
Volume 10, Issue 3, March – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25mar1982

IJISRT25MAR1982 www.ijisrt.com 3063

Comprehensive Review of Advanced

Techniques for Mitigating SQL Injection

Vulnerabilities in Modern Applications

Amit Hariyani1*; Dr. Prashant Dolia2

1Smt. Chandaben Mohanbhai Patel Institute of Computer Applications, Charotar University of Science and

Technology, Off. Nadiad-Petlad Highway, Changa, Anand, 388421, Gujarat, India
2Department of Computer Science, M. K. Bhavnagar University, Sardar Patel Campus, Bhavnagar, 364002,

Gujarat, India

Corresponding Author: Amit Hariyani1*

Publication Date: 2025/04/16

Abstract: SQL injection (SQLi) remains a major security threat to database-driven applications, making it essential to

protect the confidentiality, integrity, and availability of data. In this research, we summarize effective strategies to prevent

SQL injection attacks (SQLIAs), such as parameterized queries, stored procedures, Object Relational Mappers (ORM),

input validation, input escaping, and Web Application Firewalls (WAF). We assess each technique based on how well it

works, how easy it is to use, and its impact on performance, with real-world examples to show their use. Our literature

review covers research from the past five years, highlighting the changing nature of SQLi threats and the improvements in

prevention methods. This study offers a detailed look at effective SQLi prevention techniques and their implementation,

and a comparison of their effectiveness. By understanding and using these approaches, organizations can significantly

reduce the risk of SQLIAs and protect their important data.

Keywords: SQL Injection, Database Security, Parameterized Queries, Stored Procedures, ORM, Input Validation.

How to Cite: Amit Hariyani; Dr. Prashant Dolia. (2025). Comprehensive Review of Advanced Techniques for Mitigating SQL

Injection Vulnerabilities in Modern Applications. International Journal of Innovative Science and Research

Technology, 10(3), 3063-3070. https://doi.org/10.38124/ijisrt/25mar1982.

I. INTRODUCTION

SQL Injection (SQLi) poses a significant threat to
applications that rely on databases [1] and is widely

regarded as one of the most severe security issues affecting

websites. This type of attack occurs when user inputs are

not handled correctly in SQL queries [2], allowing attackers

to run any SQL code they want on a database. Successful

SQLi attacks can lead to unauthorized access to sensitive

data, data breaches, data manipulation, and complete

control of the database server [3]. Despite improvements in

web security, SQLi remains a significant risk; therefore, it

is important to develop effective prevention methods [4].

SQLi attacks are popular owing to their simplicity and

effectiveness. Attackers can create harmful inputs that
change SQL queries, bypass security checks, and gain

unauthorized access to data [5]. Many high-profile data

breaches have been caused by SQLi attacks, leading to

financial losses, damage to reputations, and legal problems

for affected organizations [6]. Databases store important

information, such as personal data and financial records;

therefore, their security is very important.

To counter these threats, several techniques have been

developed to reduce the risk of SQLi [7]. One of the best

methods is to use parameterized queries [8], also known as
prepared statements. These separate the SQL code from the

user inputs, ensuring that the inputs are treated as data and

not as executable code, which stops the attack. Stored

procedures that encapsulate SQL logic within a database

also help to reduce direct exposure to SQL queries and

enable input validation and security policies within the

database layer [9].

The Object Relational Mapper (ORM) [10] simplifies

database interactions by automatically handling

parameterizations, thereby reducing the risk of SQLi.

ORMs offer a high-level programming interface that makes
database operations easier for developers, while ensuring

security [11]. Input validation and sanitization improve

security by verifying that user inputs meet the expected

formats and remove harmful characters [12]. Escaping

input characters is another method for preventing SQLi and

treating special characters in user inputs safely [13]. Web

Application Firewalls (WAFs) [14] provide an extra layer

https://doi.org/10.38124/ijisrt/25mar1982
http://www.ijisrt.com/
https://doi.org/10.38124/ijisrt/25mar1982

Volume 10, Issue 3, March – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25mar1982

IJISRT25MAR1982 www.ijisrt.com 3064

of defense by inspecting incoming requests and filtering

malicious inputs before they reach an application. WAFs

are particularly effective in protecting against various web

application attacks, including SQLi [15].

