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Abstract: This research investigates the comparative convergence properties and computational efficiency of the Runge-

Kutta Fourth Order (RK4) and Runge-Kutta Fehlberg (RKF) methods in solving a second-order differential equation 

modeling a series RLC circuit. The study is conducted using MATLAB and Python, focusing on the convergence properties 

of the Runge-Kutta fourth-order method and the Runge-Kutta Fehlberg method in approximating the solution of the given 

ODE. Key findings indicate that both RK4 and RKF methods are highly efficient in solving second-order differential 

equations, with the RKF method demonstrating superior efficiency. MATLAB and Python both provide robust 

environments for implementing the RK4 and RKF methods. MATLAB's built-in functions facilitate straightforward 

implementation, while Python’s libraries like SciPy, SymPy, Matplotlib, and Pandas offer additional flexibility and 

simplicity. Performance analysis shows that MATLAB establishes convergence in approximately ten seconds, whereas 

Python takes about two minutes. MATLAB generally offers faster computation for vectorized operations, which is 

advantageous for large-scale problems. Python, however, provides comparable performance with better integration 

capabilities for other software and tools. This research underscores the importance of choosing appropriate numerical 

methods for solving differential equations in electrical circuits, contributing valuable insights for students, researchers, and 

academicians in computational mathematics and engineering fields. 
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I. INTRODUCTION 

 

Ordinary differential equations (ODEs) are fundamental 

in modeling dynamic systems across various disciplines. 

Since analytical solutions are often infeasible, numerical 

methods like the Fourth-Order Runge-Kutta (RK4) and 

Runge-Kutta-Fehlberg (RKF45) are widely used. RK4 is 

known for its accuracy, while RKF45 incorporates adaptive 
step sizes for error control. These methods are crucial for 

solving second-order ODEs, such as those governing Series 

RLC circuits. This study compares RK4 and RKF45 in 

MATLAB and Python, analyzing their convergence, 

accuracy, and computational efficiency. Existing research 

lacks a direct comparison of these methods, especially in the 

context of Series RLC circuits and cross-platform 

implementation. The study aims to address this gap by 

evaluating their performance and ease of implementation in 

both programming environments. 

 

The study emphasizes the RK4 and RKF methods for 

solving initial value problems (IVPs). These methods offer a 

trade-off between accuracy and computational efficiency, 

making them ideal for complex scientific applications. The 
research explores their application in solving differential 

equations related to electrical circuits, contributing to their 

understanding and potential for broader use. 

 
RK4 is recognized for its balance between accuracy and 

computational efficiency, outperforming other fixed-step 
methods like the modified Euler method in both linear and 
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nonlinear systems (Hossen et al., 2019). Studies highlight its 

widespread use due to its simplicity, stability, and ability to 

handle a variety of differential equations effectively (Singh, 

2018; Burden & Faires, 2015). Workineh et al. (2024) 

emphasized RK4's accuracy and efficiency in nonlinear 

ODEs, making it a reliable tool for scientific and engineering 

problems. 

 
RKF is noted for its adaptive nature, which allows better 

error control and optimization of accuracy during integration 

(Hammachukiattikul, 2021). By employing embedded 

formulas for error estimation, RKF offers superior accuracy 

and efficiency, especially in handling stiff differential 

equations (Smith, 2020). It is widely regarded for 

applications requiring precise numerical integration. Studies 

comparing RK4 with newer approaches, like the Adomian 

Decomposition Method, reveal that RK4 remains a robust 

conventional method, although alternative methods provide 

comparable accuracy and flexibility in specific contexts 

(Shawagfer & Kaya, 2004). 
 

Senthilnathan (2018) demonstrated that RK4 

outperforms the Euler method in accuracy and computational 

efficiency when solving ODEs, with results aligning well 

with exact solutions. Hussein (2023) compared multiple 

numerical techniques, including Euler, Modified Euler, and 

RK4, emphasizing their importance in cases where analytical 

solutions are unattainable. 

 

Banu et al. (2021) found that RK4 offers better 

convergence and accuracy compared to the sixth-order 
Butcher’s method, making RK4 more practical for both IVPs 

and boundary value problems (BVPs). Similarly, Islam 

(2015) highlighted RK4’s stability and higher-order accuracy 

in solving IVPs effectively. Ahamad and Charan (2019) and 

Habtamu and Masho (2017) explored the RK5 method for 

solving higher-order ODEs, noting its superior accuracy, 

stability, and practical applicability, particularly for complex 

behaviors in boundary value problems. 

 

Sharma and Kumar (2021) demonstrated RK4’s utility 

in solving first-order differential equations involving 

trigonometric and logarithmic functions using MATLAB, 
showcasing its robustness for unsolvable problems 

analytically. Agam and Yahaya (2014) introduced a three-

stage, sixth-order implicit Runge-Kutta method tailored for 

first-order ODEs. Using perturbed Gaussian points for 

interpolation and collocation, the method improved stability 

and accuracy compared to existing techniques, verified 

through experimentation with linear problems. 

 

Taher (2020) evaluated explicit methods, finding RK8 

the most stable and accurate due to its larger stability region 

and higher convergence rate. However, RK4 was deemed 
more efficient computationally than RK5 and RK8 for 

solving first-order ODEs. Rizky et al. (2021) showed 

significant differences between Euler and RK4 methods in 

solving the SIR model, with Euler being faster but less 

accurate. RK4 provided better approximations at larger 

intervals. 

 

Poornima and Nirmala (2020) defined absolute error 

and convergence criteria, emphasizing that numerical 

solutions approach exact ones as the step size decreases. Patil 

and Hari (2023) applied explicit methods to power 

electronics, demonstrating the forward Euler method's 

limitations for fixed-step simulations. They proposed the 

ELEX-RKF method for its higher speed and accuracy, 

addressing stability challenges in power circuits. 
 

Prakash et al. (2023) combined radiation and convection 

effects on heat transfer in fins, using RKF45 to solve 

nonlinear ODEs. Results highlighted the thermal impact of 

conduction and radiation parameters, with simulation results 

validated by ANSYS. Mustapha et al. (2022) explored the 

Eyring-Powell model in magnetohydrodynamic unsteady 

squeezing flow with thermal radiation, heat generation, and 

chemical reactions. Using the Runge-Kutta-Fehlberg (RKF) 

method with shooting techniques, they achieved accurate 

solutions, showing faster convergence compared to semi-

analytic methods. 
 

