.49501 0.01665

1982 1.981 -0.49501 -0.47831 0.0167

1983 1.982 -0.47831 -0.46157 0.01675

1984 1.983 -0.46157 -0.44478 0.01679

1985 1.984 -0.44478 -0.42794 0.01684

1986 1.985 -0.42794 -0.41106 0.01688

1987 1.986 -0.41106 -0.39414 0.01692

1988 1.987 -0.39414 -0.37718 0.01696

1989 1.988 -0.37718 -0.36019 0.017

1990 1.989 -0.36019 -0.34315 0.01703

1991 1.99 -0.34315 -0.32608 0.01707

1992 1.991 -0.32608 -0.30898 0.0171

1993 1.992 -0.30898 -0.29185 0.01713

1994 1.993 -0.29185 -0.27469 0.01716

1995 1.994 -0.27469 -0.25751 0.01719

1996 1.995 -0.25751 -0.24029 0.01721

1997 1.996 -0.24029 -0.22305 0.01724

https://doi.org/10.38124/ijisrt/25mar599
http://www.ijisrt.com/

Volume 10, Issue 3, March – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25mar599

IJISRT25MAR599 www.ijisrt.com 2965

1998 1.997 -0.22305 -0.2058 0.01726

1999 1.998 -0.2058 -0.18851 0.01728

2000 1.999 -0.18851 -0.17122 0.0173

2001 2 -0.17122 -0.1539 0.01732

Table 3 shows the computed results of the Runge-Kutta 4th order method in Python with the step size h = 0.001. The table

compares the currents i(t) generated using the Runge-Kutta 4th order method and the exact solution.

 PYTHON RLC Circuit Comparative Result for Runge-Kutta-Fehlberg and Exact Solution

Table 4 PYTHON RLC circuit comparative result for Runge-Kutta-Fehlberg method for h = 0.001

S/N Time Exact Solution i(t) Runge-Kutta-Fehlberg Method i(t) Local Truncation Error

1 0 0 0 0

2 0.001 0 1.00E-05 1.00E-05

3 0.002 1.00E-05 3.00E-05 2.00E-05

4 0.003 2.00E-05 6.00E-05 4.00E-05

5 0.004 6.00E-05 0.00011 5.00E-05

6 0.005 0.00011 0.00019 8.00E-05

7 0.006 0.00019 0.0003 0.00011

8 0.007 0.0003 0.00044 0.00014

9 0.008 0.00044 0.00062 0.00018

10 0.009 0.00062 0.00085 0.00023

11 0.01 0.00085 0.00112 0.00027

12 0.011 0.00112 0.00144 0.00032

13 0.012 0.00145 0.00182 0.00037

14 0.013 0.00183 0.00226 0.00043

15 0.014 0.00227 0.00276 0.00049

16 0.015 0.00277 0.00333 0.00056

17 0.016 0.00333 0.00396 0.00063

18 0.017 0.00397 0.00467 0.0007

19 0.018 0.00467 0.00545 0.00078

20 0.019 0.00546 0.00631 0.00085

21 0.02 0.00632 0.00725 0.00093

22 0.021 0.00726 0.00828 0.00102

23 0.022 0.00828 0.00939 0.00111

24 0.023 0.00939 0.01059 0.0012

25 0.024 0.01059 0.01188 0.00129

26 0.025 0.01189 0.01327 0.00138

27 0.026 0.01327 0.01475 0.00148

28 0.027 0.01475 0.01633 0.00158

29 0.028 0.01633 0.01801 0.00168

30 0.029 0.01801 0.01979 0.00178

31 0.03 0.01979 0.02167 0.00188

32 0.031 0.02167 0.02366 0.00199

33 0.032 0.02366 0.02576 0.0021

1964 1.961 -0.81639 -0.80098 0.01541

1965 1.962 -0.80099 -0.7855 0.01549

1966 1.963 -0.78551 -0.76994 0.01557

1967 1.964 -0.76996 -0.75431 0.01565

1968 1.965 -0.75432 -0.7386 0.01572

1969 1.966 -0.73862 -0.72282 0.0158

1970 1.967 -0.72283 -0.70696 0.01587

1971 1.968 -0.70698 -0.69103 0.01595

1972 1.969 -0.69105 -0.67504 0.01601

1973 1.97 -0.67506 -0.65898 0.01608

1974 1.971 -0.65899 -0.64285 0.01614

1975 1.972 -0.64287 -0.62666 0.01621

1976 1.973 -0.62667 -0.6104 0.01627

https://doi.org/10.38124/ijisrt/25mar599
http://www.ijisrt.com/

Volume 10, Issue 3, March – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25mar599

