
Volume 10, Issue 3, March – 2025                               International Journal of Innovative Science and Research Technology 

ISSN No:-2456-2165                                                                                                            https://doi.org/10.38124/ijisrt/25mar1799 

 

IJISRT25MAR1799                                                          www.ijisrt.com                                                                                     3351    

Secure Deep Feature Classification Framework for 

Pathology Images Leveraging Blockchain and 

Cloud Technologies 
 
 

Prabhat Kumar Shah1; Ajeet Kumar Soni2; Aryan Parnami
3
; Kushagree Gupta4 

 
1,2,3,4University Institute of Technology Barkatullah 

 

Co-Guides:  Madhav Chaturvedi1; Neha Lidoriya2 
 

Publication Date: 2025/05/14 
 

 

Abstract: The boom in smart e-healthcare services pop- ping up in far-flung and spread-out places has sparked some real 

worries about privacy and speed, especially when it comes to handling touchy patient info. Sharing clinical data across cloud 

platforms only makes it trickier to keep patient privacy locked down, pushing the need for fresh ideas to get people to trust 

medical research again. This study tackles those big concerns head-on with a new setup that mixes Deep Learning (DL), 

Blockchain, and Cloud Computing to whip up a fast and secure system for sorting out pathological images. DL models, 

with all their fancy complexity, can be a handful in cloud setups where crunching data efficiently often takes a hit [8]. Our 

framework leans on deep learning tricks to nail down ac- curate classifications of pathological images while keeping sensitive 

medical data under wraps. Blockchain steps in to build a decentralized, tamper-proof record-keeper, boosting the security 

and openness of the diagnostic gig. On top of that, cloud computing gets tapped to smooth out the heavy lifting of those tricky 

DL models, sidestepping the usual headaches tied to old-school cloud methods. 

 

Keywords:  BreaKHis Database, Pixel Size, Ethereum, Blockchain, IPFS, Neural Compression, Computa- Tional Pathology. 

 

How to Cite: Prabhat Kumar Shah; Ajeet Kumar Soni; Aryan Parnami; Kushagree Gupta; (2025) Secure Deep Feature 

Classification Framework for Pathology Images Leveraging Blockchain and Cloud Technologies. International Journal of  
Innovative Science and Research Technology, 10(3), 3351-3376. https://doi.org/10.38124/ijisrt/25mar1799 

 

I. INTRODUCTION 

 

The Mixing blockchain tech with convolutional neural 

networks (CNNs) opens up a cool chance to shake up 

secure and speedy image classification in decentralized 

healthcare. For this project, we cooked up a slick framework 

that ties together blockchain, a web-based image grabber, and 

a trio of CNN models—VGG16, MobileNet, and ResNet—to 

nail down some solid image sorting. It all starts with a simple 
website where folks can upload images. Those pics get 

shipped off to the Pinata platform, which taps into the 

InterPlanetary File System (IPFS) [3] to whip up a unique 

hash ID for each one—keeping the data legit and 

unchangeable. Then, those hash IDs get locked onto the 

blockchain through MetaMask transactions, creating a clear, 

tamper-proof log of where every image came from. 

 

 

 

 

For the classification gig, we rolled with three big CNN 

players: VGG16, MobileNet, and ResNet [16]. The images 

get pulled from the cloud using their hash IDs, and each 

model takes a crack at sorting them out, letting us stack up 

how they perform. We’re digging into which one’s the best fit 

for our dataset, weighing stuff like accuracy, how fast they 

crunch the numbers, and whether they can scale up. 

 

To keep things smooth between users and the system, we 
went with a client-server setup. The results zip back to the 

website’s interface, dishing out real-time feedback on what the 

image’s diagnosis looks like. This fresh mashup of blockchain, 

CNNs, and a user-friendly web front not only locks in data 

security and transparency but also sets up a real-deal base for 

decentralized healthcare systems [17]. This work chips in at the 

crossroads of blockchain and deep learning, tackling the need for 

safe, efficient ways to classify images in spread-out healthcare 

setups. We’re picturing a future where decentralized healthcare 

leans on cutting-edge tech to boost diagnostic precision and keep 

patient data locked down tight [13]. 

 

https://doi.org/10.38124/ijisrt/25mar1799
http://www.ijisrt.com/
https://doi.org/10.38124/ijisrt/25mar1799


Volume 10, Issue 3, March – 2025                               International Journal of Innovative Science and Research Technology 

ISSN No:-2456-2165                                                                                                            https://doi.org/10.38124/ijisrt/25mar1799 

 

IJISRT25MAR1799                                                          www.ijisrt.com                                                                                     3352    

 
Fig 1 Proposed Framework 

 

Bringing these tech pieces together is all about tackling the 

messy challenges in today’s healthcare scene—juggling spot-on 
diagnoses, keeping data private, and making sure the computing 

side doesn’t bog down. We’re hoping this fresh framework 

pushes forward secure and solid e-healthcare fixes while 

building some trust in medical research efforts [6]. 

 

When you dig into the nuts and bolts of blockchain and 

deep learning, it’s key to get how they each play a part in carving 

out a slick, secure image classification system. Blockchain’s this 

decentralized, spread-out ledger tech that locks down data 

integrity and security with cryptographic hash tricks and 

group agreement rules. In our project, MetaMask transactions 

and the IPFS setup made it a breeze to whip up a clear, 
tamper-proof trail of where our images came from. Deep 

learning, a chunk of the machine learning world, steps in to 

sort images with heavy-hitting neural networks like VGG16, 

MobileNet, and ResNet [12]. These models, beefed up on big 

datasets, pull out all the tiny details from images, letting us 

classify them with precision. Mixing blockchain’s openness 

and safety with deep learning’s knack for spotting patterns 

gives us a rock- solid base for this research, setting the stage 

for next-level, decentralized healthcare solutions [5]. 

 

A. Blockchain Related Terms: 
MetaMask: MetaMask is this handy Chrome add-on 

that hooks you up to the Ethereum blockchain. It’s an 

Ethereum crypto-wallet where you can stash your account(s), 

and it’s a go-to for building and testing smart contracts. When 

you fire off a transaction, MetaMask figures out the max gas 

you’re cool with spending, then kicks back any leftovers to 

your account. It also sizes up how much gas a transaction 

needs and suggests a price to keep it rolling. That includes 

whipping up a cryptographic signature to double-check the 

transaction’s legit, making sure the image data on the 

blockchain stays solid and unchangeable. MetaMask takes 
the headache out of dealing with the Ethereum blockchain, 

letting folks tap into our decentralized healthcare system 

while hanging onto their private keys and digital goodies. 
Adding it to our project bumps up the security and clarity of 

our image provenance records, sticking right to blockchain’s 

core playbook. 

 

IPFS: The InterPlanetary File System (IPFS) is a 

big deal for leveling up our project’s security, openness, and 

decentralized vibe. IPFS is this distributed file system that’s 

all about giving a peer-to-peer way to stash and share 

hypermedia across a network of files or objects. In our 

research gig, IPFS is like the glue between grabbing images 

on the website and handling the storage and pickup later on. 

 
When someone drops an image onto the site, IPFS 

whips up a unique hash ID based on what’s in the file. This 

hash—called the Content Identifier (CID)—is like a digital 

fingerprint for the image. Since it’s tied to the file’s guts, any 

tweak to the image would spit out a whole new hash, keeping 

the data legit. That’s huge for making sure medical images 

stay real and unchangeable in a healthcare setup. 

 

On top of that, IPFS doesn’t lean on just one server—

it’s decentralized. The image gets spread out across a bunch 

of nodes in the network, and each one holds a copy that you 
can grab using the hash ID. That makes it tough for data to 

get lost or messed with. This whole spread-out, distributed 

thing vibes perfectly with blockchain’s core rules, beefing up 

the security and trustworthiness of our image classification 

setup. All in all, IPFS plays a key role in locking down and 

smoothly running the lifecycle of medical images in our 

project, making the diagnostic process more solid in 

decentralized healthcare scenes. 

 

Pinata: Pinata’s a big player in our project, acting as 

the go-between for storing and grabbing images while tying 
into the blockchain and deep learning action [4]. It taps into 

https://doi.org/10.38124/ijisrt/25mar1799
http://www.ijisrt.com/


Volume 10, Issue 3, March – 2025                               International Journal of Innovative Science and Research Technology 

ISSN No:-2456-2165                                                                                                            https://doi.org/10.38124/ijisrt/25mar1799 

 

IJISRT25MAR1799                                                          www.ijisrt.com                                                                                     3353    

the InterPlanetary File System (IPFS), this decentralized, 
spread- out storage setup, to crank up the security and 

keep the data rock-solid. In our setup, Pinata’s the bridge 

between the website’s front end and the blockchain moves 

that follow. When someone uploads an image to the site, 

Pinata cooks up a unique hash ID for it through IPFS. 