 The Objectives of this Study are as Follows:

 To evaluate the effectiveness of SQLi prevention
techniques

 To analyze recent advances in SQLi detection and

prevention

 To compare the practical implementation of SQLi

prevention methods

 To identify and discuss the challenges and limitations of

current SQLi prevention methods

 To propose a comprehensive strategy for SQLi

mitigation

This study provides an in-depth examination of various
strategies for combating SQLIAs. It reviews the

effectiveness, ease of use, and performance impact of

techniques, such as parameterized queries, stored

procedures, ORMs, input validation, input escaping, and

WAFs. It also addresses the challenges of balancing security

with 2 performance and emphasizes the need for ongoing

development and education in secure coding practices.

The rest of this paper is structured as follows: Section

2 covers related works on SQLi vulnerabilities and

prevention techniques. Section 3 provides a brief overview

of the proposed methodology for identifying and mitigating
SQLi vulnerabilities. Section 4 discusses the experimental

setup and analysis of the results. Section 5 concludes the

study and outlines future research directions in this field.

II. RELATED WORK

The study covers research from the last five years,

focusing on the changing nature of SQLi threats and

advancements in countermeasures. Researchers have

emphasized the importance of using a comprehensive

approach for SQLi prevention by combining multiple
techniques to ensure strong protection.

The ongoing challenges of SQLi threats highlight the

importance of cybersecurity. As a regular threat to the

OWASP top ten list [16] of critical web application security

risks, SQLi requires constant monitoring and improvements

in prevention methods. A comprehensive approach that

combines static and dynamic analyses is necessary to

effectively identify and address vulnerabilities, as noted by

Alsmadi and Farooq [17, 18]. They also pointed out the

limitations of traditional detection methods and

recommended using hybrid machine-learning models,
which have been shown to improve accuracy and detection

rates.

In recent years, using Machine Learning (ML) and

Artificial Intelligence (AI) to detect SQLi has become more

popular [19, 36, 37]. Brindavathi and Demilie [20, 21]

found that ML models can identify SQLi patterns and stop

attacks in real-time. Their studies showed that ML-based

methods can outperform traditional signature-based

methods by learning and adapting to new attack vectors,

thereby offering stronger defence mechanisms. Similarly,
Kakisim and Tang [22, 23] investigated the use of deep

learning for SQLi detection, and highlighted that neural

networks can identify complex and previously unknown

injection patterns.

Web Application Firewalls (WAFs) are crucial for

preventing SQLi attacks by filtering and monitoring HTTP

requests in web apps. Mukhtar and Azer [24] found that

WAFs effectively stop many SQLi attempts; however, they

should be used alongside other security measures such as

input validation and parameterized queries for maximum

protection. WAFs add an extra layer of security, but their
effectiveness relies on regular updates and proper

configurations to address new threats.

Appropriate input validation and sanitization are

essential for preventing SQLi attacks. Fadlalla and

Elshoush [25] found that secure coding practices, including

strict input validation, are vital in preventing harmful inputs

from reaching a database. Ali [26] reviewed various input

validation techniques and discovered that while these

methods are effective as a first line of defence, they need to

be used with other security measures for full protection.

Parameterized queries and stored procedures are well-

recognized for their effectiveness in preventing SQLi. Sidik

[27] noted that parameterized queries are essential for

separating SQL code from user inputs, thereby eliminating

the attack vector. Lu [28] highlighted that stored procedures

encapsulate SQL logic within a database, reduce the

exposure to direct SQL queries, and enable better input

validation and security policies at the database level.

ORMs such as SQLAlchemy [29, 30] simplify

database operations by managing interactions and
parameterization, which help to reduce the risk of SQLi and

makes database management easier for developers. Dash

[31] also noted that, although ORMs may add some

performance overhead, their benefits in terms of security

and developer efficiency make them a key tool in modern

application development.

Fredrick et al. [32] found that automated tools for

preventing SQLi are essential for spotting vulnerabilities

early in the development process. By integrating these tools

into continuous integration and deployment (CI/CD)
pipelines, the risk of SQLi can be significantly reduced by

identifying and fixing vulnerabilities before they can be

exploited. Angshuman et al. [33] emphasized the need to

educate developers and provide ongoing training in secure

coding practices to further reduce SQLi risks.

https://doi.org/10.38124/ijisrt/25mar1982
http://www.ijisrt.com/

Volume 10, Issue 3, March – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25mar1982

IJISRT25MAR1982 www.ijisrt.com 3065

Table 1: Summary of Literature Review Findings

Authors Focus Key Findings

Alsmadi et al.