IJISRT25MAR599 www.ijisrt.com 2966

1977 1.974 -0.61042 -0.59408 0.01634

1978 1.975 -0.5941 -0.5777 0.0164

1979 1.976 -0.57772 -0.56127 0.01645

1980 1.977 -0.56129 -0.54478 0.01651

1981 1.978 -0.5448 -0.52824 0.01656

1982 1.979 -0.52826 -0.51164 0.01662

1983 1.98 -0.51166 -0.49499 0.01667

1983 1.981 -0.49501 -0.47829 0.01672

1984 1.982 -0.47831 -0.46154 0.01677

1985 1.983 -0.46157 -0.44475 0.01682

1986 1.984 -0.44478 -0.42791 0.01687

1987 1.985 -0.42794 -0.41103 0.01691

1988 1.986 -0.41106 -0.39411 0.01695

1989 1.987 -0.39414 -0.37715 0.01699

1990 1.988 -0.37718 -0.36015 0.01703

1991 1.989 -0.36019 -0.34312 0.01707

1992 1.99 -0.34315 -0.32605 0.0171

1993 1.991 -0.32608 -0.30895 0.01713

1994 1.992 -0.30898 -0.29182 0.01716

1995 1.993 -0.29185 -0.27466 0.01719

1996 1.994 -0.27469 -0.25747 0.01722

1997 1.995 -0.25751 -0.24026 0.01725

1998 1.996 -0.24029 -0.22302 0.01727

1999 1.997 -0.22305 -0.20576 0.01729

2000 1.998 -0.2058 -0.18848 0.01732

2001 1.999 -0.18851 -0.17118 0.01733

2002 2 -0.17122 -0.15386 0.01736

Table 4. shows the computed results of the Runge-Kutta-Fehlberg method in Python with the step size h = 0.001. The table

compares the currents i(t) generated using the Runge-Kutta Fehlberg method and the exact solution.

III. DISCUSSION

 Convergence Properties Of The RK4 Method (MATLAB)

Table 1
The RK4 method was tested at different step sizes (h =

0.001, 0.0005, 0.00025, and 0.000125) to analyze

convergence behavior. At h = 0.001, initial conditions

ensured no local truncation error. However, as time

progressed, errors increased, with a notable pattern of steady

growth. For instance, at t = 0.005, the local truncation error

was 0.05111, reaching 0.16419 at t = 0.02. Toward the end of

the simulation (t ≈ 10), errors decreased, indicating long-term

accuracy. With h = 0.0005, smaller errors were observed,

with local truncation errors decreasing at later stages, e.g.,

0.00340 at t = 9.9805 and 0.00181 at t = 10, highlighting

improved accuracy over time. For h = 0.00025, errors further
reduced, confirming that smaller step sizes enhance precision.

The RK4 method maintained stable convergence, with local

truncation errors increasing at a slower rate. At h = 0.000125,

high precision was achieved, as seen at t = 0.00013 (error =

0.00137). Throughout the simulation, the RK4 method

demonstrated reliable performance, with consistently small

truncation errors.

 Convergence Properties of the RKF Method (MATLAB)

Table 2

The RKF method showed significantly higher accuracy

than RK4 across all step sizes. With h = 0.001, local

truncation errors remained extremely low (~ 10−12),

confirming RKF’s superior precision. For h = 0.0005,

0.00025, and 0.000125, errors were on the order of 10−15 to

10−9 in initial steps, showcasing excellent convergence

properties. The RKF method effectively followed the exact

solution, maintaining low errors even over extended

simulation periods. These results align with previous studies

confirming RKF’s computational superiority.