That hash is like a crypto fingerprint, pegging the image’s 

content. Then, that hash gets locked onto the blockchain with 

MetaMask transactions, creating a permanent record of where 

the image came from and who’s got it. The cool part? Pinata 

spreads the image data across the IPFS network, so there’s no 

single weak spot to worry about—boosting the whole 

system’s toughness and safety. Hooking Pinata into the mix 
gives us a secure, clear-cut base for sorting and pulling 

images in the project [15]. 

 

Smart Contract: In our project, bringing blockchain 

tech into the mix means leaning on smart contracts to beef 

up the security and openness of our image classification 

system. A smart contract’s like a self-running deal where 

the rules are baked right into the code. Here’s how it plays 

out: when someone uploads an image to the website, a 

MetaMask trans- action fires up a smart contract. That 

contract takes charge, automatically logging the image’s 
unique hash ID onto the blockchain, locking in a permanent, 

decentralized record of where it came from. 

 

The smart contract’s the middleman between the 

user, the Pinata platform, and the blockchain network. It 

double- checks the transaction details—like the hash ID and 

any extra metadata—before stashing it all safely on the 

blockchain. This setup doesn’t just give us a clear, open log 

of the image’s history; it also builds a no-trust-needed, 

tamper-proof space since the contract runs by the 

blockchain’s built-in playbook. 

 
Solidity: Solidity’s a key piece in our project since 

it’s a programming language built from the ground up for 

crafting smart contracts on blockchain setups, with 

Ethereum being one of the big dogs that runs with it. 

Smart contracts are these self-running deals where the rules 

are coded right in. In our research, Solidity’s probably pulling 

some serious weight, tying together the image pickup process 

with the blockchain. With Solidity, we can spell out the 

smart contract’s game plan, making sure transactions fire 

off safely and on their own. In our case, when you drop an 

image onto the website, Solidity likely teams up with the 
MetaMask wallet to handle transactions on the Ethereum 

blockchain. The unique hash ID that Pinata whips up for 

each image gets locked onto the blockchain through a 

Solidity smart contract. That contract makes sure the hash 

ID—acting like a digital fingerprint—gets etched into the 

blockchain for good, giving us a clear, tamper- proof record 

of where every image came from. 

 

B. Deep Learning Related Terms: 

Convolutional Neural Networks (CNNs): CNNs are a 

flavor of deep neural networks that really shine when it come 
to crunching images. They’re built with convolutional layers 

that figure out layered patterns in the data all on their own. 

 

In our research, we’re rolling with CNNs like VGG16, 
Mo- bileNet, and ResNet as our go-to models for sorting 

images. These networks are champs at picking up the tiny 

details in medical pics, which boosts how spot-on our 

diagnoses turn out [10]. 

 

Training Datasets: Training datasets are big piles of 

labeled examples we use to whip deep learning models into 

shape. They’re super important for teaching the models to 

spot patterns and features across all kinds of inputs. 

 

For our project, we trained the deep learning models 

on a mix of datasets packed with pathological images. The 
variety and depth in these sets help the models get sharp at 

handling new images they’ve never seen before and nailing 

the classifications. 

 

Data Preprocessing: Data preprocessing is all about 

taking raw data and tweaking it into something deep learning 

algo- rithms can work with—like normalizing, resizing, or 

beefing it up with augmentation. 

 

Before we let the models loose on training, we spruce 

up the input images to keep things consistent and make it 
easier for the models to pull out the good stuff. 

 

Transfer Learning: Transfer learning’s all about 

taking what you’ve learned from one gig and using it to crack 

another related one. In deep learning, it usually means tapping 

into models that’ve already been trained on huge datasets. 

 

In our project, we’re jumping on the transfer learning 

train by using pre-trained CNN models like VGG16, 

MobileNet, and ResNet. It’s a slick way to save time and still 

get dead-on image classifications, even if our dataset’s on the 

smaller side. 
 

Model Evaluation Metrics: Model evaluation metrics 

are how we size up how well machine learning models 

are doing. For classification jobs, the usual suspects are 

accuracy, precision, recall, and F1 score. 

 

We use these stats to check how sharp our deep learning 

models are in this study, giving us a full rundown on how 

they’re holding up with pathological image sorting. 

 

Epoch: An epoch’s one full lap through the whole 
training dataset while a machine learning model’s getting 

schooled. How many epochs you run sets how many times the 

algorithm chews through all that data. Our deep learning 

models get put through their paces over multiple epochs, 

letting them soak up the dataset bit by bit. 

 

MaxPooling: MaxPooling’s a trick in convolutional 

neural networks to shrink things down by picking the biggest 

value from a chunk of numbers in a set window. 

 

 
You’ll spot MaxPooling layers a lot in CNN setups—

they’re there to trim down the size of the representation step-

by-step, helping zero in on the standout features. 

https://doi.org/10.38124/ijisrt/25mar1799
http://www.ijisrt.com/


Volume 10, Issue 3, March – 2025                               International Journal of Innovative Science and Research Technology 

ISSN No:-2456-2165                                                                                                            https://doi.org/10.38124/ijisrt/25mar1799 

 

IJISRT25MAR1799                                                          www.ijisrt.com                                                                                     3354    

Dropout: Dropout’s this handy trick we use while 
training to keep overfitting in check. It’s all about randomly 

switching off a chunk of neurons during each training round, 

pushing the network to figure out tougher, more solid 

features. 

 

In our project, we’ve tossed dropout layers into the 

neural network setup to help the model roll with new stuff 

better and cut down the chances of it getting too hung up on 

the training data. 

Dense Layer: Dense layers—aka fully connected lay- 

ers—are where every neuron in one layer hooks up with every 

neuron in the next. They’re key for piecing together the tricky 
patterns in the data. 

 

We often stick dense layers at the end of neural 

networks for image classification gigs, letting the network 

call the shots based on what it’s learned. 

 

ROC-AUC (Receiver Operating Characteristic - 

Area Under the Curve): ROC-AUC’s a go-to stat for sizing 

up binary classification jobs. It measures the area under the 

Receiver Operating Characteristic curve, showing how well 

the model splits the two classes apart. 
 

It’s a solid way to gauge how sharp our deep learning 

models are at picking out differences in our project, especially 

when it’s a straight-up two-class showdown. 

 

ReLU (Rectified Linear Unit): ReLU’s a popular 

activa- tion function in neural networks. It zaps any negative 

inputs to zero while letting the positive ones slide through, 

tossing some nonlinearity into the mix. 

 

You’ll see ReLU popping up in the hidden layers of 

neural networks a lot—it’s there to shake things up and help 
the network tackle complex patterns. 

 

Binary Accuracy: Binary accuracy’s a straightforward 

met- ric that tells you the percentage of predictions the model 

got right in a two-class problem. It’s an easy way to check 

how on-point our models are overall, especially when we’re 

just dealing with a pair of classes. 

 

C. Algorithms 

CNN: The convolutional neural network (CNN) setup 

laid out in the code is all about tackling image classification 
jobs. It’s pieced together with a bunch of core layers—like 

con- volutional layers, max-pooling layers, global average 

pooling, dropout layers, and fully connected (dense) layers—

working together to get the job done. 

 

 Input Layer:  

The input layer represents the raw pixel values of the 

input image. It defines the shape of the input data, which in 

this case is a 3D tensor with dimensions (IMG SIZE, IMG 

SIZE, 3), where 3 corresponds to the RGB color channels. 

 

 
 

 Data Augmentation Layers (RandomFlip, 

RandomRotation):  
Data augmentation layers, such as RandomFlip and 

RandomRotation, introduce variations to the training data 

to improve model generalization by exposing it to diverse 

perspectives of the same image. 

 

 Normalization and Batch Normalization Layers:  

The Rescaling layer normalizes pixel values to the 

range [0, 1], and Batch Normalization stabilizes and 

accelerates the training process by normalizing inputs during 

each batch. 

 

 
 

 Convolutional Layers with ReLU Activation:  

Convolutional layers perform feature extraction by 

applying convolutional filters to the input image. The 

ReLU activation function introduces non-linearity. 

Convolutional Layer: Z = W ∗X + b,A = ReLU(Z) 

 

 Max-Pooling Layers:  

Max-pooling layers downsample the spatial 
dimensions of the feature maps, retaining the most 

important information. Max-Pooling Layer: Y = 

MaxPooling2D(X) modules inside its MBConv blocks to keep 

things humming. The network’s layout comes from a mashup 

of hardware- smart network architecture search (NAS) and 

the NetAdapt algorithm to nail down what works best. 

 

 The hard Swish Activation Function is Defined as: 

 

 
 

Where β is this tweak that dials in how steep the sigmoid 

function’s slope gets. The hard swish activation function’s a 

smoother take on the ReLU trick, and it’s been shown to bump 

up both the accuracy and speed of the network. 