Ibraheem et al. (2023) developed an RKF5-based 

approach for solving second-order FIVPs. Their method 

effectively transformed and solved linear and nonlinear 

FIVPs in the fuzzy domain, demonstrating superior accuracy 

and efficiency over traditional techniques while preserving 

fuzzy properties. Reddy et al. (2022) applied the RKF method 

to solve fuzzy DDEs, showcasing its accuracy and efficiency. 

The study compared numerical results with exact solutions 

and confirmed its superior performance over the classical 

RK4 method. 
 

Nwankwo & Dai (2020) proposed an adaptive RKF4 

method combined with compact finite difference schemes for 

pricing American options. Their method achieved high-order 

accuracy in space and time, accurately approximating the 

optimal exercise boundary and outperforming classical RK 

methods. Clayton et al. (2019) analyzed the RKF method's 

performance for solving nonlinear ODEs. They highlighted 

its ability to adapt step sizes and reduce truncation errors, 

achieving superior computational efficiency compared to 

RK4 for various initial value problems. 

 
Huang et al. (2021) developed a time-step selection 

method for explicit solvers in high-frequency low-loss 

(HFLL) circuit simulations. Using eigenvalue bounds and a 

state-space model, they reduced computational complexity 

(O(N²)) and demonstrated improved accuracy and efficiency 

in EMI filter analysis compared to traditional methods. 

Fernandes et al. (2024) optimized the RK4 method for 

solving reactor kinetics equations using GPUs. Parallel 

implementations in CUDA achieved speedups of 9.33 (C) and 

409.7 (Python) compared to CPUs, maintaining numerical 

precision and demonstrating the efficiency of GPU-based 
computations. 

 

Huang and Chang (2002) analyzed A-stability in 

multistep Runge-Kutta methods for functional-differential 

equations. They confirmed these methods preserve 

asymptotic stability under specific conditions, offering 

insights into their application for linear systems.Suhag (2013) 
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applied the RK method to second-order RLC circuit transient 

analysis, highlighting its efficiency in solving such 

problems.Henry et al. (2019) compared Heun’s method and 

RK4, recommending RK4 for its accuracy in complex 

transient responses, despite slower convergence. 

 

Bhogendra et al. (2021) found Butcher’s fifth-order 

Runge-Kutta (BRK5) superior in approximating RLC circuit 
solutions, achieving faster convergence and lower error 

compared to Euler, RK3, and other methods.Malarvizhi and 

Karunanithi (2021) analyzed damping in RLC circuits using 

RK4. They concluded that critically damped decay is faster 

than overdamped decay, while underdamped decay is 

periodic and oscillatory. Overdamped systems are best suited 

for numerical solutions. 

 

Kafle et al. (2020, 202) employed methods like Explicit 

Euler, RK3, and BRK5 to study transient responses in RLC 

circuits. BRK5 consistently emerged as the most accurate for 

both series and parallel RLC circuits under various damping 
conditions. Jeevan et al. (2021) used BRK5 to analyze 

transient responses in parallel RLC circuits, confirming that 

underdamped decay is oscillatory and exponential, while 

critically damped decay is faster than overdamped decay. 

Shaikh et al. (2022) recommended RK4 for general use due 

to its balance of accuracy and efficiency. However, RK8 is 

preferred for applications demanding higher precision and 

sensitive data analysis. Alizadeh et al. (2020) applied Caputo-

Fabrizio fractional derivatives with Laplace transforms to 

model transient responses in parallel RLC circuits. Fractional 

derivatives provided faster voltage curve changes with higher 
amplitudes, outperforming MATLAB simulations for 

practical data. 

 

Hasan et al. (2019) analyzed transient and steady-state 

responses of second-order RLC circuits using Kirchhoff’s 

Voltage Law and differential equations. They highlighted the 

practical importance of understanding these behaviors for 

optimizing RLC circuits in various applications. Iskandar et 

al. (2020) used the block backward differentiation formula 

(BBDF) for transient analysis of RLC circuits, demonstrating 

its accuracy and efficiency compared to Euler, Heun, and 

Runge-Kutta methods. BBDF’s ability to compute solutions 
at two points simultaneously provides a faster alternative. 

 

Kee and Ranom (2018) identified the fourth-order 

Runge-Kutta (RK4) method as the most effective for transient 

analysis of RLC circuits due to its high accuracy in solving 

second-order differential equations. Gusa (2014) focused on 

RLC circuits without a source, using RK4 to achieve accurate 

natural response simulations in MATLAB. Errors were 

minimal, with the highest at 0.23% for parallel circuits. Yang 

et al. (2015) explored real-time fault-tolerant control for 

nonlinear systems, enhancing the convergence of RK 

methods with iterative solutions integrated into control 

systems. This approach demonstrated improved reliability 

and rapid convergence. 

 

The primary aim of this study is to carry out a 
comparative convergence analysis of Runge-Kutta Fourth 

Order and Runge-Kutta Fehlberg Methods in MATLAB and 

Python using a second-order Ordinary Differential Equation 

(ODE) modelled by a series RLC Circuit. The study 

compared RK4 and RKF methods across platforms like 

MATLAB and Python. Addressing this gap will provide 

insights into their comparative performance in different 

programming environments, contributing to numerical 

solution methods for RLC circuits. 

 
II. MATERIALS AND METHOD 

 

The series RLC circuit is represented as a second-order 

ODE, incorporating the resistor (R), inductor (L), capacitor 

(C), and an external sinusoidal input to capture circuit 

dynamics. 

 

 For the RK4 and RKF Methods, it is Assumed that: 

 

 The governing differential equations are smooth and 

continuous. 

 The initial value problem (IVP) has a unique solution   

 Known initial conditions for voltage and current are 

correctly specified  

 RK4 and RKF provide sufficiently accurate solutions 

within the chosen error bounds. 