 Convergence Properties of the RK4 Method (Python)

Table 3

The RK4 method in Python followed similar trends as

MATLAB. With h = 0.001, local truncation errors remained
small but increased gradually. At h = 0.0005, the error

remained within a manageable range, confirming numerical

stability. With h = 0.00025 and h = 0.000125, smaller errors

were observed, reinforcing that RK4's convergence improves

with finer time steps. At t = 2, for example, the RK4 method

yielded errors of 0.00866 (h = 0.0005), 0.00433 (h =

0.00025), and 0.00216 (h = 0.000125), demonstrating

progressively better accuracy with decreasing step sizes.

https://doi.org/10.38124/ijisrt/25mar599
http://www.ijisrt.com/

Volume 10, Issue 3, March – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25mar599

IJISRT25MAR599 www.ijisrt.com 2967

 Convergence Properties of the RKF Method (Python)

Table 4

The RKF method in Python also demonstrated

exceptional accuracy, with initial errors as low as 10−5 to

10−14 , similar to MATLAB. For h = 0.0005 and 0.00025,

truncation errors remained extremely low even for longer

simulations. At t = 1.961, the RKF method maintained a local

truncation error of ~0.015, proving its stability and efficiency.

At h = 0.000125, the RKF method produced near-zero

local truncation errors, reinforcing its ability to maintain high

accuracy over long intervals.

Fig 1 MATLAB Runge-Kutta 4th-order method (RK4) for h = 0.001 vs exact solution

Fig 2 MATLAB Runge-Kutta-Fehlberg method for h = 0.001vs exact solution

https://doi.org/10.38124/ijisrt/25mar599
http://www.ijisrt.com/

Volume 10, Issue 3, March – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25mar599

IJISRT25MAR599 www.ijisrt.com 2968

Fig 3 Python Runge-Kutta 4th-order method for h = 0.001vs exact solution

Fig 4 Python Runge-Kutta-Fehlberg method for h = 0.001 vs exact solution

Figures 1 and 2 present MATLAB-generated graphs

comparing numerical and exact solutions for an RLC circuit

over 10 seconds. Figure 1 shows the Runge-Kutta 4th-order

(RK4) method (blue) closely matching the exact solution
(red), demonstrating high accuracy and minimal truncation

error. Figure 2 compares the Runge-Kutta-Fehlberg (RKF)

method (blue) with the exact solution (dashed red),

highlighting its phase and amplitude consistency, adaptive

step size control, and numerical stability. Figures 3 and 4

display Python-simulated graphs. Figure 3 compares the RK4

method (orange) with the exact solution (blue), showing

precise approximation and periodic oscillations. Figure 4

compares the RKF method (blue) with the exact solution

(orange), confirming high accuracy and stability across

multiple step sizes. In all cases, smaller step sizes improve

precision, reinforcing the reliability of both RK4 and RKF
methods for simulating RLC circuits.

IV. CONCLUSION

Following the progression of this research, several key

achievements have been realized. The RKF method
consistently outperformed the RK4 method in both

MATLAB and Python, maintaining lower truncation errors

and better convergence. The RK4 method showed stable error

growth, improving as step size decreased. The RKF method

demonstrated superior numerical accuracy, even for longer

simulations, making it more efficient for solving ODEs. The

results confirm that smaller step sizes improve accuracy, with

RKF offering a more precise and reliable solution than RK4.

Both MATLAB and Python offer robust environments for

implementing the RK4 and RKF methods. MATLAB's built-

in functions make implementation straightforward, while

Python’s libraries like SciPy, SymPy, Matplotlib, and Pandas
provide additional flexibility and ease. In MATLAB, it takes

about ten seconds to establish convergence, whereas it takes

https://doi.org/10.38124/ijisrt/25mar599
http://www.ijisrt.com/

Volume 10, Issue 3, March – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25mar599

IJISRT25MAR599 www.ijisrt.com 2969

about two minutes in Python. MATLAB generally offers

faster computation for vectorized operations, which is

beneficial for large-scale problems, while Python provides

comparable performance with the added advantage of better

integration with other software and tools.