 

The squeeze-and-excitation module’s this cool setup 

that fine-tunes how each channel’s features respond by 
figuring out how they lean on each other. It’s got two parts: 

squeeze and excitation. The squeeze bit crunches down 

channel-specific stats using global average pooling. Then, in 

the excitation step, it cooks up channel-wise weights with a 

non-linear function the network learns along the way. Here’s 

how the module comes together: 

 

 Global Average Pooling Layer:  

Global Average Pooling H W reduces the spatial 

dimensions to a single value per feature map, capturing 

essential information for classification.  

 Global Average Pooling Layer: 

 

https://doi.org/10.38124/ijisrt/25mar1799
http://www.ijisrt.com/


Volume 10, Issue 3, March – 2025                               International Journal of Innovative Science and Research Technology 

ISSN No:-2456-2165                                                                                                            https://doi.org/10.38124/ijisrt/25mar1799 

 

IJISRT25MAR1799                                                          www.ijisrt.com                                                                                     3355    

 
 

 
 

 Dropout Layers:  

Dropout layers randomly deactivate neurons during 
training, preventing overfitting by enhancing model 

generalization. 

 Dense Layers with ReLU and Sigmoid Activation:  
Dense layers serve as fully connected layers, learning 

high-level features from the global average pooling output. 

The final layer employs a sigmoid activation for binary 

classification. 

 

 

 

 
Fig 2 how to cnn classifier work 

 

 MobileNetV3:  

MobileNetV3 is a convolutional neural net- work built 

from the ground up for mobile phone CPUs. It leans on hard 

swish activation and squeeze-and-excitation 

 

 
 

where u is the input feature map, z is the channel 

descriptor, s is the channel weight vector, x is the output 

feature map, W1 and W2 are the parameters of the excitation 

network, δ is the ReLU function, and σ is the sigmoid 

function. The squeeze-and-excitation module’s a neat trick 

that boosts the network’s ability to shine by picking up on 

how the channels play off each other. 

 

 

 

The MBConv block’s a spin on the inverted residual 

bot- tleneck block you see a lot in MobileNetV2. It’s built 

from three layers: a pointwise convolution that beefs up the 

input channels, a depthwise convolution that handles the 

spatial filtering, and another pointwise convolution that 

squeezes the channels down to the output size we want. 

Here’s how the MBConv block breaks down: 
 

 
 

where u and x are the input and output feature maps, 
W1, W2, and W3 are the convolutional filters, FSE is 
the squeeze-and-excitation module, and hswish is the hard 
swish activation function. The MBConv block can improve 
the efficiency and performance of the network by reducing 
the computational cost and increasing the non-linearity. 

https://doi.org/10.38124/ijisrt/25mar1799
http://www.ijisrt.com/


Volume 10, Issue 3, March – 2025                               International Journal of Innovative Science and Research Technology 

ISSN No:-2456-2165                                                                                                            https://doi.org/10.38124/ijisrt/25mar1799 

 

IJISRT25MAR1799                                                          www.ijisrt.com                                                                                     3356    

 
Fig 3 how to mobilenet-v3 classifier work 

 

EfficientNetB0: EfficientNetB0 is a convolutional 

neural network (CNN) that rolls with the EfficientNet setup 

and its scaling trick. The EfficientNet design uses this cool 

compound scaling approach that bumps up the network’s 

depth, width, and resolution all at once, guided by a set batch 
of scaling numbers. Those numbers come from running a grid 

search on the starter model (EfficientNet-B0), tweaking it to 

max out accuracy without hogging too many resources. 

 

The compound scaling method can be expressed by the 

following equation: 

 

 
 

where ϕ is the compound coefficient that controls the 
amount of scaling, and α, β, and γ are the constants that are 

determined by the grid search. The base model (EfficientNet- 

B0) has ϕ = 1, α = 1.2, β = 1.1, and γ = 1.15. 

 

 The Efficientnet-B0 Model has the following Architecture: 

 

 The input layer grabs an image sized 224 × 224 × 3 and 

runs a 3 × 3 convolution with 32 filters and a stride of 2. 

 The first stage rolls with one inverted residual block, using 

an expansion factor of 1, a kernel size of 3, and spitting 

out 16 channels. 

 The second stage stacks up two inverted residual blocks, 

cranking the expansion factor to 6, keeping the kernel size 

at 3, and pushing out 24 channels. The first block’s got a 

stride of 2. 

 The third stage also has two inverted residual blocks, with 

an expansion factor of 6, a bigger kernel size of 5, and an 

output of 40 channels. The first block strides at 2. 

 The fourth stage brings three inverted residual blocks, 

sticking with an expansion factor of 6, a kernel size of 3, 

and bumping up to 80 channels. The first block’s stride is 

2. 

 The fifth stage keeps it at three inverted residual blocks, 

with an expansion factor of 6, a kernel size of 5, and 112 

output channels. The first block’s stride drops to 1. 

 The sixth stage goes big with four inverted residual 

blocks, an expansion factor of 6, a kernel size of 5, and 

192 channels on the output. The first block strides at 2. 

 The seventh stage wraps with one inverted residual block, 
an expansion factor of 6, a kernel size of 3, and 320 output 

channels. Its stride’s a chill 1. 

 The output stage ties it up with a 1 × 1 convolution rocking 

1280 filters, a global average pooling, and a fully 

connected layer with 1000 units and softmax activation to 

seal the deal. 

 

Now, the inverted residual block’s a twist on the usual 

residual block, swapping in depthwise separable 

convolutions instead of the regular kind. It’s got three main 

pieces: an expansion layer, a depthwise convolution layer, 
and a projection layer. The expansion layer pumps up the 

channel count by a factor of t (that’s the expansion factor), 

the depthwise convolution layer slaps a spatial convolution 

on each channel, and the projection layer trims the channels 

back down to match the output. Plus, it’s got a skip 

connection that tosses the input onto the output if they’re the 

same size. 

https://doi.org/10.38124/ijisrt/25mar1799
http://www.ijisrt.com/


Volume 10, Issue 3, March – 2025                               International Journal of Innovative Science and Research Technology 

ISSN No:-2456-2165                                                                                                            https://doi.org/10.38124/ijisrt/25mar1799 

 

IJISRT25MAR1799                                                          www.ijisrt.com                                                                                     3357    

 

 
Fig 4 how to EfficientNet-B0 classifier work 

 

VGG16: Simonyan and Zisserman rolled out VGG16, 

a deep convolutional neural network (CNN), back in 2014. It 

crushed it on the ImageNet Large Scale Visual Recognition 

Challenge (ILSVRC), which is like the gold standard for 

image classification and object detection. VGG16’s got 16 
layers in total—13 convolutional layers, a couple of fully 

connected ones, and a final output layer. What makes it stand 

out is how it sticks to 3x3 filters with a stride of 1 and padding 

of 1 across all its convolutional layers. That setup keeps the 

parameter count low while letting the network dig really 

deep. It also throws in max pooling layers with a 2x2 window 

and stride of 2 after some of the convolutional layers to shrink 

down 

 

the feature maps’ size. At the end, the last feature map 
gets flattened and sent through two beefy 4096-unit fully 

connected layers, with a 0.5 dropout layer in between to keep 

overfitting in check. The output’s a 1000-unit softmax layer, 

matching up with ImageNet’s 1000 classes [1]. 

 

https://doi.org/10.38124/ijisrt/25mar1799
http://www.ijisrt.com/


Volume 10, Issue 3, March – 2025                               International Journal of Innovative Science and Research Technology 

ISSN No:-2456-2165                                                                                                            https://doi.org/10.38124/ijisrt/25mar1799 

 

IJISRT25MAR1799                                                          www.ijisrt.com                                                                                     3358    

 The Architecture of VGG16 can be Summarized as follows: 
 

Table 1 Network Architecture 

Layer Type Filter size Number of filters Output size 

Input Image - - 224 × 224 × 3 

Conv1 1 Convolution 3 × 3 64 224 × 224 × 64 

Conv1 2 Convolution 3 × 3 64 224 × 224 × 64 

Pool1 Max pooling 2 × 2 - 112 × 112 × 64 

Conv2 1 Convolution 3 × 3 128 112 × 112 × 128 

Conv2 2 Convolution 3 × 3 128 112 × 112 × 128 

Pool2 Max pooling 2 × 2 - 56 × 56 × 128 

Conv3 1 Convolution 3 × 3 256 56 × 56 × 256 

Conv3 2 Convolution 3 × 3 256 56 × 56 × 256 

Conv3 3 Convolution 3 × 3 256 56 × 56 × 256 

Pool3 Max pooling 2 × 2 - 28 × 28 × 256 

Conv4 1 Convolution 3 × 3 512 28 × 28 × 512 

Conv4 2 Convolution 3 × 3 512 28 × 28 × 512 

Conv4 3 Convolution 3 × 3 512 28 × 28 × 512 

Pool4 Max pooling 2 × 2 - 14 × 14 × 512 

Conv5 1 Convolution 3 × 3 512 14 × 14 × 512 

Conv5 2 Convolution 3 × 3 512 14 × 14 × 512 

Conv5 3 Convolution 3 × 3 512 14 × 14 × 512 

Pool5 Max pooling 2 × 2 - 7 × 7 × 512 

FC1 Fully connected - 4096 4096 

Dropout1 Dropout - - 4096 

FC2 Fully connected - 4096 4096 

Dropout2 Dropout - - 4096 

FC3 Fully connected - 1000 1000 

Softmax Softmax - - 1000 

 