 

 While for the MATLAB and Python, it is Assumed that: 

 

 RK4 and RKF implementations in both MATLAB and 

Python are correct, with differences due to software 

environments rather than implementation errors. 

 The chosen step sizes ensured numerical stability. 

 MATLAB and Python effectively implement RK4 and 

RKF, with differences attributed to numerical library 

variations. 

 Variations in R, L, and C parameters have predictable 

effects, enabling meaningful comparisons. 

 Initial conditions, parameter values, and error tolerances 

are consistently applied for valid comparative analysis. 

 Computational hardware is sufficient to handle 

simulations without affecting performance results. 
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 Method of Solution 

The figure below represents the RLC series circuit model under consideration: 

 

 
Fig 1 RLC Series Circuit Model 

Source: Student Fieldwork 

 

 RLC Series Equation Using Differential Equation 

The second-order ODE governing the behaviour of the 

RLC circuit is given as follows: 

 

In the Circuit diagram above, 
  

E(t) = V(t) = Electromotive force (e.m.f), R = Resistor, C = 

Capacitor, L = Inductor 

 

The voltage drop across the resistor equals current x 

resistance, that is, 

 

VR = iR                               (1) 

 

The voltage drop across the capacitor equals charge over 

capacitance, that is, 

 

VC =  
q

C
 = 

i

C
                              (2) 

 

The voltage drop across the inductor equals the 

derivative of the current over time multiplied by the inductor. 

i.e. 

 

VL = 
di

 dt 
× 𝐿                                       (3) 

 

Since there is a charge around the circuit, the current 

equals the time derivative and the charge, i.e. 

 

i =  
dq

dt
                            (4) 

 

Kirchhoff’s law states that, the voltage supplied by the 

AC source is equal to the voltage drop on each of the circuit 

elements, which are in series. That is, 

 

E(t) = VR + VC + VL (the sum of equations (1), (2), (3))    (5) 

 

The AC  model is given as: 

 

E(t) = E0 sin ωt                                            (6) 

 

Putting equation (4) into equation (3) gives,  
 

VL =
𝑑

 𝑑𝑡 
[

𝑑𝑞

𝑑𝑡
] × 𝐿 = 𝐿

𝑑2𝑞

𝑑𝑡2                         (7) 

 

Also, substituting equation (4) into equation (1), 

 

VR = R × 
𝑑𝑞

𝑑𝑡
 = 𝑅

𝑑𝑞

𝑑𝑡
                                                     (8) 

 

Therefore, substituting equations (2) (6), (7), and (8) 

into equation (5) gives, 

 

𝐿
𝑑2𝑞

𝑑𝑡2 + 𝑅
𝑑𝑞

𝑑𝑡
 +

𝑞

𝑐
 = EO Sin𝝎t,                                     (9) 

 

which is a non-homogeneous second-order linear 

differential equation with constant coefficient.  

  

 The Exact Solution 

 
Consider the RLC circuit, 

 
𝑑2𝑞

𝑑𝑡2 + 
𝑅

𝐿

𝑑𝑖(𝑡)

𝑑𝑡
 + 

1

𝐿𝐶
𝑖(𝑡) = EOSin𝝎t, 

 

where R = 12 ohms = 12Ω, L = 0.4 Henries, C = 0.0125 

Farads, EO Sin𝝎t = 550*Sin (10t), i(0) = 0 and iˊ(0) = 0.  

 
Therefore, 

 
𝑑2𝑖(𝑡)

𝑑𝑡2
+

12

0.4

𝑑𝑖(𝑡)

𝑑𝑡
 +

1

0.4 𝑥 0.0125
𝑖(𝑡) = 550*Sin (10t) 
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Hence, the exact equation for the current in the RLC 

Circuit is: 

 

i(t) = 2.75e-10t   - 1.1e-20t  + 0.55*sin(10t) – 1.65*Cos(t). 

 

 

 Numerical Result 

Here the convergence properties of the Runge-Kutta 

4th-Order (RK4) and Runge-Kutta-Fehlberg (RKF) methods 

are analysed, focusing on the comparison of numerical 

solutions with exact solutions.   

Table 1 MATLAB RLC Circuit Comparative Result for Runge-Kutta 4th Order Method for h = 0.001 

No Time Runge-Kutta 4th Order Method i(t) Exact Solution i(t) Local Truncation Error 