[17]

SQLi detection and prevention

techniques

Emphasized hybrid approaches combining

static and dynamic analysis

Umar Farooq

et al. [18, 36]

Machine learning for SQLi

detection

Improved accuracy with hybrid machine learning

Models

Mukhtar and

Azer [24]

Effectiveness of WAFs WAFs need to be combined with other techniques

for optimal security

Kakisim et al.

[22]

Deep learning for SQLi detection Neural networks show promise in detecting complex

patterns

Fadlalla and Elshoush

[25]

Secure coding practices Importance of developer education and secure coding

practices

Fredrick et al. [32] Automated tools for SQLi prevention Automated detection mechanisms can identify

vulnerabilities early

Brindavathi and Demilie

[20, 21]

Machine learning-based SQLi

detection

Machine learning improves detection rates compared to

signature-based methods

Tang et al. [23] Real-time SQLi mitigation with neural
networks

Effective real-time SQLi mitigation using neural networks

III. METHODOLOGIES

This study examines six primary methods for

preventing SQLi: parameterized queries, stored procedures,

ORMs, input validation, input escaping, and WAFs. We

assess each method based on how well it works, how easy

it is to use, and how it affects performance.

A. Parameterized Queries

Parameterized queries use placeholders for user
inputs, which ensures that these inputs are treated as data

and not as executable code. This method is illustrated with

examples in Python using SQLite.

Python

Example of parameterized query in Python using SQLite

import sqlite3

def get_user_data(user_id):

 conn = sqlite3.connect('example.db')

 cursor = conn.cursor()

 cursor.execute("SELECT * FROM users WHERE id =

?", (user_id,))
 result = cursor.fetchall()

 conn.close()

 return result

B. Stored Procedures

Stored procedures keep SQL code within the database,

which limits direct access to SQL queries and allows input

validation. This study includes examples of stored

procedures in SQL Server.

Sql

-- Example of stored procedure in SQL Server

CREATE PROCEDURE GetUserData

 @UserId INT

AS

BEGIN

 SELECT * FROM Users WHERE Id = @UserId

END

C. Object Relational Mappers

ORMs simplify database interactions, automatically

manage parameterizations, and reduce the risks of SQLi.

This paper provides an example of ORM using

SQLAlchemy in Python.

Python

Example of ORM usage in Python with SQLAlchemy

from sqlalchemy import create_engine, Column, Integer,
String

from sqlalchemy.ext.declarative import declarative_base

from sqlalchemy.orm import sessionmaker

Base = declarative_base()

class User(Base):

 __tablename__ = 'users'

 id = Column(Integer, primary_key=True)

 name = Column(String)

engine = create_engine('sqlite:///example.db')

Session = sessionmaker(bind=engine)
session = Session()

def get_user_data(user_id):

 return session.query(User).filter(User.id == user_id).all()

D. Input Validation and Sanitization

Input validation checks that user inputs match the

expected formats, whereas sanitization removes harmful

characters. This study includes examples of input validation

using regular expressions in Python.

Python
import re

def validate_input(user_input):

 if re.match("^[a-zA-Z0-9_]+$", user_input):

 return True

 return False

E. Input Escaping

Escaping special characters from the user input

prevents SQLi by ensuring that these characters are treated

https://doi.org/10.38124/ijisrt/25mar1982
http://www.ijisrt.com/

Volume 10, Issue 3, March – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25mar1982

IJISRT25MAR1982 www.ijisrt.com 3066

as plain text. This method is demonstrated using Python's

MySQLdb library.

Python

import MySQLdb

def escape_input(user_input):

 conn = MySQLdb.connect('localhost', 'user', 'passwd',

'db')
 cursor = conn.cursor()

 escaped_input = MySQLdb.escape_string(user_input)

 cursor.execute(f"SELECT * FROM users WHERE name

= '{escaped_input}'")

 result = cursor.fetchall()

 conn.close()

 return result

F. Web Application Firewalls

WAFs add an extra layer of security by examining

incoming requests and blocking harmful input. This study

covers popular WAFs, such as ModSecurity and AWS-
WAF.