 Convolutional Layer: 

 

 
 

where x is the input feature map of size H × W × C, y is 

the output feature map of size H′ ×W′ ×K, w is the filter of 

size F × F × C × K, b is the bias of size K, i and j are the 

spatial indices of the output feature map, and k is the channel 

index of the output feature map. The output height and width 

H′ and W′ are computed as: 

 

 
 

where P is the padding size and S is the stride size. The 

mathematical formula of a max pooling layer can be written 

as: 

 

 

where x is the input feature map of size H × W × C, y is 

the output feature map of size H′ ×W′ ×C, R is the pooling 

window size, S is the stride size, and i, j, and k are the indices 

of the output feature map. The output height and width H′ and 

W′ are computed as: 

 

 

 
 

 Fully Connected Layer: 

 

 
 

Where x is the input vector of size N , y is the output 

vector of size M , w is the weight matrix of size M ×N , b is 

the bias vector of size M , and i is the index of the output 

vector. 

 

 

 

 

 

 

https://doi.org/10.38124/ijisrt/25mar1799
http://www.ijisrt.com/


Volume 10, Issue 3, March – 2025                               International Journal of Innovative Science and Research Technology 

ISSN No:-2456-2165                                                                                                            https://doi.org/10.38124/ijisrt/25mar1799 

 

IJISRT25MAR1799                                                          www.ijisrt.com                                                                                     3359    

 Softmax Layer: 
 

 

where x is the input vector of size K, y is the output 
vector of size K, and i is the index of the output vector. The 

output vector represents the probability distribution over the 

K classes. 

 

 
Fig 5 how to VGG16 classifier work 

 

ResNet50V2: ResNet50V2 is a deep convolutional 

neural network that leans on residual learning to dodge the 
degrada- tion headache that comes with training super deep 

networks. That degradation mess is when a network’s 

accuracy hits a wall and then tanks hard as you pile on more 

layers, even if you’ve got everything set up just right with 

initialization and regularization. ResNet50V2 sidesteps this 

by throwing in shortcut connections that hop over some layers 

and do identity mappings, letting the network focus on 

learning the leftovers—what’s left to tweak—instead of 

trying to nail the whole output from scratch. 

Figure 5 breaks down the core pieces of ResNet50V2. 

It’s built with three convolutional layers teamed up with batch 
normalization and ReLU activation, then wraps up with an 

element-wise addition using that shortcut connection. The 

shortcut can either be a straight identity pass or a projection, 

depending on whether the input and output sizes match up. 

When it’s a projection shortcut, it uses a 1x1 convolution with 

a stride of 2—shrinking the spatial size while beefing up the 

channel count. After the addition, the result runs through one 

more ReLU activation to keep things rolling. 

 

 
Fig 6 The basic building block of ResNet50V2. 

https://doi.org/10.38124/ijisrt/25mar1799
http://www.ijisrt.com/


Volume 10, Issue 3, March – 2025                               International Journal of Innovative Science and Research Technology 

ISSN No:-2456-2165                                                                                                            https://doi.org/10.38124/ijisrt/25mar1799 

 

IJISRT25MAR1799                                                          www.ijisrt.com                                                                                     3360    

The ResNet50V2 network’s got 50 layers and follows 
the layout you can check out in Table 1. It kicks off with a 

7x7 convolution packing 64 filters and a stride of 2, then rolls 

into a 3x3 max pooling with another stride of 2. After that, it 

piles up four sets of residual blocks, each with its own filter 

count and number of blocks. The first set’s rocking 64 filters 

across three blocks, the second jumps to 128 filters with four 

blocks, the third bumps up to 256 filters and six blocks, and 
the fourth tops out at 512 filters with three blocks. In each set, 

the first block gets a projection shortcut with a stride of 2, 

while the rest stick with identity shortcuts. Once the last 

residual block spits out its output, it flows into a global 

average pooling and wraps up with a fully connected layer 

using sigmoid activation to handle binary classification. 

 

Table 2 The Architecture of Resnet50v2. 

Layer name Output size ResNet50V2 

conv1 112x112 7x7, 64, stride 2 

pool1 56x56 3x3 max pool, stride 2 

conv2 x 56x56 1x1, 64 

3x3, 64 x 3 

1x1, 256 

conv3 x 28x28 1x1, 128 

3x3, 128 x 4 
1x1, 512 

conv4 x 14x14 1x1, 256 

3x3, 256 x 6 

1x1, 1024 

conv5 x 7x7 1x1, 512 

3x3, 512 x 3 

1x1, 2048 

pool5 1x1 global average pool 

fc 1 1-d sigmoid 

 

We can train the ResNet50V2 model using stochastic 

gra- dient descent (SGD), tossing in some momentum and 

weight decay for good measure. The learning rate starts at 0.1 

and gets slashed by 10 every 30 rounds. We set the batch size 

to 256 and let it run for 90 rounds total. Weight decay’s dialed 

in at 0.0001, and momentum’s sitting at 0.9. To kick things 

off, we use He normal initialization, with the bias zeroed out. 
To help it play nice with new data, we throw in some data 

augmentation tricks like random cropping, flipping, and color 

jittering. 

 

The ResNet50V2 model pumps out top-tier results on 

all sorts of image classification jobs—like ImageNet, 

CIFAR-10, and CIFAR-100. It’s also a solid pick for pulling 

features for computer vision tasks like spotting objects, 

breaking down scenes, or recognizing faces. 

 

II. RELATED WORK 
 

Image classification is a core gig in computer vision—

it’s all about slapping a label on an image based on what’s in 

it. It’s got a ton of uses, from picking out faces and helping 

with medical diagnoses to spotting objects and powering self- 

driving cars. The tricks for pulling this off range from old- 

school computer vision moves to the latest deep learning 

models [2]. 

 

Back in the day, classic computer vision relied on hand- 

picked features—think colors, textures, shapes, and key- 

points—to sum up an image. Those features got fed into 
classifiers like support vector machines (SVM), k-nearest 

neighbors (KNN), or decision trees to guess the label. But 

these methods had their hiccups: you needed serious know- 

how, they freaked out over noise or blocked views, and they 

struggled to grab the big-picture stuff. Plus, they often needed 

a mountain of labeled data to train, which isn’t always around 

or easy to get [13]. 

 

Deep learning, though, flips the script by using neural 

networks to figure out both features and classifiers straight 

from the data. These networks are built with layers of 
neurons, each one tweaking the input a bit before passing it 

along. The early layers act like feature hunters, picking up 

basics like edges and corners from raw pixels. The later layers 

step up as classifiers, nailing down high-level stuff like faces 

or objects and spitting out the label. Deep learning’s been 

killing it in image classification, especially since 

convolutional neural networks (CNNs) came into the mix [6]. 

 

CNNs are a special breed of neural network that lean on 

how images are laid out. They use convolutional layers that 

slap filters on the image, churning out feature maps. Each 
filter’ s on the lookout for something specific—like an edge 

or a blob. Then come the pooling layers, which shrink down 

the feature maps with tricks like max-pooling or average-

pooling, making the image tougher against shifts, spins, or 

zooms. These convolutional and pooling layers stack up into 

a deep setup, with each layer digging into more abstract and 

tricky features than the one before. The final layer’s usually 

a fully connected one that seals the deal by picking the label 

[3]. 

 

CNNs have taken off big-time and keep getting better 

for image classification. Some heavy hitters include VGG16, 
MobileNet, and ResNet. VGG16 is a deep CNN with 16 lay- 

ers—13 convolutional and 3 fully connected. It uses tiny 3x3 

filters and big strides (2) to nail high accuracy on ImageNet, 

a dataset with 1,000 classes and 1.2 million pics. MobileNet’s 

https://doi.org/10.38124/ijisrt/25mar1799
http://www.ijisrt.com/


Volume 10, Issue 3, March – 2025                               International Journal of Innovative Science and Research Technology 

ISSN No:-2456-2165                                                                                                            https://doi.org/10.38124/ijisrt/25mar1799 

 

IJISRT25MAR1799                                                          www.ijisrt.com                                                                                     3361    

a leaner CNN that runs on depthwise separable convolutions, 
cutting down on parameters and crunch time—perfect for 

mobile or low-power gear. ResNet’s a super deep CNN that 

uses residual connections—little shortcuts that skip layers 

and mix the previous layer’s output into the next. That trick 

dodges the vanishing gradient mess that crops up when 

networks get too deep, letting ResNet hit peak performance 

on ImageNet with up to 152 layers [11]. 