1 0 0 0 0.00E+00 

2 0.001 0.00E+00 -0.01084 0.01084 

3 0.002 1.00E-05 -0.02134 0.02137 

4 0.003 2.00E-05 -0.03152 0.03158 

5 0.004 6.00E-05 -0.04138 0.04149 

6 0.005 1.10E-04 -0.05092 0.05111 

7 0.006 1.90E-04 -0.06014 0.06044 

8 0.007 3.00E-04 -0.06904 0.06948 

9 0.008 4.40E-04 -0.07763 0.07825 

10 0.009 6.20E-04 -0.0859 0.08675 

11 0.010 0.00085 -0.09387 0.09499 

12 0.011 0.00112 -0.10152 0.10297 

13 0.012 0.00145 -0.10887 0.1107 

14 0.013 0.00183 -0.11592 0.11819 

15 0.014 0.00227 -0.12267 0.12543 

16 0.015 0.00277 -0.12911 0.13244 

17 0.016 0.00333 -0.13526 0.13923 

18 0.017 0.00397 -0.14112 0.14579 

19 0.018 0.00467 -0.14668 0.15214 

20 0.019 0.00546 -0.15195 0.15827 

21 0.020 0.00632 -0.15694 0.16419 

22 0.021 0.00726 -0.16163 0.16992 

23 0.022 0.00828 -0.16605 0.17544 

24 0.023 0.00939 -0.17018 0.18078 

25 0.024 0.01059 -0.17404 0.18592 

26 0.025 0.01189 -0.17761 0.19088 

27 0.026 0.01327 -0.18091 0.19566 

28 0.027 0.01475 -0.18394 0.20027 

29 0.028 0.01633 -0.1867 0.20471 

30 0.029 0.01801 -0.18919 0.20898 

31 0.030 0.01979 -0.19142 0.21309 

32 0.031 0.02167 -0.19338 0.21704 

33 0.032 0.02366 -0.19508 0.22084 

34 0.033 0.02576 -0.19652 0.22448 

9966 9.962 -1.44598 -1.44598 0.00959 

9967 9.963 -1.45557 -1.45557 0.00945 

9968 9.964 -1.46502 -1.46502 0.0093 

9969 9.965 -1.47432 -1.47432 0.00915 

9970 9.966 -1.48347 -1.48347 0.009 

9971 9.967 -1.49247 -1.49247 0.00886 

9972 9.968 -1.50133 -1.50133 0.00871 

9973 9.969 -1.51004 -1.51004 0.00855 

9974 9.97 -1.51859 -1.51859 0.0084 

9975 9.971 -1.52699 -1.52699 0.00825 

9976 9.972 -1.53524 -1.53524 0.0081 

9977 9.973 -1.54334 -1.54334 0.00794 

9978 9.974 -1.55128 -1.55128 0.00779 

9979 9.975 -1.55907 -1.55907 0.00763 

9980 9.976 -1.5667 -1.5667 0.00747 

9981 9.977 -1.57417 -1.57417 0.00732 

9982 9.978 -1.58149 -1.58149 0.00716 
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Table 1. shows the computed results of the Runge-Kutta 4th order method in MATLAB with the step size h = 0.001. The table 

compares the currents i(t) generated using the Runge-Kutta 4th order method and the exact solution. 

 

 MATLAB RLC Circuit Comparative Result for Runge-Kutta Fehlberg Method and Exact Solution 

 

Table 2 MATLAB RCL circuit comparative result for Runge-Kutta-Fehlberg method for h = 0.001 

S/N Time Runge-Kutta Fehlberg Method I(t) Exact Solution i(t) Local Truncation Error 

1 0 0 0 0.00E+00 

2 0.001 -1.08E-02 9.10E-07 0.010836276 

3 0.002 -2.13E-02 7.22E-06 0.021350158 

4 0.003 -3.15E-02 2.42E-05 0.0315491 

5 0.004 -4.14E-02 5.69E-05 0.041440402 

6 0.005 -0.050920836 0.000110371 0.051031207 

7 0.006 -0.060139207 0.0001893 0.060328507 

8 0.007 -0.069040782 0.000298361 0.069339143 

9 0.008 -0.077627762 0.000442051 0.078069813 

10 0.009 -0.085902352 0.00062472 0.086527071 

11 0.01 -0.093866754 0.000850578 0.094717331 

12 0.011 -0.101523173 0.001123698 0.102646871 

13 0.012 -0.108873815 0.001448019 0.110321833 

14 0.013 -0.115920885 0.001827344 0.11774823 

15 0.014 -0.122666592 0.002265351 0.124931943 

16 0.015 -0.129113145 0.002765587 0.131878731 

17 0.016 -0.135262752 0.003331475 0.138594227 

18 0.017 -0.141117626 0.003966317 0.145083943 

19 0.018 -0.146679979 0.004673295 0.151353274 

20 0.019 -0.151952025 0.005455473 0.157407497 

21 0.02 -0.156935979 0.006315799 0.163251778 

22 0.021 -0.161634059 0.00725711 0.168891169 

23 0.022 -0.166048482 0.008282133 0.174330615 

24 0.023 -0.17018147 0.009393483 0.179574953 

25 0.024 -0.174035243 0.010593673 0.184628916 

26 0.025 -0.177612026 0.01188511 0.189497136 

27 0.026 -0.180914044 0.013270098 0.194184142 

28 0.027 -0.183943523 0.014750843 0.198694366 

29 0.028 -0.186702693 0.016329452 0.203032145 

9983 9.979 -1.58865 -1.58865 0.007 

9984 9.98 -1.59565 -1.59565 0.00684 

9985 9.981 -1.60249 -1.60249 0.00668 

9986 9.982 -1.60917 -1.60917 0.00652 

9987 9.983 -1.61569 -1.61569 0.00636 

9988 9.984 -1.62205 -1.62205 0.0062 

9989 9.985 -1.62824 -1.62824 0.00603 

9990 9.986 -1.63427 -1.63427 0.00587 

9991 9.987 -1.64014 -1.64014 0.00571 

9992 9.988 -1.64585 -1.64585 0.00554 

9993 9.989 -1.65139 -1.65139 0.00538 

9994 9.99 -1.65677 -1.65677 0.00521 

9995 9.991 -1.66197 -1.66197 0.00504 

9996 9.992 -1.66702 -1.66702 0.00488 

9997 9.993 -1.6719 -1.6719 0.00471 

9998 9.994 -1.67661 -1.67661 0.00454 

9999 9.995 -1.68115 -1.68115 0.00437 

10000 9.996 -1.68552 -1.68552 0.00421 

10001 9.997 -1.68973 -1.68973 0.00404 

10002 9.998 -1.69376 -1.69376 0.00387 

10003 9.999 -1.69763 -1.69763 0.0037 

10004 10 -1.70133 -1.70133 0.00353 
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30 0.029 -0.189193784 0.018007937 0.207201721 