REFERENCES

[1]. Agam, S. A., & Yahaya, Y. A. (2014). A highly

efficient implicit Runge-Kutta method for first order

ordinary differential equations. African Journal of

Mathematics and Computer Science Research, 7(5),

55-60.

https://doi.org/10.5897/AJMCSR2014.0551

[2]. Ahamad, N., & Charan, S. (2019). Study of numerical

solution of fourth order ordinary differential equations

by fifth order Runge-Kutta method. International

Journal of Scientific Research in Science and

Technology (IJSRSET), 6(1), 230-237.

https://doi.org/10.32628/IJSRSET196142
[3]. Afham, M. (2019). Numerical solution to RLC series

circuit with constant and varying source.

https://medium.com/@afhamaflal9/numerical-

solution-to-rlc-series-circuit-with-constant-and-

varying-source-

[4]. Alizadeh, S., Baleanu, D., & Rezapour, S. (2020).

Analyzing transient response of the parallel RCL

circuit by using the Caputo–Fabrizio fractional

derivative. Advances in Continuous and Discrete

Models, (55).

[5]. Anthony, A. O., Pius, F., Onyinyechi, F. A., &
Ahmed, A. D. (2019). Analysis and comparative study

of numerical solutions of initial value problems in

ordinary differential equations with Euler and Runge-

Kutta methods. American Journal of Engineering

(AJER), 8(8), 40-53.

[6]. Ascher, U. M., & Greif, C. (2011). A first course in

numerical methods. Society for Industrial and Applied

Mathematics (SIAM), 7(1).

https://doi.org/10.1137/9780898719987

[7]. Ashgi, R., Pratama, M. A. A., & Purwani, S. (2021).

Comparison of numerical simulation of

epidemiological model between Euler method with
4th order Runge Kutta method. International Journal

of Global Operations Research, 2(1), 37-44.

[8]. Ascher, U. M., & Petzold, L. R. (1998). Computer

methods for ordinary differential equations and

differential-algebraic equations. Society for Industrial

and Applied Mathematics.

[9]. Ascher, U. M., & Greif, C. (2011). A first course in

numerical methods. SIAM.

https://books.google.com.ng/books/about/A_First_Co

urse_in_Numerical_Methods.html?id=eGDMSIqPYd

YC&redir_esc=y
[10]. Attaway, D. C. (2022). MATLAB: A practical

introduction to programming and problem solving

(6thed.). Butterworth-Heinemann.

https://www.mathworks.com/academia/books/matlab

-attaway.html

[11]. Balac, S. (2013). High order embedded Runge-Kutta

scheme for adaptive step-size control in the interaction

picture method. Journal of the Korean Society for

Industrial and Applied Mathematics (J.KSIAM),

17(4), 238–266.

https://doi.org/10.12941/jksiam.2013.17.238

[12]. Balagopalan, S., & EEE Department. (2014).

Fundamental concepts of electric circuits. VAST.

http://www.vidyaacademy.ac.in

[13]. Bartoldson, B. R., Kailkhura, B., & Blalock, D.
(2022). Compute-efficient deep learning: Algorithmic

trends and opportunities. arXiv.

https://arxiv.org/abs/2210.06640

[14]. Banu, M. S., Raju, I., Zaman, U. H. M., & Zaman, M.

(2021). A study on numerical solution of initial value

problem by using Euler's method, Runge-Kutta 2nd

order, Runge-Kutta 4th order, and Runge-Kutta

Fehlberg method with MATLAB. International

Journal of Scientific & Engineering Research, 12(3),

61.

[15]. Bellen, A., & Zennaro, M. (2013). Numerical methods

for delay differential equations. OUP Oxford.
https://books.google.com.ng/books?id=C_CLxpHQb

Y8C&printsec=frontcover&dq=eitions

[16]. Bhanu Prakash, S., Chandan, K., Karthik, K.,

Devanathan, S., Varun Kumar, R. S., Nagaraja, K. V.,

& Prasannakumara, B. C. (2024). Investigation of the

thermal analysis of a wavy fin with radiation impact:

an application of extreme learning machine. Physica

Scripta, 99(1), 015225. https://doi.org/10.1088/1402-

4896/ad131f

[17]. Bhogendra, K. T., Kafle, J., & Bhandari, I. B. (2021).