 

Still, deep learning’s got its downsides—like needing a 

ton of computing juice, being open to sneaky attacks, and not 

always explaining itself clearly. Plus, it often leans on cen- 

tralized data, which can stir up privacy and security worries, 
especially in touchy areas like healthcare or finance. To 

tackle that, some folks are mixing blockchain tech into the 

deep learning game [1]. 

 

Blockchain’s like a shared notebook that locks in trans- 

actions so they’re safe and can’t be messed with. It keeps data 

legit with crypto tricks like hash functions and digital 

signatures, and it uses consensus rules—like proof-of-work 

or proof-of-stake—to keep everyone on the same page. It’s 

big in stuff like crypto cash, smart contracts, and tracking 

supply chains. 
 

Blockchain can give deep learning a boost in a few 

ways—like sharing data, training models, and checking 

results. Data sharing’s about passing info between different 

players. Blockchain makes it secure and decentralized, letting 

everyone stash and grab data from the chain without a 

middleman. Model training’s about tuning a neural network’s 

settings with data. Blockchain lets folks team up by training 

local models on their own stuff, then swapping parameters or 

gradients through the chain. Result checking’s about making 

sure the network’s output holds up. Blockchain keeps it open 

and unchangeable, so anyone can double-check the outcome 
and where it came from by peeking at the records [5] [6]. 

 

A bunch of studies have dug into pairing blockchain 
with deep learning for image classification. Take Shafay et 

al.—they cooked up a hybrid permissioned blockchain and 

deep learning setup for classifying CT images of pneumonia 

patients. They used a residual neural network and spread the 

model weights across five hospitals via blockchain, showing 

it bumped up ac- curacy while keeping data private. Then 

there’s Zou et al., who built a deep learning model for 

spotting diabetic retinopathy, mixing in blockchain and 

African vulture optimization (AVO). They used a 

TaylorAVO trick to pull the best image features and trained a 

SqueezeNet model on the blockchain network, proving it 

could nail diabetic retinopathy fast and right [12]. 
 

III. DATASETS USED 

 

The BreaKHis database is packed with microscopic 

biopsy images of breast tumors, collected during a clinical 

study in Brazil from January to December 2014. Folks 

diagnosed with breast cancer were asked to join in, and all 

their data got scrubbed of personal details after getting the 

ethical green light. The biopsy samples were stained with 

hematoxylin and eosin, then run through the usual paraffin 

process for a solid histological breakdown. Pics were snapped 
at 40×, 100×, 200×, and 400× zooms using an Olympus 

microscope paired with a Samsung digital camera. The 

original shots got cropped and saved in RGB format, no 

compression applied. 

 

The capture process involved taking images at different 

zoom levels within a specific area that pathologists flagged as 

the region of interest. The dataset’s got a mix of images—

some with transitional tissue, some without. At the end, they 

did a hands-on check to weed out any blurry or out-of-focus 

shots. In the BreaKHis database, the 400x magnification 

images give you a super close-up look at what’s going on with 
breast tissue pathology. These pics are snapped using an 

Olympus 

 

Table 3 Magnification and Digital Resolution of the Acquisition System 

Visual Magnification Objective Lens Effective Pixel Size (m) 

40× 4× 0.49 

100× 10× 0.20 

200× 20× 0.10 

400× 40× 0.05 

 

Table 4 Image Distribution by Magnification Factor and Class 

Magnification Benign Malignant Total 

40× 625 1370 1995 

100× 644 1437 2081 

200× 623 1390 2013 

400× 588 1232 1820 

Total 2480 5429 7909 

# Patients 24 58 82 

 

BX-50 system microscope hooked up with a 3.3x relay 

lens and a Samsung digital color camera (SCC-131AN). That 

camera’s rocking a 1/3 Sony Super-HAD interline transfer 

charge-coupled device, with pixels sized at 6.5 µm × 6.25 µm 

and a total count of 752 × 582 [11] [2]. During the capture 
process, pathologists scope out the tumors and zero in on a 

region of interest. They start by grabbing images at the lowest 

zoom (40×) to get the whole area in view. Then, they crank it 

up by hand to 100×, 200×, and finally 400×, snapping about 

the same number of shots at each level. This step-by-step 

zoom-in lets them check out the tissue from all angles and 
depths. 

https://doi.org/10.38124/ijisrt/25mar1799
http://www.ijisrt.com/


Volume 10, Issue 3, March – 2025                               International Journal of Innovative Science and Research Technology 

ISSN No:-2456-2165                                                                                                            https://doi.org/10.38124/ijisrt/25mar1799 

 

IJISRT25MAR1799                                                          www.ijisrt.com                                                                                     3362    

Once the images are in the bag, they do a quick eyeball 
check to toss out any blurry ones. The keepers get saved in 

three-channel RGB format, no compression, with an 8-bit 

depth each. They come out at 700 × 460 pixels. The raw 

images might have some black borders or text notes hanging 
around, but those get scrubbed out during processing, leaving 

clean shots without any normalization or color tweaking [9]. 

 

 
Fig 7 Sample of Dataset 

 

 
Fig 8 Training Dataset 

https://doi.org/10.38124/ijisrt/25mar1799
http://www.ijisrt.com/


Volume 10, Issue 3, March – 2025                               International Journal of Innovative Science and Research Technology 

ISSN No:-2456-2165                                                                                                            https://doi.org/10.38124/ijisrt/25mar1799 

 

IJISRT25MAR1799                                                          www.ijisrt.com                                                                                     3363    

IV. METHODOLOGY 
 

A. Image Capture Process 

The image grab starts when folks upload their medical pics to our website. Those images get sent over to Pinata—a decen- 

tralized storage spot—through a locked-down communication setup. Pinata whips up a one-of-a-kind hash ID for each image using 

the InterPlanetary File System (IPFS). That hash ID acts like a special tag for the image on the IPFS network. 

 

 
Fig 9 Image Hash Id Generate 

 

B. Blockchain Integration using MetaMask 

To keep the data legit and above board, we’re leaning 

on blockchain tech to stash and double-check those hash IDs. 

MetaMask, this handy crypto wallet and Ethereum 

blockchain hookup, smooths out the process of dealing with 

image hash IDs. When someone drops an image into the 

system, a Meta- Mask transaction kicks off, tacking the hash 

ID onto a smart contract living on the Ethereum blockchain. 

That move gets locked into the blockchain, leaving a rock-

solid, unchangeable trail of every image upload. 

 

 
Fig 10 Add Block Using Metamask 

https://doi.org/10.38124/ijisrt/25mar1799
http://www.ijisrt.com/


Volume 10, Issue 3, March – 2025                               International Journal of Innovative Science and Research Technology 

ISSN No:-2456-2165                                                                                                            https://doi.org/10.38124/ijisrt/25mar1799 

 

IJISRT25MAR1799                                                          www.ijisrt.com                                                                                     3364    

C. Deep Learning Models for Image Classification 
Our image classification setup rolls with three top-notch 

deep learning models: VGG16, MobileNet, and ResNet. 

VGG16 Model: We picked VGG16 because it’s a beast at 

spotting tricky patterns, thanks to its deep setup. It comes pre-

trained on a huge dataset, and we tweaked it on the 

BreakHis400x dataset to get it dialed in for the quirks of 

medical images. 

 

MobileNet Model: MobileNet’s our go-to for its speed 

and lightweight design, perfect for running on setups like 

cloud servers where resources might be tight. We trained it to 

nail that sweet spot between accuracy and not hogging too 
much computing power. 

 

ResNet Model: ResNet’s in the mix because of its deep 

residual learning trick, which keeps the vanishing gradient 

issue at bay. We got it trained up to pick out the subtle stuff 

in medical images so it classifies them spot-on. 

 

Every one of these models got a thorough workout on 

the BreakHis400x dataset, which has [insert number] samples 

in the mix. We use the [insert optimization algorithm] for 

model training, with [insert hyperparameter details] [7]. 

 

 
Fig 11 Deep Learning Models classifier work 

https://doi.org/10.38124/ijisrt/25mar1799
http://www.ijisrt.com/


Volume 10, Issue 3, March – 2025                               International Journal of Innovative Science and Research Technology 

ISSN No:-2456-2165                                                                                                            https://doi.org/10.38124/ijisrt/25mar1799 

 

IJISRT25MAR1799                                                          www.ijisrt.com                                                                                     3365    

To determine the most effective model for our medical 
image classification task, we evaluate the ensemble of these 

models using classification accuracy, precision, recall, and 
the F1 score. 