IV. RESULTS AND ANALYSIS

This study found that no single method could provide

full protection against SQLIAs. Because SQLi threats

constantly evolve, a comprehensive strategy that combines

multiple techniques is required to cover all aspects of

application security. This approach not only addresses SQLi

vulnerabilities at different levels but also strengthens the

overall application security. For example, while

parameterized queries and ORMs are highly effective at the

code level, they might not protect against all types of

attacks that target other parts of the application. In such

cases, input validation and escape add an extra defence

layer by ensuring that only safe inputs reach the database.

Additionally, WAFs can detect and block SQLi attempts to

bypass other defences, thereby providing an essential safety
net.

A comparative analysis of SQLi prevention techniques

(Table 2) shows that parameterized queries and ORMs are

the most effective at preventing SQLi, with minimal impact

on performance. ORMs simplify database interactions by

allowing developers to work with objects rather than with

raw SQL queries. Parameterized queries use placeholders

for user input, keeping SQL code separate from data to

prevent changes to the query structure. Stored procedures

contain SQL code within the database and perform

predefined tasks, offering strong protection, but being more
complex to implement and maintain.

Input validation ensures that only acceptable data are

processed by setting rules for type, length, format, and

range. While input validation and escape are useful as

initial defenses, they should be used with other methods for

complete protection. WAFs protect web applications from

various attacks, including SQLi attacks, by monitoring and

filtering HTTP requests. They provide valuable broad

security, but may add some latency.

Fig 1: Web Application Firewall Architecture

https://doi.org/10.38124/ijisrt/25mar1982
http://www.ijisrt.com/

Volume 10, Issue 3, March – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25mar1982

IJISRT25MAR1982 www.ijisrt.com 3067

Table 2: Comparative Analysis of SQL Injection Prevention Techniques

Technique Effectiveness
Ease of

Implementation

Performance

Impact
Example Use Cases

Parameterized Queries High Moderate Low Web applications

Stored Procedures High Moderate Moderate Enterprise systems

ORMs High High Moderate Large-scale applications

Input Validation Moderate High Low User input forms

Input Escaping Moderate Moderate Low Legacy systems

Web Application Firewalls High High Variable Web services

Fig. 2 compares different techniques based on their
effectiveness, ease of implementation, performance impact,

flexibility, and maintenance needs. It offers a clear overview

to help choose the best technique or a combination of

techniques for a specific situation.

The effectiveness of SQLi prevention methods depends

on the specific application scenarios. Parameterized queries

consistently provide strong protection in all cases, making

them a key part of any defence strategy. Input validation and
stored procedures add extra security, particularly when used

alongside parameterized queries. WAFs provide immediate,

though not fully comprehensive protection. ORM

frameworks build security during the development process,

reducing the risk of human error. Using a combination of

these methods customized to the application design and

vulnerabilities is the best way to reduce SQLi risks.

Fig 2: Comparison of SQLi Prevention Techniques based on Different Criteria

Table 3: Effectiveness of SQL Injection Prevention Techniques in Various Scenarios
Technique Scenario Effectiveness Key Considerations

Parameterized Queries Web applications High Simple to implement; low performance impact

Stored Procedures Enterprise systems High Requires complex implementation; high performance for

large systems

ORMs Large-scale

applications

High Abstracts database operations; moderate performance

impact

Input Validation User input forms Moderate Easy to implement; often used as a supplementary measure

Input Escaping Legacy systems Moderate Requires careful handling; low performance impact

Web Application

Firewalls

Web services High Provides broad protection; potential latency introduced

Developers and system administrators must consider

how SQLi prevention techniques affect system performance.

Although security is crucial, it is important to choose
methods that do not significantly slow down the system.

Input validation has a minimal performance impact and

provides cost-effective initial defense. Parameterized queries

have a low to moderate impact, offering strong security with

a manageable effect on performance. Stored procedures also

have a low-to-moderate impact, combining good security

with potential performance benefits from precompiled

execution plans. WAFs have a moderate impact, providing

broad protection, but increasing latency and resource use.
ORM frameworks also have a moderate impact, simplifying

development and boosting security, but require careful

optimization to prevent performance issues.

https://doi.org/10.38124/ijisrt/25mar1982
http://www.ijisrt.com/

Volume 10, Issue 3, March – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25mar1982

IJISRT25MAR1982 www.ijisrt.com 3068

V. DISCUSSION

A key challenge in using SQLi prevention methods is

finding an appropriate balance between security,

performance, and usability. Parameterized queries and ORMs

are very effective but can complicate development, requiring

extensive developer training, which increases development

time and costs. Input validation and escaping are simpler to

implement, but may not fully protect against SQLi on their

own; they work best when combined with more robust

methods. WAFs are powerful but can add latency and require

regular updates to stay current with new threats.