Visualization, formulation, and intuitive explanation
of iterative methods for transient analysis of RLC

circuit. BIBECHANA, 18(2), 9–17.

https://doi.org/10.3126/bibechana.v18i2.31208

[18]. Bocharov, G. A., & Rihan, F. A. (2000). Numerical

modelling in biosciences using delay differential

equations. Journal of Computational and Applied

Mathematics, 125(1–2), 183–199.

https://doi.org/10.1016/S0377-0427(00)00468-4

[19]. Breit, D., & Dodgson, A. (2021). Convergence rates

for the numerical approximation of the 2D stochastic

Navier–Stokes equations. Numerische Mathematik,

147, 553–578. https://doi.org/10.1007/s00211-021-
01181-z

[20]. Burden, R. L., & Faires, J. D. (2015). Numerical

analysis (10th ed.). Cengage Learning.

https://www.amazon.com/Numerical-Analysis-

Richard-L-Burden/dp/1305253663

[21]. Butcher, J. C. (2016). Numerical methods for ordinary

differential equations, (3rd ed.). John Wiley & Sons.

[22]. Clayton, S. L., Lemma, M., & Chowdhury, A. (2019).

Numerical solutions of nonlinear ordinary differential

equations by using adaptive Runge-Kutta method.

Journal of Advances in Mathematics, 17, 147-154.
https://doi.org/10.24297/jam.v17i0.8408

[23]. Mondal, S. Banu, M. S., & Raju, I. (2016). A

comparative study on classical fourth order and

Butcher sixth order Runge-Kutta methods with initial

and boundary value problems. International Journal of

Material and Mathematical Sciences, 5(3), 45-57.

DOI: https://doi.org/10.34104/ijmms.021.08021.

https://doi.org/10.38124/ijisrt/25mar599
http://www.ijisrt.com/
https://doi.org/10.24297/jam.v17i0.8408

Volume 10, Issue 3, March – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25mar599

IJISRT25MAR599 www.ijisrt.com 2970

APPENDIX

TABLE 1.2: MATLAB RLC Circuit Comparative Result Table for Runge-Kutta 4th Order Method

for h = 0.0005

Runge-Kutta 4th

Order

Exact Solution

i(t)

Local Truncation

Error

Time Method i(t)

1

0 0 0 0.00E+00

2 0.0005 0.00E+00 -0.00546 0.00546

3 0.001 0.00E+00 -0.01084 0.01084

4 0.0015 0.00E+00 -0.01613 0.01614

5 0.002 1.00E-05 -0.02134 0.02136

6 0.0025 1.00E-05 -0.02647 0.0265

7 0.003 2.00E-05 -0.03152 0.03156

8 0.0035 4.00E-05 -0.03649 0.03655

9 0.004 6.00E-05 -0.04138 0.04146

10 0.0045 8.00E-05 -0.04619 0.0463

11 0.005 0.00011 -0.05092 0.05107

12 0.0055 0.00015 -0.05557 0.05576

13 0.006 0.00019 -0.06014 0.06038

14 0.0065 0.00024 -0.06463 0.06493

15 0.007 0.0003 -0.06904 0.06941

16 0.0075 0.00037 -0.07337 0.07382

17 0.008 0.00044 -0.07763 0.07816

18 0.0085 0.00053 -0.0818 0.08243

19 0.009 0.00062 -0.0859 0.08663

20 0.0095 0.00073 -0.08992 0.09077

21 0.01 0.00085 -0.09387 0.09485

22 0.0105 0.00098 -0.09773 0.09886

23 0.011 0.00112 -0.10152 0.1028

24 0.0115 0.00128 -0.10524 0.10668

25 0.012 0.00145 -0.10887 0.1105

26 0.0125 0.00163 -0.11244 0.11426

27 0.013 0.00183 -0.11592 0.11796

28 0.0135 0.00204 -0.11933 0.1216

29 0.014 0.00227 -0.12267 0.12517

30 0.0145 0.00251 -0.12593 0.12869

31 0.015 0.00277 -0.12911 0.13215

32 0.0155 0.00304 -0.13222 0.13556

33 0.016 0.00333 -0.13526 0.1389

34 0.0165 0.00364 -0.13823 0.14219

Table 1.2 shows the computed results of the Runge-Kutta 4th order method in MATLAB with

the step size h = 0.0005. The table compares the currents i(t) generated using the Runge-Kutta