 

 
Fig 12 Classification Result 

 

D. Server-Client Model for Result Display 

We’ve set up a server-client setup to show off the 

classifica- tion results right on our website. The trained 

ensemble model lives on a cloud server, while the website 

plays the client role. When someone hunts for a specific 

image on the site, it fires off a request to the cloud server. The 

server digs up the matching image from the blockchain using 

its hash ID, runs it through the ensemble model for a real-time 

classification, and shoots the results back to the website. This 

whole deal ties together the deep learning models and the user 

interface like a charm, giving folks instant access to the 

classification scoop [14]. 

 

 
Fig 13 Classification Result on Website 

https://doi.org/10.38124/ijisrt/25mar1799
http://www.ijisrt.com/


Volume 10, Issue 3, March – 2025                               International Journal of Innovative Science and Research Technology 

ISSN No:-2456-2165                                                                                                            https://doi.org/10.38124/ijisrt/25mar1799 

 

IJISRT25MAR1799                                                          www.ijisrt.com                                                                                     3366    

V. RESULT ANALYSIS 
 

In this part, we’re laying out what we found from 

messing around with the BreakHis 400x dataset, which has 

1,696 breast tumor images split into two groups: benign and 

ma- lignant. We’re sharing the scoop from our tests with the 

breast cancer (BreakHis) dataset, packed with two kinds of 

im- ages—malignant and benign. We put five deep learning 

models through the wringer: baseCNN, MobileNetV3, 

EfficientNetB0, VGG16, and ResNet50v2. We sized them up 

using stuff like ROC-AUC, accuracy, and loss. We chopped 

the dataset into 54% for training, 13.6% for validation, and 

32.4% for testing. To spice up the training set, we threw in 
some random flips and spins with data augmentation. We ran 

the show with the Adam optimizer, set the learning rate at 

0.001, used binary cross-entropy for loss, and tracked AUC 

and accuracy as our go-to metrics. Plus, we tossed in early 

stopping and learning rate cuts to keep overfitting in check 
and help things come together smoother. 

 

A. Base CNN 

We rolled with a baseCNN model that starts with a 

random flip layer, then stacks up four convolutional blocks 

and a dense layer. The model architecture is shown in Table 

V. 

 

We set the model up to train for up to 35 rounds, but it 

called it a day at round 25 because of an early stop. The figure 

lays out the training and validation curves for accuracy and 

loss. You can tell the model smashed it—hitting high 
accuracy and keeping loss nice and low on both the training 

and validation sets. That shows it really got the image details 

down pat without overcooking or half-baking the data. 

 

 
Fig 14 Training and validation curves for accuracy and loss 

 

Table 5 Model Architecture of Basecnn 

Layer (type) Output Shape Param # 

random flip 6 (RandomFlip) (None, 224, 224, 3) 0 

random rotation 6 (RandomRotation) (None, 224, 224, 3) 0 

rescaling 5 (Rescaling) (None, 224, 224, 3) 0 
batch normalization 1 (None, 224, 224, 3)12 

 
(BatchNormalization) conv2d 3 (Conv2D) 

 

(None, 222, 222, 32) 

 

896 

max pooling2d 6 (MaxPooling2D) (None, 111, 111, 32) 0 

conv2d 4 (Conv2D) (None, 109, 109, 64) 18496 

max pooling2d 7 (MaxPooling2D) (None, 54, 54, 64) 0 

conv2d 5 (Conv2D) (None, 52, 52, 64) 36928 

max pooling2d 8 (MaxPooling2D) (None, 26, 26, 64) 0 

global average pooling2d 2 

(GlobalAveragePooling2D) 

(None, 64) 0 

dropout 12 (Dropout) (None, 64) 0 

dense 24 (Dense) (None, 256) 16640 

dropout 13 (Dropout) (None, 256) 0 

dense 25 (Dense) (None, 64) 16448 

 

https://doi.org/10.38124/ijisrt/25mar1799
http://www.ijisrt.com/


Volume 10, Issue 3, March – 2025                               International Journal of Innovative Science and Research Technology 

ISSN No:-2456-2165                                                                                                            https://doi.org/10.38124/ijisrt/25mar1799 

 

IJISRT25MAR1799                                                          www.ijisrt.com                                                                                     3367    

The model racked up a ROC-AUC of 0.93354, an 
accuracy of 0.86789, and a loss of 0.30512. These numbers 

prove it handled fresh, unseen data like a champ and should 

work great for new stuff too. 

 

 

We also sketched out how the model did on some test 
images, like you can see in the figure. It nailed most of the 

calls, though it slipped a few times, mixing up benign and 

malignant tumors. That might’ve happened because the 

image details were too close or there was some static in the 

data throwing it off. 

 

 
Fig 15 Predictions of the model on some test images 

 
We put together a baseCNN model to tackle breast 

cancer classification, using deep learning and histopathology 

images. It did a solid job on the BreakHis dataset, showing 

it’s got the chops to pick up image details and tell benign 

tumors apart from the malignant ones. There’s room to level 

it up, though—maybe by tapping into fancier setups like 

ResNet, Inception, or DenseNet, or borrowing some smarts 

from pre- trained models with transfer learning. We could 

also throw it at other datasets like BACH or IDC to see how 

tough and adaptable it really is. 

 

B. MobileNetv3 

We used a MobileNetv3 model, which consists of a 

random flip layer followed by four convolutional blocks and 

a dense layer. The model architecture is shown in Table VI. 

 

Table 6 Model Architecture of Mobilenetv3 

 
We lined up the model to train for up to 35 rounds, but it wrapped up at round 24 thanks to an early stop. The figure 

https://doi.org/10.38124/ijisrt/25mar1799
http://www.ijisrt.com/


Volume 10, Issue 3, March – 2025                               International Journal of Innovative Science and Research Technology 

ISSN No:-2456-2165                                                                                                            https://doi.org/10.38124/ijisrt/25mar1799 

 

IJISRT25MAR1799                                                          www.ijisrt.com                                                                                     3368    

breaks down the training and validation curves for accuracy 
and loss. It’s obvious the model killed it—nailing high 

accuracy and keeping loss down low on both the training and 

validation sets. That tells us it really locked in the image 
details without going too hard or dropping the ball on the data. 

 

 
Fig 16 Training and validation curves for accuracy and loss 

 

The model pulled off a ROC-AUC of 0.85414, an 

accuracy of 0.81101, and a loss of 0.44172. These stats show 

it handled new, unseen data like a pro and should do just fine 

with fresh cases. 

 

 

We also mapped out how the model did on some test 

images, like you can see in the figure. It got most of them 

spot- on, though it tripped up a few times, mixing up benign 

and malignant tumors. That might’ve happened because the 

image details were too close or there was some junk in the 

data throwing it off. 

 

 
Fig 17 Predictions of the model on some test images 

https://doi.org/10.38124/ijisrt/25mar1799
http://www.ijisrt.com/


Volume 10, Issue 3, March – 2025                               International Journal of Innovative Science and Research Technology 

ISSN No:-2456-2165                                                                                                            https://doi.org/10.38124/ijisrt/25mar1799 

 

IJISRT25MAR1799                                                          www.ijisrt.com                                                                                     3369    

The MobileNetV3 model comes out on top compared to 
the other four, rocking the best ROC-AUC, accuracy, and loss 

numbers on the test set. Plus, it keeps things light with a low 

parameter count, thanks to its smart setup with depthwise 

separable convolutions and inverted residual blocks. It’s a 

killer choice for image classification gigs that need fast, spot- 

on results on stuff like mobile gadgets or edge computing 

setups. 
 

C. EfficientNetB0 

We used a EfficientNetB0 model, which consists of a 

random flip layer followed by four convolutional blocks and 

a dense layer. The model architecture is shown in Table VII. 

 

Table 7 Model Architecture of Efficientnetb0 

Layer (type) Output Shape Param # 

random flip 1 (RandomFlip) (None, 224, 224, 3) 0 

random rotation 1 (RandomRotation) (None, 224, 224, 3) 0 

efficientnetb0 (Functional) (None, 1280) 4,049,571 

dropout 2 (Dropout) (None, 1280) 0 

dense 6 (Dense) (None, 256) 327,936 

dropout 3 (Dropout) (None, 256) 0 

dense 7 (Dense) (None, 32) 8,224 

dense 8 (Dense) (None, 1) 33 

Total params: 4,385,764   
Trainable params: 336,193 

Non-trainable params: 4,049,571 

 

We set the model to train for up to 35 rounds, but it 

bowed out at round 14 because of an early stop. The figure 

lays out the training and validation curves for accuracy and 
loss. You can see the model crushed it—scoring high 

accuracy and keeping loss low on both the training and 

validation sets. That’s a clear sign it picked up the image 

details like a champ and didn’t overdo it or fall short on the 
data. 

 

 
Fig 18 Training and validation curves for accuracy and loss 

 

The model clocked in with a ROC-AUC of 0.90801, an 

accuracy of 0.82936, and a loss of 0.37056. These numbers 

show it did a great job on data it hadn’t seen before and should 
work fine for new stuff too. 