31 0.03 -0.191419029 0.019788214 0.211207243 

32 0.031 -0.193380662 0.021672108 0.21505277 

33 0.032 -0.19508092 0.023661354 0.218742274 

34 0.033 -0.196522041 0.025757598 0.222279639 

9964 9.96 -1.42635738 -1.42635738 1.06E-12 

9965 9.961 -1.436238306 -1.436238306 1.06E-12 

9966 9.962 -1.44597561 -1.44597561 1.06E-12 

9967 9.963 -1.455568318 -1.455568318 1.06E-12 

9968 9.964 -1.46501547 -1.46501547 1.06E-12 

9969 9.965 -1.474316122 -1.474316122 1.07E-12 

9970 9.966 -1.483469344 -1.483469344 1.06E-12 

9971 9.967 -1.492474219 -1.492474219 1.07E-12 

9972 9.968 -1.501329849 -1.501329849 1.08E-12 

9973 9.969 -1.510035347 -1.510035347 1.07E-12 

9974 9.97 -1.518589842 -1.518589842 1.07E-12 

9975 9.971 -1.52699248 -1.52699248 1.08E-12 

9976 9.972 -1.53524242 -1.53524242 1.07E-12 

9977 9.973 -1.543338837 -1.543338837 1.08E-12 

9978 9.974 -1.551280921 -1.551280921 1.08E-12 

9979 9.975 -1.559067878 -1.559067878 1.08E-12 

9980 9.976 -1.56669893 -1.56669893 1.08E-12 

9981 9.977 -1.574173314 -1.574173314 1.09E-12 

9982 9.978 -1.581490281 -1.581490281 1.08E-12 

9983 9.979 -1.588649101 -1.588649101 1.07E-12 

9984 9.98 -1.595649057 -1.595649057 1.09E-12 

9985 9.981 -1.60248945 -1.60248945 1.08E-12 

9986 9.982 -1.609169594 -1.609169594 1.08E-12 

9987 9.983 -1.615688824 -1.615688824 1.09E-12 

9988 9.984 -1.622046485 -1.622046485 1.08E-12 

9989 9.985 -1.628241944 -1.628241944 1.08E-12 

9990 9.986 -1.63427458 -1.63427458 1.09E-12 

9991 9.987 -1.640143789 -1.640143789 1.08E-12 

9992 9.988 -1.645848986 -1.645848986 1.08E-12 

9993 9.989 -1.651389599 -1.651389599 1.09E-12 

9994 9.99 -1.656765074 -1.656765074 1.08E-12 

9995 9.991 -1.661974874 -1.661974874 1.07E-12 

9996 9.992 -1.667018478 -1.667018478 1.08E-12 

9997 9.993 -1.671895382 -1.671895382 1.08E-12 

9998 9.994 -1.676605098 -1.676605098 1.07E-12 

9999 9.995 -1.681147154 -1.681147154 1.07E-12 

10000 9.996 -1.685521097 -1.685521097 1.07E-12 

10001 9.997 -1.68972649 -1.68972649 1.07E-12 

10002 9.998 -1.693762911 -1.693762911 1.06E-12 

10003 9.999 -1.697629957 -1.697629957 1.07E-12 

10004 10 -1.701327242 -1.701327242 1.06E-12 

 

Table 2 shows the computed results of the Runge-Kutta-Fehlberg method in MATLAB with the step size h = 0.001. The table 

compares the current i(t) generated using the Runge-Kutta-Fehlberg method and the exact solution.  

 

 8PYTHON RLC Circuit Comparative Result for Runge-Kutta 4th Order Method and Exact Solution. 

 

Table 3 Python RCL circuit comparative result for Runge-Kutta 4th order method for h = 0.001 

S/N Time Exact Solution Runge Kutta 4th order Method Local Truncation Error 

1 0 0 0 0 

2 0.001 0 1.00E-05 1.00E-05 

3 0.002 1.00E-05 2.00E-05 2.00E-05 

4 0.003 2.00E-05 6.00E-05 3.00E-05 

5 0.004 6.00E-05 0.00011 5.00E-05 
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6 0.005 0.00011 0.00019 8.00E-05 

7 0.006 0.00019 0.0003 0.00011 

8 0.007 0.0003 0.00044 0.00014 

9 0.008 0.00044 0.00062 0.00018 

10 0.009 0.00062 0.00085 0.00023 

11 0.01 0.00085 0.00112 0.00027 

12 0.011 0.00112 0.00145 0.00032 

13 0.012 0.00145 0.00183 0.00038 

14 0.013 0.00183 0.00227 0.00044 

15 0.014 0.00227 0.00277 0.0005 

16 0.015 0.00277 0.00333 0.00057 

17 0.016 0.00333 0.00397 0.00063 

18 0.017 0.00397 0.00467 0.00071 

19 0.018 0.00467 0.00546 0.00078 

20 0.019 0.00546 0.00632 0.00086 

21 0.02 0.00632 0.00726 0.00094 

22 0.021 0.00726 0.00828 0.00103 

23 0.022 0.00828 0.00939 0.00111 

24 0.023 0.00939 0.01059 0.0012 

25 0.024 0.01059 0.01189 0.00129 

26 0.025 0.01189 0.01327 0.00138 

27 0.026 0.01327 0.01475 0.00148 

28 0.027 0.01475 0.01633 0.00158 

29 0.028 0.01633 0.01801 0.00168 

30 0.029 0.01801 0.01979 0.00178 

31 0.03 0.01979 0.02167 0.00188 

32 0.031 0.02167 0.02366 0.00199 

33 0.032 0.02366 0.02576 0.0021 

34 0.033 0.02576 0.02796 0.0022 

1968 1.967 -0.72283 -0.70698 0.01586 

1969 1.968 -0.70698 -0.69105 0.01593 

1970 1.969 -0.69105 -0.67506 0.016 

1971 1.97 -0.67506 -0.65899 0.01606 

1972 1.971 -0.65899 -0.64287 0.01613 

1973 1.972 -0.64287 -0.62667 0.01619 

1974 1.973 -0.62667 -0.61042 0.01626 

1975 1.974 -0.61042 -0.5941 0.01632 

1976 1.975 -0.5941 -0.57772 0.01638 

1977 1.976 -0.57772 -0.56129 0.01643 

1978 1.977 -0.56129 -0.5448 0.01649 

1979 1.978 -0.5448 -0.52826 0.01654 

1980 1.979 -0.52826 -0.51166 0.0166 

1981 1.98 -0.51166 -0.49501 0.01665 

1982 1.981 -0.49501 -0.47831 0.0167 

1983 1.982 -0.47831 -0.46157 0.01675 

1984 1.983 -0.46157 -0.44478 0.01679 

1985 1.984 -0.44478 -0.42794 0.01684 

1986 1.985 -0.42794 -0.41106 0.01688 

1987 1.986 -0.41106 -0.39414 0.01692 

1988 1.987 -0.39414 -0.37718 0.01696 

1989 1.988 -0.37718 -0.36019 0.017 

1990 1.989 -0.36019 -0.34315 0.01703 

1991 1.99 -0.34315 -0.32608 0.01707 

1992 1.991 -0.32608 -0.30898 0.0171 

1993 1.992 -0.30898 -0.29185 0.01713 

1994 1.993 -0.29185 -0.27469 0.01716 

1995 1.994 -0.27469 -0.25751 0.01719 

1996 1.995 -0.25751 -0.24029 0.01721 

1997 1.996 -0.24029 -0.22305 0.01724 
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1998 1.997 -0.22305 -0.2058 0.01726 

1999 1.998 -0.2058 -0.18851 0.01728 

2000 1.999 -0.18851 -0.17122 0.0173 

2001 2 -0.17122 -0.1539 0.01732 

 

Table 3 shows the computed results of the Runge-Kutta 4th order method in Python with the step size h = 0.001. The table 

compares the currents i(t) generated using the Runge-Kutta 4th order method and the exact solution. 