Table 4: Comparative Performance Impact of Prevention Techniques

Technique
Performance

Impact

Latency

Introduced

Resource

Consumption
Typical Use Case

Parameterized Queries Low Minimal Low General web applications

Stored Procedures Moderate Moderate Moderate Enterprise applications

ORMs Moderate Low to Moderate Moderate Complex, Largescale systems

Input Validation Low Minimal Low Form inputs and simple queries

Input Escaping Low Minimal Low Older or less frequently updated systems

Web Application Firewalls Variable High High High-traffic web services

ML and AI are promising approaches to SQLi

prevention.Machine learning models can process vast

amounts of data to detect patterns and anomalies that may

signify SQLIAs. These models can continuously learn and

adapt to new attack methods, offering flexible defences that

evolve with emerging threats. Recent studies, such as those

by Hasan et al. [34] and Alkhathami et al. [35], have shown

that ML methods can significantly improve the detection of

SQLi attacks compared to traditional signaturebased

approaches. However, these advanced techniques require
specialized knowledge and resources, which may not be

available to all organizations. Secure coding practices are

crucial for effective SQLi prevention. Fadlalla et al. [25]

highlighted that educating developers about SQLi risks and

training them in secure coding practices are essential. This

includes properly using parameterized queries, stored

procedures, and ORMs as well as implementing effective

input validation and escape.

Regularly investing in training and awareness programs

is essential for organizations to keep their development teams

up-to-date with the latest security practices and threats.
Additionally, including security checks throughout the

development process, such as code reviews and automated

vulnerability scans, helps to identify potential SQLi

vulnerabilities early. Despite advancements in SQLi

prevention techniques, several challenges persist. The ever-

evolving nature of SQLi attacks requires constant updates to

prevention strategies. This means that ongoing research and

development is needed to identify new vulnerabilities and

create effective countermeasures. The practical examples and

case studies in this study show how different SQLi

prevention techniques are applied in real-world situations.
These examples emphasize the need to tailor prevention

strategies according to the specific needs and contexts of

various applications. For instance, enterprise systems might

benefit more from stored procedures that can handle complex

business logic and enforce database-level security policies.

On the other hand, web applications with high user

interaction may use parameterized queries and ORMs to

ensure secure and efficient data handling. Understanding the

strengths and weaknesses of each technique helps

organizations to implement a well-rounded and effective

SQLi prevention strategy. Ongoing monitoring and

adjustments are essential for effective SQLi prevention. This

means regularly updating WAFs and other security tools to

detect new attack patterns, performing regular security audits,

and staying updated on the latest SQLi research and

prevention methods. By adopting a proactive and adaptable

approach to SQLi prevention, organizations can significantly

improve their ability to protect their databases from

malicious attacks and maintain the integrity and security of

their data.

VI. LIMITATIONS

This study identified several limitations of the SQLi

prevention methods. These include inconsistent

implementation quality, constantly changing threat

landscapes, and the challenges of combining multiple

defences. The effectiveness of these methods can vary

significantly depending on the development environment,

and attackers continuously develop new techniques to bypass

existing defences, thereby requiring ongoing updates to

prevention strategies. Additionally, strong prevention

techniques can create trade-offs between security,
performance, and usability and may require specialized

knowledge and resources that not all organizations can

afford. Combining multiple techniques can also lead to

compatibility issues, and many methods rely on developers to

consistently use secure coding practices, which can be

variable. Defensive tools such as WAFs mainly protect

against network or application layer threats and may not fully

cover vulnerabilities at the database or application logic

levels. Real-world applications often include legacy codes

and third-party components, which complicate the

implementation of advanced security measures. To overcome
these limitations, a comprehensive approach is needed that

combines ongoing research, advanced technologies, and

practical strategies, such as developing integrated tools,

improving developer education, and exploring AI and ML for

adaptive defences against evolving SQLi threats.