 

 

We also sketched out how the model handled some test 

images, like you can check out in the figure. It nailed most of 

the classifications, though it slipped up a few times, getting 
benign and malignant tumors mixed up. That might be 

because the image details were too similar or there was some 

fuzz in the data messing things up. 

 

https://doi.org/10.38124/ijisrt/25mar1799
http://www.ijisrt.com/


Volume 10, Issue 3, March – 2025                               International Journal of Innovative Science and Research Technology 

ISSN No:-2456-2165                                                                                                            https://doi.org/10.38124/ijisrt/25mar1799 

 

IJISRT25MAR1799                                                          www.ijisrt.com                                                                                     3370    

 
Fig 19 Predictions of the model on some test images 

 

The EfficientNetB0 model runs pretty close to the Mo- 

bileNetV3 model, though it’s packing a few more parameters. 

It’s got this smart compound scaling trick that juggles the 

network’s depth, width, and resolution to keep things 

balanced. It’s a solid pick for jobs where you need to strike a 

deal between performance and complexity, or where you can 

throw extra resources at it to scale up the network. 

 
D. VGG16 

We used a VGG16 model, which consists of a random 

flip layer followed by four convolutional blocks and a dense 

layer. The model architecture is shown in Table VIII. 

 

We geared up the model to train for up to 35 rounds, but 

it called it quits at round 17 thanks to an early stop. The figure 

breaks down the training and validation curves for accuracy 

and loss. It’s clear the model knocked it out of the park—

hitting high accuracy and keeping loss nice and low on both 

the training and validation sets. That shows it really got the 
hang of the image details without going overboard or slacking 

on the data. 

 

Table 8 Model Architecture of Vgg16 

Layer (type) Output Shape Param # 

random flip 2 (RandomFlip) (None, 224, 224, 3) 0 

random rotation 2 (RandomRotation) (None, 224, 224, 3) 0 

lambda 1 (Lambda) (None, 224, 224, 3) 0 

vgg16 (Functional) (None, 512) 14,714,688 

dropout 4 (Dropout) (None, 512) 0 

dense 9 (Dense) (None, 256) 131,328 

dropout 5 (Dropout) (None, 256) 0 

dense 10 (Dense) (None, 32) 8,224 

dense 11 (Dense) (None, 1) 33 

Total params: 14,854,273   

Trainable params: 139,585 

 Non-trainable params: 14,714,688 

https://doi.org/10.38124/ijisrt/25mar1799
http://www.ijisrt.com/


Volume 10, Issue 3, March – 2025                               International Journal of Innovative Science and Research Technology 

ISSN No:-2456-2165                                                                                                            https://doi.org/10.38124/ijisrt/25mar1799 

 

IJISRT25MAR1799                                                          www.ijisrt.com                                                                                     3371    

 
Fig 20 Training and validation curves for accuracy and loss 

 

The model scored a ROC-AUC of 0.87348, an accuracy 

of 0.79633, and a loss of 0.44824. These numbers tell us it 

handled fresh, unseen data pretty well and should hold up for 

new situations. 

 

 

We also mapped out how the model did with some test 

images, like you can see in the figure. It got most of them 

right, but stumbled a bit here and there, mixing up benign and 

malignant tumors. That might’ve happened because the 

image details were too close or there was some static messing 

with the data. 

 

 
Fig 21 Predictions of the model on some test images 

https://doi.org/10.38124/ijisrt/25mar1799
http://www.ijisrt.com/


Volume 10, Issue 3, March – 2025                               International Journal of Innovative Science and Research Technology 

ISSN No:-2456-2165                                                                                                            https://doi.org/10.38124/ijisrt/25mar1799 

 

IJISRT25MAR1799                                                          www.ijisrt.com                                                                                     3372    

The VGG16 model is the heaviest of the five when it 
comes to parameters, but it’s also the weakest performer after 

the baseCNN model. It’s got a straightforward, no- fuss 

design—stacked with a ton of convolutional and pooling 

layers, then topped off with fully connected ones. Thing is, it 

might be overfitting and swinging too wild because it 

struggles to roll with new data. It could use a boost from tricks 

like dropout or batch normalization, or even fancier stuff like 
skip connections or attention tweaks to tighten things up. 

 

E. ResNet50v2 

We used a ResNet50v2 model, which consists of a 

random flip layer followed by four convolutional blocks and 

a dense layer. The model architecture is shown in Table IX. 

 

Table 9 Model Architecture of Resnet50v2 

Layer (type) Output Shape Param # 

random flip 3 (RandomFlip) (None, 224, 224, 3) 0 

random rotation 3 (RandomRotation) (None, 224, 224, 3) 0 

lambda 2 (Lambda) (None, 224, 224, 3) 0 

resnet50v2 (Functional) (None, 2048) 23,564,800 

dropout 6 (Dropout) (None, 2048) 0 

dense 12 (Dense) (None, 256) 524,544 

dropout 7 (Dropout) (None, 256) 0 

dense 13 (Dense) (None, 32) 8,224 

dense 14 (Dense) (None, 1) 33 

Total params: 24,097,601   

Trainable params: 532,801 

Non-trainable params: 23,564,800 

 

We set the model up to train for a max of 35 rounds, but 

it tapped out at round 15 because of an early stop. The figure 
lays out the training and validation curves for accuracy and 

loss. You can tell the model crushed it—scoring high 

accuracy and keeping loss low on both the training and 

validation sets. That’s a sign it picked up the image details 
like a pro and didn’t overdo or slack off on the data. 

 

 
Fig 22 Training and validation curves for accuracy and loss 

 

The model pulled off a ROC-AUC of 0.88756, an 
accuracy of 0.82752, and a loss of 0.39751. These numbers 

show it did a solid job handling data it hadn’t seen before, 

making it a good fit for tackling new stuff. 

 

 

We also threw together some plots of the model’s 
predic- tions on a handful of test images, like you can see in 

the figure. It nailed most of the classifications, though it 

tripped up a few times, mixing up benign and malignant 

tumors. That might’ve happened because the image details 

were too close to call or there was some fuzz in the data. 

 

https://doi.org/10.38124/ijisrt/25mar1799
http://www.ijisrt.com/


Volume 10, Issue 3, March – 2025                               International Journal of Innovative Science and Research Technology 

ISSN No:-2456-2165                                                                                                            https://doi.org/10.38124/ijisrt/25mar1799 

 

IJISRT25MAR1799                                                          www.ijisrt.com                                                                                     3373    

 
Fig 23 Predictions of the model on some test images 

 

The ResNet50v2 model is the lightest of the five when 

it comes to parameters and does a pretty solid job overall. It’s 

built with this cool residual learning setup, which lets it pick 

up on the input’s identity mappings without tripping over the 

vanishing gradient issue. It’s a great pick for gigs that need 

dependable image classification or could use the extra muscle 

of a deeper, layered network. 

 

 

F. Model Evaluation 

We dug deep into testing out a bunch of deep-learning 

mod- els for a particular job. The lineup we worked with 

includes MobileNetV3, EfficientNetB0, VGG16, and 

ResNet50V2. We put these models through their paces—

training them up and then checking how they held up on a test 

dataset, looking at big-deal measures like loss, ROC-AUC, 

and accuracy. The table below sums up how each model 

stacked up on the test data. 

 

Table 10 Performance Metrics on Test Dataset 

 
 

This table gives you a quick rundown of how the models did, covering stuff like loss, ROC-AUC, and accuracy. We whipped 

up some visuals to make the training and test results easier to wrap your head around. On the left side of the figure, you’ve got a 
look at how the training ROC-AUC and loss played out over the epochs, while the right side has a bar chart stacking up ROC-AUC 

and loss for each model side by side. 

https://doi.org/10.38124/ijisrt/25mar1799
http://www.ijisrt.com/


Volume 10, Issue 3, March – 2025                               International Journal of Innovative Science and Research Technology 

ISSN No:-2456-2165                                                                                                            https://doi.org/10.38124/ijisrt/25mar1799 

 

IJISRT25MAR1799                                                          www.ijisrt.com                                                                                     3374    

 
Fig 24 Training and Test Performance Visualization 

 

VI. CONCLUSION 

 

To wrap it up, our research project pulls together 

blockchain tech, some brainy image-recognition tools called 

convolutional neural networks (CNNs), and a web-based 

image uploader to build a rock-solid setup for safe, fast image 

classification in decentralized healthcare. The heart of our 

system has a few key pieces: an easy-to-use website where 

folks can drop their images, the Pinata platform that uses the 

InterPlanetary File System (IPFS) to keep data locked in 

tight, and blockchain magic via MetaMask transactions that 
stamps each image with a unique code—making sure no one 

can mess with where it came from. 

 

We threw three big-name CNN models into the mix—

VGG16, MobileNet, and ResNet—and let them duke it out to 

see who’s best at sorting images. We’re looking at stuff like 

how spot-on they are, how quick they crunch the numbers, 

and whether they can handle growing bigger. The whole 

point? Figure out which one’s the champ for our dataset, 

giving us some solid clues about the best way to classify 

images in healthcare setups that don’t lean on a central boss. 