 

 PYTHON RLC Circuit Comparative Result for Runge-Kutta-Fehlberg and Exact Solution 

 

Table 4 PYTHON RLC circuit comparative result for Runge-Kutta-Fehlberg method for h = 0.001 

 

S/N Time Exact Solution i(t) Runge-Kutta-Fehlberg Method i(t) Local Truncation Error 

1 0 0 0 0 

2 0.001 0 1.00E-05 1.00E-05 

3 0.002 1.00E-05 3.00E-05 2.00E-05 

4 0.003 2.00E-05 6.00E-05 4.00E-05 

5 0.004 6.00E-05 0.00011 5.00E-05 

6 0.005 0.00011 0.00019 8.00E-05 

7 0.006 0.00019 0.0003 0.00011 

8 0.007 0.0003 0.00044 0.00014 

9 0.008 0.00044 0.00062 0.00018 

10 0.009 0.00062 0.00085 0.00023 

11 0.01 0.00085 0.00112 0.00027 

12 0.011 0.00112 0.00144 0.00032 

13 0.012 0.00145 0.00182 0.00037 

14 0.013 0.00183 0.00226 0.00043 

15 0.014 0.00227 0.00276 0.00049 

16 0.015 0.00277 0.00333 0.00056 

17 0.016 0.00333 0.00396 0.00063 

18 0.017 0.00397 0.00467 0.0007 

19 0.018 0.00467 0.00545 0.00078 

20 0.019 0.00546 0.00631 0.00085 

21 0.02 0.00632 0.00725 0.00093 

22 0.021 0.00726 0.00828 0.00102 

23 0.022 0.00828 0.00939 0.00111 

24 0.023 0.00939 0.01059 0.0012 

25 0.024 0.01059 0.01188 0.00129 

26 0.025 0.01189 0.01327 0.00138 

27 0.026 0.01327 0.01475 0.00148 

28 0.027 0.01475 0.01633 0.00158 

29 0.028 0.01633 0.01801 0.00168 

30 0.029 0.01801 0.01979 0.00178 

31 0.03 0.01979 0.02167 0.00188 

32 0.031 0.02167 0.02366 0.00199 

33 0.032 0.02366 0.02576 0.0021 

1964 1.961 -0.81639 -0.80098 0.01541 

1965 1.962 -0.80099 -0.7855 0.01549 

1966 1.963 -0.78551 -0.76994 0.01557 

1967 1.964 -0.76996 -0.75431 0.01565 

1968 1.965 -0.75432 -0.7386 0.01572 

1969 1.966 -0.73862 -0.72282 0.0158 

1970 1.967 -0.72283 -0.70696 0.01587 

1971 1.968 -0.70698 -0.69103 0.01595 

1972 1.969 -0.69105 -0.67504 0.01601 

1973 1.97 -0.67506 -0.65898 0.01608 

1974 1.971 -0.65899 -0.64285 0.01614 

1975 1.972 -0.64287 -0.62666 0.01621 

1976 1.973 -0.62667 -0.6104 0.01627 
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1977 1.974 -0.61042 -0.59408 0.01634 

1978 1.975 -0.5941 -0.5777 0.0164 

1979 1.976 -0.57772 -0.56127 0.01645 

1980 1.977 -0.56129 -0.54478 0.01651 

1981 1.978 -0.5448 -0.52824 0.01656 

1982 1.979 -0.52826 -0.51164 0.01662 

1983 1.98 -0.51166 -0.49499 0.01667 

1983 1.981 -0.49501 -0.47829 0.01672 

1984 1.982 -0.47831 -0.46154 0.01677 

1985 1.983 -0.46157 -0.44475 0.01682 

1986 1.984 -0.44478 -0.42791 0.01687 

1987 1.985 -0.42794 -0.41103 0.01691 

1988 1.986 -0.41106 -0.39411 0.01695 

1989 1.987 -0.39414 -0.37715 0.01699 

1990 1.988 -0.37718 -0.36015 0.01703 

1991 1.989 -0.36019 -0.34312 0.01707 

1992 1.99 -0.34315 -0.32605 0.0171 

1993 1.991 -0.32608 -0.30895 0.01713 

1994 1.992 -0.30898 -0.29182 0.01716 

1995 1.993 -0.29185 -0.27466 0.01719 

1996 1.994 -0.27469 -0.25747 0.01722 

1997 1.995 -0.25751 -0.24026 0.01725 

1998 1.996 -0.24029 -0.22302 0.01727 

1999 1.997 -0.22305 -0.20576 0.01729 

2000 1.998 -0.2058 -0.18848 0.01732 

2001 1.999 -0.18851 -0.17118 0.01733 

2002 2 -0.17122 -0.15386 0.01736 

 

Table 4. shows the computed results of the Runge-Kutta-Fehlberg method in Python with the step size h = 0.001. The table 

compares the currents i(t) generated using the Runge-Kutta Fehlberg method and the exact solution. 

 

III. DISCUSSION 

 

 Convergence Properties Of The RK4 Method (MATLAB) 

Table 1 
The RK4 method was tested at different step sizes (h = 

0.001, 0.0005, 0.00025, and 0.000125) to analyze 

convergence behavior. At h = 0.001, initial conditions 

ensured no local truncation error. However, as time 

progressed, errors increased, with a notable pattern of steady 

growth. For instance, at t = 0.005, the local truncation error 

was 0.05111, reaching 0.16419 at t = 0.02. Toward the end of 

the simulation (t ≈ 10), errors decreased, indicating long-term 

accuracy. With h = 0.0005, smaller errors were observed, 

with local truncation errors decreasing at later stages, e.g., 

0.00340 at t = 9.9805 and 0.00181 at t = 10, highlighting 

improved accuracy over time. For h = 0.00025, errors further 
reduced, confirming that smaller step sizes enhance precision. 