4th order method and the exact solution.

https://doi.org/10.38124/ijisrt/25mar599
http://www.ijisrt.com/

Volume 10, Issue 3, March – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25mar599

IJISRT25MAR599 www.ijisrt.com 2971

TABLE 1.4 MATLAB RLC Circuit Comparative Result Table for Runge-Kutta 4th

Order Method for h = 0.000125

Runge-Kutta 4th

Order Exact Solution i(t)

Local Truncation

Error

Time Method i(t)
1 0 0 0 0.00E+00

2 0.00013 0.00E+00 -0.00137 0.00137

3 0.00025 0.00E+00 -0.00274 0.00274

4 0.00038 0.00E+00 -0.0041 0.0041

5 0.0005 0.00E+00 -0.00546 0.00546

6 0.00063 0.00E+00 -0.00681 0.00681

7 0.00075 0.00E+00 -0.00816 0.00816

8 0.00088 0.00E+00 -0.0095 0.0095

9 0.001 0.00E+00 -0.01084 0.01084

10 0.00113 0.00E+00 -0.01217 0.01217

11 0.00125 0 -0.01349 0.0135

12 0.00138 0 -0.01481 0.01482

13 0.0015 0 -0.01613 0.01613

14 0.00163 0 -0.01744 0.01745

15 0.00175 0 -0.01875 0.01875

16 0.00188 1.00E-05 -0.02005 0.02005

17 0.002 1.00E-05 -0.02134 0.02135

18 0.00213 1.00E-05 -0.02263 0.02264

19 0.00225 1.00E-05 -0.02392 0.02393

20 0.00238 1.00E-05 -0.0252 0.02521

21 0.0025 1.00E-05 -0.02647 0.02649

22 0.00263 2.00E-05 -0.02774 0.02776

23 0.00275 2.00E-05 -0.02901 0.02903

24 0.00288 2.00E-05 -0.03027 0.03029

25 0.003 2.00E-05 -0.03152 0.03155

26 0.00313 3.00E-05 -0.03277 0.03281

27 0.00325 3.00E-05 -0.03402 0.03405

28 0.00338 3.00E-05 -0.03526 0.0353

29 0.0035 4.00E-05 -0.03649 0.03654

30 0.00363 4.00E-05 -0.03772 0.03777

31 0.00375 5.00E-05 -0.03895 0.039

32 0.00388 5.00E-05 -0.04017 0.04023

https://doi.org/10.38124/ijisrt/25mar599
http://www.ijisrt.com/

Volume 10, Issue 3, March – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25mar599