VII. CONCLUSION AND FUTURE WORK

In conclusion, SQLi continues to pose a significant

threat to database security, necessitating robust preventive

measures. This study has examined various effective

https://doi.org/10.38124/ijisrt/25mar1982
http://www.ijisrt.com/

Volume 10, Issue 3, March – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25mar1982

IJISRT25MAR1982 www.ijisrt.com 3069

techniques for mitigating SQLIAs, including parameterized

queries, stored procedures, ORMs, input validation, input

escaping, and WAFs. The analysis demonstrates that

employing a combination of these strategies offers the most

comprehensive protection against SQLi vulnerabilities.

Future research should focus on developing integrated

and effective prevention strategies for SQLi attacks. This
includes exploring how machine-learning models and

anomaly detection can work with traditional defenses.

Continued emphasis on educating developers and applying

secure coding practices is essential for addressing the root

causes of vulnerabilities. Additionally, expanding the use of

automated tools that can detect and fix SQLi vulnerabilities

during development could greatly reduce human error and

enhance the overall security.

ACKNOWLEDGEMENT

I would like to express my gratitude to the Department
of Computer Science, M.K. Bhavnagar University for its

support. I also extend my thanks to Dr. Prashant Dolia, my

research supervisor, for his invaluable constructive

suggestions and ideas, which greatly enhanced the quality of

this paper.

DECLARATIONS

 Funding Statement: This study received no external

funding.

 Data Availability: The datasets and code produced in this

study are available from the corresponding author upon

request.

 Author Contributions: Mr. Amit Hariyani contributed to

the design, implementation, writing, and analysis of the

results for the manuscript. Dr. Prashant Dolia conceived

the project and provided supervision.

 Ethical Approval: This article does not contain any

studies with human participants or animals performed by
any of the authors.

 Conflict of Interest: The authors declare no conflict of

interest.

REFERENCES

[1]. L. Ma, D. Zhao, Y. Gao and C. Zhao, ”Research on

SQL Injection Attack and Prevention Technology

Based on Web,” 2019 International Conference on

Computer Network, Electronic and Automation

(ICCNEA), Xi’an, China, (2019), pp. 176-179, doi:
10.1109/ICCNEA.2019.00042.

[2]. Omer Aslan, Semih Serkant Aktu ¨ ˘g and Merve

Ozkan-Okay, ”A Comprehensive Review of Cyber

Security Vulnerabilities, Threats, Attacks, and

Solutions”, (2023) Electronics 12(6):1-42, DOI:

10.3390/electronics12061333.

[3]. A. Al Anhar and Y. Suryanto, ”Evaluation of Web

Application Vulnerability Scanner for Modern Web

Application,” 2021 International Conference on

Artificial Intelligence and Computer Science

Technology (ICAICST), Yogyakarta, Indonesia

(2021), pp. 200-204, doi:

10.1109/ICAICST53116.2021.9497831.

[4]. Xue Ping-Chen, “SQL injection attack and guard
technical research”, Procedia Engineering, Volume 15,

(2011), Pages 4131-4135, ISSN 1877-7058,

https://doi.org/10.1016/j.proeng.2011.08.775.

[5]. Harshavardhan Gaddam and M. Maheshwari, ”SQL

Injection-Biggest Vulnerability of the Era”, EasyChair

Preprint no. 4175, September 13, (2020)

[6]. Yuchong Li, Qinghui Liu, ”A comprehensive review

study of cyberattacks and cyber security; Emerging

trends and recent developments”, Energy Reports,

Volume 7, (2021), Pages 8176-8186, ISSN 2352-

4847, https://doi.org/10.1016/j.egyr.2021.08.126.

[7]. Ma, L., Gao, Y., Zhao, D., Zhao, ”Research on SQL
injection attack and prevention technology based on

web.”, International Conference on Computer

Network, Electronic and Automation (ICCNEA), pp.