The RK4 method maintained stable convergence, with local 

truncation errors increasing at a slower rate. At h = 0.000125, 

high precision was achieved, as seen at t = 0.00013 (error = 

0.00137). Throughout the simulation, the RK4 method 

demonstrated reliable performance, with consistently small 

truncation errors. 

 

 

 

 
 

 Convergence Properties of the RKF Method (MATLAB) 

Table 2 

The RKF method showed significantly higher accuracy 

than RK4 across all step sizes. With h = 0.001, local 

truncation errors remained extremely low (~ 10−12 ), 

confirming RKF’s superior precision. For h = 0.0005, 

0.00025, and 0.000125, errors were on the order of 10−15 to 

10−9 in initial steps, showcasing excellent convergence 

properties. The RKF method effectively followed the exact 

solution, maintaining low errors even over extended 

simulation periods. These results align with previous studies 

confirming RKF’s computational superiority. 

 

 Convergence Properties of the RK4 Method (Python) 

Table 3 

The RK4 method in Python followed similar trends as 

MATLAB. With h = 0.001, local truncation errors remained 
small but increased gradually. At h = 0.0005, the error 

remained within a manageable range, confirming numerical 

stability. With h = 0.00025 and h = 0.000125, smaller errors 

were observed, reinforcing that RK4's convergence improves 

with finer time steps. At t = 2, for example, the RK4 method 

yielded errors of 0.00866 (h = 0.0005), 0.00433 (h = 

0.00025), and 0.00216 (h = 0.000125), demonstrating 

progressively better accuracy with decreasing step sizes. 
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 Convergence Properties of the RKF Method (Python) 

Table 4 

The RKF method in Python also demonstrated 

exceptional accuracy, with initial errors as low as 10−5  to 

10−14 , similar to MATLAB. For h = 0.0005 and 0.00025, 

truncation errors remained extremely low even for longer 

simulations. At t = 1.961, the RKF method maintained a local 

truncation error of ~0.015, proving its stability and efficiency. 

 

At h = 0.000125, the RKF method produced near-zero 

local truncation errors, reinforcing its ability to maintain high 

accuracy over long intervals. 

 

 
Fig 1 MATLAB Runge-Kutta 4th-order method (RK4) for h = 0.001 vs exact solution 

 

 
Fig 2 MATLAB Runge-Kutta-Fehlberg method for h = 0.001vs exact solution 
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Fig 3 Python Runge-Kutta 4th-order method for h = 0.001vs exact solution 

 

 
Fig 4 Python Runge-Kutta-Fehlberg method for h = 0.001 vs exact solution 

 

Figures 1 and 2 present MATLAB-generated graphs 

comparing numerical and exact solutions for an RLC circuit 

over 10 seconds. Figure 1 shows the Runge-Kutta 4th-order 

(RK4) method (blue) closely matching the exact solution 
(red), demonstrating high accuracy and minimal truncation 

error. Figure 2 compares the Runge-Kutta-Fehlberg (RKF) 

method (blue) with the exact solution (dashed red), 

highlighting its phase and amplitude consistency, adaptive 

step size control, and numerical stability. Figures 3 and 4 

display Python-simulated graphs. Figure 3 compares the RK4 

method (orange) with the exact solution (blue), showing 

precise approximation and periodic oscillations. Figure 4 

compares the RKF method (blue) with the exact solution 

(orange), confirming high accuracy and stability across 

multiple step sizes. In all cases, smaller step sizes improve 

precision, reinforcing the reliability of both RK4 and RKF 
methods for simulating RLC circuits. 

 

IV. CONCLUSION 

 

Following the progression of this research, several key 

achievements have been realized. The RKF method 
consistently outperformed the RK4 method in both 

MATLAB and Python, maintaining lower truncation errors 

and better convergence. The RK4 method showed stable error 

growth, improving as step size decreased. The RKF method 

demonstrated superior numerical accuracy, even for longer 

simulations, making it more efficient for solving ODEs. The 

results confirm that smaller step sizes improve accuracy, with 

RKF offering a more precise and reliable solution than RK4. 

Both MATLAB and Python offer robust environments for 

implementing the RK4 and RKF methods. MATLAB's built-

in functions make implementation straightforward, while 

Python’s libraries like SciPy, SymPy, Matplotlib, and Pandas 
provide additional flexibility and ease. In MATLAB, it takes 

about ten seconds to establish convergence, whereas it takes 
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about two minutes in Python. MATLAB generally offers 

faster computation for vectorized operations, which is 

beneficial for large-scale problems, while Python provides 

comparable performance with the added advantage of better 

integration with other software and tools.  
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APPENDIX 

 

 

TABLE 1.2: MATLAB RLC Circuit Comparative Result Table for Runge-Kutta 4th Order Method 

for h = 0.0005 

 
 

Runge-Kutta 4th 

Order 

Exact Solution 

i(t) 

Local Truncation 

Error 

# Time Method i(t) 
  

 

 