 
 

We’ve got a client-server vibe going to keep things 

smooth between users and the system. The website dishes out 

real- time results right on the screen, so you get instant 

feedback on what the images are saying—like a quick 

diagnosis in your pocket. It’s not just about making it user-

friendly; it’s about speeding up decisions in healthcare when 

time matters. 

 

Bringing blockchain into the game locks down data 

security and keeps everything crystal clear with a tamper-

proof record of every image’s story. This setup tackles the big 
need for safe, slick image classification in healthcare systems 

spread out across the map. By mixing high-tech goodies like 

blockchain and deep learning, we’re tossing our hat into the 

ring of folks figuring out how these worlds collide. 

 

Looking down the road, we’re hoping to blaze a trail for 

decentralized healthcare that leans on cutting-edge tools to 

nail diagnoses and keep patient info under lock and key. 

Getting blockchain and CNNs to play nice sets the stage for 

some game-changing healthcare moves, showing off what 

this field can really do. We’re carving out a path to a future 

where these systems use smart tech to level up patient care 
and diagnostic firepower. 

https://doi.org/10.38124/ijisrt/25mar1799
http://www.ijisrt.com/


Volume 10, Issue 3, March – 2025                               International Journal of Innovative Science and Research Technology 

ISSN No:-2456-2165                                                                                                            https://doi.org/10.38124/ijisrt/25mar1799 

 

IJISRT25MAR1799                                                          www.ijisrt.com                                                                                     3375    

Down the line, we could tweak little details like learning 
speed, batch sizes, training rounds, and callbacks to squeeze 

even more juice out of the models. To beef up the training 

data, we might mess around with different optimizers, loss 

setups, metrics, or tricks like data augmentation. We could 

also play with pruning, shrinking, or compressing the 

networks to lighten the load—cutting down on parameters, 

steps, or memory so the models run leaner and meaner. Plus, 

we might test-drive some sleeker model designs like 

SqueezeNet, ShuffleNet, or NASNet to keep things efficient. 

 

ACKNOWLEDGMENT 

 
We want to give a heartfelt thanks to everyone—people 

and places alike—who chipped in to get this research paper 

across the finish line. Without their help, pointers, and 

cheerleading, this whole thing wouldn’t have happened. 

 

A massive shoutout goes to our advisors and mentors: 

Dr. Diwakar Singh (Head of the CSE Department at BUIT), 

Dr. Amit Jha (Assistant Professor at BUIT), Mr. Madhav 

Chaturvedi (Professor at BUIT), and Mrs. Neha Lidoriya 

(Pro- fessor at BUIT). They’ve been rock-solid with their 

advice, smarts, and big-picture ideas all through this journey. 
Their guidance was key in steering us and sharpening our 

focus. 

 

We can’t thank the participants enough—they gave up 

their time and shared their data with us, no questions asked. 

What they brought to the table seriously beefed up our dataset 

and gave us some eye-opening takes on breast cancer. 

 

Big props to the University Institute of Technology 

Barkat- ullah (BUIT), Bhopal, too. They opened the doors to 

all the gear and spaces we needed to run our tests and dig into 

the numbers. That kind of backup made the techy stuff so 
much smoother. 

 

And we’ve got to give a nod to all the researchers and 

writers who’ve poured their hearts into stuff like the 

BreaKHis database, blockchain, and machine learning. Their 

hard work set the stage for everything we’ve built here. 

 

REFERENCES 

 

[1]. Dheeb Albashish, Rizik Al-Sayyed, Azizi Abdullah, 

Moham- mad Hashem Ryalat, and Nedaa Ahmad 
Almansour. Deep cnn model based on vgg16 for breast 

cancer classification. In 2021 International conference 

on information technology (ICIT), pages 805–810. 

IEEE, 2021. 

[2]. Yassir Benhammou, Boujemaa Achchab, Francisco 

Herrera, and Siham Tabik. Breakhis based breast 

cancer automatic diagnosis using deep learning: 

Taxonomy, survey and insights. Neurocomputing, 

375:9–24, 2020. 

[3]. Manuel Cossio. Ethereum, ipfs and neural 

compression to decentralize and protect patient data in 
computational pathology. 2022. 

 

 

[4]. Rafael Jesus de Arau´jo Vasconcelos. Smart contracts: 
A study about its challenges from a developer 

experience. 2022. 

[5]. Vikas Hassija, Siddharth Batra, Vinay Chamola, 

Tanmay Anand, Poonam Goyal, Navneet Goyal, and 

Mohsen Guizani. A blockchain and deep neural 

networks-based secure framework for enhanced crop 

protection. Ad Hoc Networks, 119:102537, 2021. 

[6]. Nilesh Kumar Jadav, Tejal Rathod, Rajesh Gupta, 

Sudeep Tanwar, Neeraj Kumar, and Ahmed 

Alkhayyat. Blockchain and artificial intelligence- 

empowered smart agriculture framework for 

maximizing human life expectancy. Computers and 
Electrical Engineering, 105:108486, 2023. 

[7]. Harleen Kaur, M Afshar Alam, Roshan Jameel, Ashish 

Kumar Mourya, and Victor Chang. A proposed 

solution and future direction for blockchain-based 

heterogeneous medicare data in cloud environment. 

Journal of medical systems, 42:1–11, 2018. 

[8]. Abhinav Kumar, Sanjay Kumar Singh, K 

Lakshmanan, Sonal Saxena, and Sameer Shrivastava. 

A novel cloud-assisted secure deep feature 

classification framework for cancer histopathology 

images. ACM Trans- actions on Internet Technology 
(TOIT), 21(2):1–22, 2021. 

[9]. Abhinav Kumar, Sanjay Kumar Singh, Sonal Saxena, 

K Lakshmanan, Arun Kumar Sangaiah, Himanshu 

Chauhan, Sameer Shrivastava, and Raj Kumar Singh. 

Deep feature learning for histopathological image 

classification of canine mammary tumors and human 

breast cancer. Information Sciences, 508:405–421, 

2020. 

[10]. Lae¨titia Launet, Yuandou Wang, Adria´n Colomer, 

Jorge Igual, Cris- tian Pulgar´ın-Ospina, Spiros 

Koulouzis, Riccardo Bianchi, Andre´s Mosquera-

Zamudio, Carlos Monteagudo, Valery Naranjo, et al. 
Fed- erating medical deep learning models from 

private jupyter notebooks to distributed institutions. 

Applied Sciences, 13(2):919, 2023. 

[11]. Ch VNU Bharathi Murthy, M Lawanya Shri, Seifedine 

Kadry, and Sangsoon Lim. Blockchain based cloud 

computing: Architecture and research challenges. 

IEEE access, 8:205190–205205, 2020. 

[12]. Abdulla All Noman, Mustafizur Rahaman, Tahmid 

Hasan Pranto, and Rashedur M Rahman. Blockchain 

for medical collaboration: A federated learning-based 

approach for multi-class respiratory disease 
classification. Healthcare Analytics, 3:100135, 2023. 

[13]. Muhammad Shafay, Raja Wasim Ahmad, Khaled 

Salah, Ibrar Yaqoob, Raja Jayaraman, and Mohammed 

Omar. Blockchain for deep learning: review and open 

challenges. Cluster Computing, 26(1):197–221, 2023. 

[14]. AAA Shareef, PL Yannawar, ASH Abdul-Qawy, and 

MG Almusharref. Share and retrieve images securely 

using blockchain technology. 

[15]. Shubham Thakur and Vijay Kumar Chahar. Storage 

and verification of medical records using blockchain, 

decentralized storage, and nfts. In International 
Conference on Paradigms of Communication, 

Computing and Data Analytics, pages 753–768. 

Springer, 2023. 

https://doi.org/10.38124/ijisrt/25mar1799
http://www.ijisrt.com/


Volume 10, Issue 3, March – 2025                               International Journal of Innovative Science and Research Technology 

ISSN No:-2456-2165                                                                                                            https://doi.org/10.38124/ijisrt/25mar1799 

 

IJISRT25MAR1799                                                          www.ijisrt.com                                                                                     3376    

[16]. Md Taufiqul Haque Khan Tusar and Roban Khan 
Anik. Automated detection of acute lymphoblastic 

leukemia subtypes from microscopic blood smear 

images using deep neural networks. arXiv preprint 

arXiv:2208.08992, 2022. 

[17]. Md Taufiqul Haque Khan Tusar and Roban Khan 

Anik. Automated detection of acute lymphoblastic 

leukemia subtypes from microscopic blood smear 

images using deep neural networks. arXiv preprint 

arXiv:2208.08992, 2022. 

 

 

 
 

 

 

https://doi.org/10.38124/ijisrt/25mar1799
http://www.ijisrt.com/