176–179 (2019)

[8]. Mona Alsalamah 1, Huda Alwabli 1, Hutaf Alqwifli 1,

and Dina M. Ibrahim, ”A Review Study on SQL

Injection Attacks, Prevention and Detection”, The ISC

Int’l Journal of Information Security, November

(2021), Volume 13, pp. 1-9

[9]. Raniah Alsahafi, ”SQL Injection Attacks: Detection

And PreventionTechniques”, International Journal of
Scientific And Technology Research, Volume 8, Issue

01, January (2019). pp. 182-185

[10]. https://owasp.org/www-project-web-security-testing

guide/latest/4- Web Application Security Testing/07-

Input Validation Testing/05.7- Testing for ORM

Injection

[11]. https://deep4k.medium.com/orm-injection-

80ffa48d305e

[12]. Parveen SULTANA and Nishant SHARMA,

“Prevention of SQL Injection Using a Comprehensive

Input Sanitization Methodology”, Recent

Developments in Electronics and Communication
Systems (2023), pp. 276- 282,

doi:10.3233/ATDE221269

[13]. https://offensive360.com/second-order-sql-injection-

attack/, December 21, (2021).

[14]. V. Clincy and H. Shahriar, ”Web Application Firewall:

Network Security Models and Configuration,” 2018

IEEE 42nd Annual Computer Software and

Applications Conference (COMPSAC), Tokyo, Japan,

(2018), pp. 835-836, doi:

10.1109/COMPSAC.2018.00144.

[15]. Saher Manaseer and Ahmad K. Al Hwaitat,
“Centralized Web Application Firewall Security

System”, Modern Applied Science (2018); Vol. 12,

No. 10; 2018

[16]. Open Web Application Security Project (OWASP),

”The Open Web Application Security Project

(OWASP): SQL Injections as Critical Weakness in

https://doi.org/10.38124/ijisrt/25mar1982
http://www.ijisrt.com/
https://doi.org/10.1016/j.proeng.2011.08.775
https://doi.org/10.1016/j.egyr.2021.08.126
https://deep4k.medium.com/orm-injection-80ffa48d305e
https://deep4k.medium.com/orm-injection-80ffa48d305e

Volume 10, Issue 3, March – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25mar1982

IJISRT25MAR1982 www.ijisrt.com 3070

Web-Based Systems”, (2023),

https://owasp.org/www-project-top-ten/

[17]. Alsmadi, I, AlEroud, A & Saifan, AA 2021, ”Fault-

based testing for discovering SQL injection

vulnerabilities in web applications”, International

Journal of Information and Computer Security, (2021)

vol. 16, no. 1-2, pp. 51-62.

https://doi.org/10.1504/IJICS.2021.117394
[18]. Umar Farooq, ”Ensemble Machine Learning

Approaches for Detection of SQL Injection Attack”,

(2021) Tehniˇcki glasnik. 15. 112-120.

10.31803/tg20210205101347.

[19]. Zhou, Fei, Honghai Fan, Yuhan Liu, Hongbao Zhang,

and Rongyi Ji. (2023). ”Hybrid Model of Machine

Learning Method and Empirical Method for Rate of

Penetration Prediction Based on Data Similarity”

Applied Sciences 13, no. 10: 5870.

https://doi.org/10.3390/app13105870

[20]. B. Brindavathi, A. Karrothu and C. Anilkumar, ”An

Analysis of AI-based SQL Injection (SQLi) Attack
Detection,” 2023 Second International Conference on

Augmented Intelligence and Sustainable Systems

(ICAISS), Trichy, India, (2023), pp. 31-35, doi:

10.1109/ICAISS58487.2023.10250505.

[21]. Demilie, W.B., Deriba, F.G. Detection and prevention

of SQLI attacks and developing compressive

framework using machine learning and hybrid

techniques. J Big Data 9, 124 (2022).

https://doi.org/10.1186/s40537-022-00678-0

[22]. Kakisim, A.G. A deep learning approach based on

multi-view consensus for SQL injection detection. Int.
J. Inf. Secur. 23, 1541–1556 (2024).

https://doi.org/10.1007/s10207-023-00791-y

[23]. Peng Tang, Weidong Qiu, Zheng Huang, Huijuan

Lian, Guozhen Liu, Detection of SQL injection based

on artificial neural network, Knowledge-Based

Systems, Volume 190, (2020), 105528, ISSN 0950-

7051, https://doi.org/10.1016/j.knosys.2020.105528.

[24]. B. I. Mukhtar and M. A. Azer, ”Evaluating the

Modsecurity Web Application Firewall Against SQL

Injection Attacks,” 2020 15th International

Conference on Computer Engineering and Systems

(ICCES), Cairo, Egypt, (2020), pp. 1-6, doi:
10.1109/ICCES51560.2020.9334626.