1 

0 0 0 0.00E+00 

2 0.0005 0.00E+00 -0.00546 0.00546 

3 0.001 0.00E+00 -0.01084 0.01084 

4 0.0015 0.00E+00 -0.01613 0.01614 

5 0.002 1.00E-05 -0.02134 0.02136 

6 0.0025 1.00E-05 -0.02647 0.0265 

7 0.003 2.00E-05 -0.03152 0.03156 

8 0.0035 4.00E-05 -0.03649 0.03655 

9 0.004 6.00E-05 -0.04138 0.04146 

10 0.0045 8.00E-05 -0.04619 0.0463 

11 0.005 0.00011 -0.05092 0.05107 

12 0.0055 0.00015 -0.05557 0.05576 

13 0.006 0.00019 -0.06014 0.06038 

14 0.0065 0.00024 -0.06463 0.06493 

15 0.007 0.0003 -0.06904 0.06941 

16 0.0075 0.00037 -0.07337 0.07382 

17 0.008 0.00044 -0.07763 0.07816 

18 0.0085 0.00053 -0.0818 0.08243 

19 0.009 0.00062 -0.0859 0.08663 

20 0.0095 0.00073 -0.08992 0.09077 

21 0.01 0.00085 -0.09387 0.09485 

22 0.0105 0.00098 -0.09773 0.09886 

23 0.011 0.00112 -0.10152 0.1028 

24 0.0115 0.00128 -0.10524 0.10668 

25 0.012 0.00145 -0.10887 0.1105 

26 0.0125 0.00163 -0.11244 0.11426 

27 0.013 0.00183 -0.11592 0.11796 

28 0.0135 0.00204 -0.11933 0.1216 

29 0.014 0.00227 -0.12267 0.12517 

30 0.0145 0.00251 -0.12593 0.12869 

31 0.015 0.00277 -0.12911 0.13215 

32 0.0155 0.00304 -0.13222 0.13556 

33 0.016 0.00333 -0.13526 0.1389 

34 0.0165 0.00364 -0.13823 0.14219 

     

Table 1.2 shows the computed results of the Runge-Kutta 4th order method in MATLAB with 

the step size h = 0.0005. The table compares the currents i(t) generated using the Runge-Kutta 

4th order method and the exact solution. 
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TABLE 1.4 MATLAB RLC Circuit Comparative Result Table for Runge-Kutta 4th 

Order Method for h = 0.000125 

 

 

Runge-Kutta 4th 

Order Exact Solution i(t) 

Local Truncation 

Error 

# Time Method i(t)   
1 0 0 0 0.00E+00 

2 0.00013 0.00E+00 -0.00137 0.00137 

3 0.00025 0.00E+00 -0.00274 0.00274 

4 0.00038 0.00E+00 -0.0041 0.0041 

5 0.0005 0.00E+00 -0.00546 0.00546 

6 0.00063 0.00E+00 -0.00681 0.00681 

7 0.00075 0.00E+00 -0.00816 0.00816 

8 0.00088 0.00E+00 -0.0095 0.0095 

9 0.001 0.00E+00 -0.01084 0.01084 

10 0.00113 0.00E+00 -0.01217 0.01217 

11 0.00125 0 -0.01349 0.0135 

12 0.00138 0 -0.01481 0.01482 

13 0.0015 0 -0.01613 0.01613 

14 0.00163 0 -0.01744 0.01745 

15 0.00175 0 -0.01875 0.01875 

16 0.00188 1.00E-05 -0.02005 0.02005 

17 0.002 1.00E-05 -0.02134 0.02135 

18 0.00213 1.00E-05 -0.02263 0.02264 

19 0.00225 1.00E-05 -0.02392 0.02393 

20 0.00238 1.00E-05 -0.0252 0.02521 

21 0.0025 1.00E-05 -0.02647 0.02649 

22 0.00263 2.00E-05 -0.02774 0.02776 

23 0.00275 2.00E-05 -0.02901 0.02903 

24 0.00288 2.00E-05 -0.03027 0.03029 

25 0.003 2.00E-05 -0.03152 0.03155 

26 0.00313 3.00E-05 -0.03277 0.03281 

27 0.00325 3.00E-05 -0.03402 0.03405 

28 0.00338 3.00E-05 -0.03526 0.0353 

29 0.0035 4.00E-05 -0.03649 0.03654 

30 0.00363 4.00E-05 -0.03772 0.03777 

31 0.00375 5.00E-05 -0.03895 0.039 

32 0.00388 5.00E-05 -0.04017 0.04023 
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79965 9.99513 -1.6817 -1.6817 0.00055 

79966 9.99525 -1.68226 -1.68226 0.00055 

79967 9.99538 -1.68281 -1.68281 0.00055 

79968 9.9955 -1.68336 -1.68336 0.00055 

79969 9.99563 -1.6839 -1.6839 0.00054 

79970 9.99575 -1.68444 -1.68444 0.00054 

79971 9.99588 -1.68498 -1.68498 0.00054 

79972 9.996 -1.68552 -1.68552 0.00053 

79973 9.99613 -1.68606 -1.68606 0.00053 

79974 9.99625 -1.68659 -1.68659 0.00053 

79975 9.99638 -1.68712 -1.68712 0.00053 

79976 9.9965 -1.68764 -1.68764 0.00052 

79977 9.99663 -1.68817 -1.68817 0.00052 

79978 9.99675 -1.68869 -1.68869 0.00052 

79979 9.99688 -1.68921 -1.68921 0.00052 

79980 9.997 -1.68973 -1.68973 0.00051 

79981 9.99713 -1.69024 -1.69024 0.00051 

79982 9.99725 -1.69075 -1.69075 0.00051 

79983 9.99738 -1.69126 -1.69126 0.00051 

79984 9.9975 -1.69177 -1.69177 0.0005 

79985 9.99763 -1.69227 -1.69227 0.0005 

79986 9.99775 -1.69277 -1.69277 0.0005 

79987 9.99788 -1.69327 -1.69327 0.0005 

79988 9.998 -1.69376 -1.69376 0.00049 

79989 9.99813 -1.69426 -1.69426 0.00049 

79990 9.99825 -1.69475 -1.69475 0.00049 

79991 9.99838 -1.69523 -1.69523 0.00048 

79992 9.9985 -1.69572 -1.69572 0.00048 

79993 9.99863 -1.6962 -1.6962 0.00048 

79994 9.99875 -1.69668 -1.69668 0.00048 

79995 9.99888 -1.69716 -1.69716 0.00047 

79996 9.999 -1.69763 -1.69763 0.00047 

79997 9.99913 -1.6981 -1.6981 0.00047 

79998 9.99925 -1.69857 -1.69857 0.00047 

79999 9.99938 -1.69904 -1.69904 0.00046 

80000 9.9995 -1.6995 -1.6995 0.00046 

80001 9.99963 -1.69996 -1.69996 0.00046 

80002 9.99975 -1.70042 -1.70042 0.00046 

80003 9.99988 -1.70087 -1.70087 0.00045 

80004 10 -1.70133 -1.70133 0.00045 
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PYTHON SCRIP 
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MATLAB SCRIPT 
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