IJISRT25MAR599 www.ijisrt.com 2972

79965 9.99513 -1.6817 -1.6817 0.00055

79966 9.99525 -1.68226 -1.68226 0.00055

79967 9.99538 -1.68281 -1.68281 0.00055

79968 9.9955 -1.68336 -1.68336 0.00055

79969 9.99563 -1.6839 -1.6839 0.00054

79970 9.99575 -1.68444 -1.68444 0.00054

79971 9.99588 -1.68498 -1.68498 0.00054

79972 9.996 -1.68552 -1.68552 0.00053

79973 9.99613 -1.68606 -1.68606 0.00053

79974 9.99625 -1.68659 -1.68659 0.00053

79975 9.99638 -1.68712 -1.68712 0.00053

79976 9.9965 -1.68764 -1.68764 0.00052

79977 9.99663 -1.68817 -1.68817 0.00052

79978 9.99675 -1.68869 -1.68869 0.00052

79979 9.99688 -1.68921 -1.68921 0.00052

79980 9.997 -1.68973 -1.68973 0.00051

79981 9.99713 -1.69024 -1.69024 0.00051

79982 9.99725 -1.69075 -1.69075 0.00051

79983 9.99738 -1.69126 -1.69126 0.00051

79984 9.9975 -1.69177 -1.69177 0.0005

79985 9.99763 -1.69227 -1.69227 0.0005

79986 9.99775 -1.69277 -1.69277 0.0005

79987 9.99788 -1.69327 -1.69327 0.0005

79988 9.998 -1.69376 -1.69376 0.00049

79989 9.99813 -1.69426 -1.69426 0.00049

79990 9.99825 -1.69475 -1.69475 0.00049

79991 9.99838 -1.69523 -1.69523 0.00048

79992 9.9985 -1.69572 -1.69572 0.00048

79993 9.99863 -1.6962 -1.6962 0.00048

79994 9.99875 -1.69668 -1.69668 0.00048

79995 9.99888 -1.69716 -1.69716 0.00047

79996 9.999 -1.69763 -1.69763 0.00047

79997 9.99913 -1.6981 -1.6981 0.00047

79998 9.99925 -1.69857 -1.69857 0.00047

79999 9.99938 -1.69904 -1.69904 0.00046

80000 9.9995 -1.6995 -1.6995 0.00046

80001 9.99963 -1.69996 -1.69996 0.00046

80002 9.99975 -1.70042 -1.70042 0.00046

80003 9.99988 -1.70087 -1.70087 0.00045

80004 10 -1.70133 -1.70133 0.00045

https://doi.org/10.38124/ijisrt/25mar599
http://www.ijisrt.com/

Volume 10, Issue 3, March – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25mar599

IJISRT25MAR599 www.ijisrt.com 2973

https://doi.org/10.38124/ijisrt/25mar599
http://www.ijisrt.com/

Volume 10, Issue 3, March – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25mar599

IJISRT25MAR599 www.ijisrt.com 2974

PYTHON SCRIP

https://doi.org/10.38124/ijisrt/25mar599
http://www.ijisrt.com/

Volume 10, Issue 3, March – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25mar599

IJISRT25MAR599 www.ijisrt.com 2975

MATLAB SCRIPT

https://doi.org/10.38124/ijisrt/25mar599
http://www.ijisrt.com/

	Comparative Convergence Analysis of Runge-Kutta Fourth Order and Runge-Kutta-Fehlberge Methods Implementation in Matlab and Python Applied to a Series RLC Circuit
	Corresponding Author: Igwe, Chijioke Godswill1*
	Abstract: This research investigates the comparative convergence properties and computational efficiency of the Runge-Kutta Fourth Order (RK4) and Runge-Kutta Fehlberg (RKF) methods in solving a second-order differential equation modeling a series RLC...
	How to Cite Igwe, Chijioke Godswill ; Jackreece, P. C ; George, Isobeye(2025) Comparative Convergence Analysis of Runge-Kutta Fourth Order and Runge-Kutta-Fehlberge Methods Implementation in Matlab and Python Applied to a Series RLC Circuit
	Ordinary differential equations (ODEs) are fundamental in modeling dynamic systems across various disciplines. Since analytical solutions are often infeasible, numerical methods like the Fourth-Order Runge-Kutta (RK4) and Runge-Kutta-Fehlberg (RKF45) ...
	 For the RK4 and RKF Methods, it is Assumed that:
	 The governing differential equations are smooth and continuous.
	 The initial value problem (IVP) has a unique solution
	 Known initial conditions for voltage and current are correctly specified
	 RK4 and RKF provide sufficiently accurate solutions within the chosen error bounds.
	 While for the MATLAB and Python, it is Assumed that:
	 RK4 and RKF implementations in both MATLAB and Python are correct, with differences due to software environments rather than implementation errors.
	 The chosen step sizes ensured numerical stability.
	 MATLAB and Python effectively implement RK4 and RKF, with differences attributed to numerical library variations.
	 Variations in R, L, and C parameters have predictable effects, enabling meaningful comparisons.
	 Initial conditions, parameter values, and error tolerances are consistently applied for valid comparative analysis.
	 Computational hardware is sufficient to handle simulations without affecting performance results.