[25]. F.F.Fadlalla and H.T.Elshoush, “Input Validation

Vulnerabilities in Web Applications: Systematic

Review, Classification, and Analysis of the Current

State of the Art”, IEEE Access, (2023), Digital Object

Identifier 10.1109/ACCESS.2023.3266385.

[26]. M.H.Ali and M.N.Jasim, “Review of SQL injection

attacks: Detection, to enhance the security of the

website from client-side attacks”, Int. J. Nonlinear

Anal. Appl. 13 (2022) 1, 3773-3782 ISSN: 2008-6822

(electronic)
http://dx.doi.org/10.22075/ijnaa.2022.6152

[27]. R.F.Sidik, S.N.Yutia and R.Z.Fathiyana, “The

Effectiveness of Parameterized Queries in Preventing

SQL Injection Attacks at Go”, Proceedings of the

International Conference on Enterprise and Industrial

Systems (ICOEINS 2023), 10.2991/978-94-6463-340-

5 18

[28]. Lu, Dongzhe, Jinlong Fei, and Long Liu. 2023. ”A

Semantic Learning-Based SQL Injection Attack

Detection Technology” Electronics 12, no. 6: 1344,

(2023). https://doi.org/10.3390/electronics12061344

[29]. https://auth0.com/blog/sqlalchemy-orm-tutorial-for-

python-developers/

[30]. https://docs.sqlalchemy.org/en/20/orm/

[31]. https://www.analyticsvidhya.com/blog/2022/07/a-
brief-introduction-to-sqlalchemy/

[32]. Ochieng, Fredrick and Kaburu, Dennis and John, Ndia

G., ”AutomationBased User Input SQL Injection

Detection and Prevention Framework”, (May 2,

2023). Computer and Information Science; Vol. 16,

No. 2; (2023); https://doi.org/10.5539/cis.v16n2p51,

Available at SSRN: https://ssrn.com/abstract=4439431

[33]. Angshuman Jana and Dipendu Maity, “Code-based

Analysis Approach to Detect and Prevent SQL

Injection Attacks” , 2020 11th International

Conference on Computing, Communication and

Networking Technologies (ICCCNT), (2022), DOI:
10.1109/ICCCNT49239.2020.9225575

[34]. M. Hasan, Z. Balbahaith and M. Tarique, ”Detection

of SQL Injection Attacks: A Machine Learning

Approach,” 2019 International Conference on

Electrical and Computing Technologies and

Applications (ICECTA), Ras Al Khaimah, United

Arab Emirates, (2019), pp. 1-6, doi:

10.1109/ICECTA48151.2019.8959617.

[35]. J. M. Alkhathami and S. M. Alzaharani, “Detection of

Sql Injection Attacks Using Machine Learning in

Cloud Computing Platform”, Journal of Theoretical
and Applied Information Technology, (2022), pp.

5446 – 5459.

[36]. Reddy, M., Latchoumi, T., Balamurugan, ”Applied

machine learning predictive analytics to SQL injection

attack detection and prevention.” Eur. J. Mol. Clin.

Med. 7, 3543–3553 (2020)

[37]. Pattewar, T., Patil, H., Patil, H., Patil, N., Taneja, M.,

Wadile, T.: ”Detection of SQL injection using

machine learning: a survey”. Int. Res. J. Eng. Technol.

(IRJET) 6, 239–246 (2019)

https://doi.org/10.38124/ijisrt/25mar1982
http://www.ijisrt.com/
https://owasp.org/www-project-top-ten/
https://doi.org/10.3390/app13105870
https://doi.org/10.1186/s40537-022-00678-0
https://doi.org/10.1007/s10207-023-00791-y
https://doi.org/10.1016/j.knosys.2020.105528
http://dx.doi.org/10.22075/ijnaa.2022.6152
https://doi.org/10.3390/electronics12061344
https://auth0.com/blog/sqlalchemy-orm-tutorial-for-python-developers/
https://auth0.com/blog/sqlalchemy-orm-tutorial-for-python-developers/
https://docs.sqlalchemy.org/en/20/orm/
https://www.analyticsvidhya.com/blog/2022/07/a-brief-introduction-to-sqlalchemy/
https://www.analyticsvidhya.com/blog/2022/07/a-brief-introduction-to-sqlalchemy/
https://ssrn.com/abstract=4439431

