
Volume 10, Issue 3, March – 2025                              International Journal of Innovative Science and Research Technology 

ISSN No:-2456-2165                                                                                                            https://doi.org/10.38124/ijisrt/25mar1796 

 

 

IJISRT25MAR1796                                                             www.ijisrt.com                                                                                  2773  

AI-Driven Automated Quality Inspection for 

Beverage Bottles: Leveraging Object Detection 

Models for Enhanced Supply Chain Efficiency 
 

 

Deepak Raj R1; Sowmiya R2; Swathi K3; Harikaran G4; Gayathri K5;  

Ezhil Litta A6; Vishvash C7; Bharani Kumar Depuru8 

 
1,2,3,4,5,6 Research Associate, AISPRY Pvt Ltd, Hyderabad, India.  

7 Mentor, Research and Development, AISPRY Pvt Ltd, Hyderabad, India.  
8 Director, AISPRY Pvt Ltd, Hyderabad, India 

 

 
Abstract: In the beverage industry, maintaining product quality during packaging and throughout the supply chain is 

critical to ensuring customer satisfaction and brand integrity. This research addresses the challenge of automating quality 

inspection for beverage bottles by leveraging cutting-edge AI-based object detection models. The study focuses on identifying 

and classifying six key quality defects particularly Cracked_Bottle, Misaligned_Label, Missing_Cap, Normal_ 

Bottle, Overfilled_Bottle, and Underfilled_Bottle. These defects, if undetected, can lead to customer dissatisfaction, 

increased return rates, and potential brand damage. 

 

To tackle this problem, we implemented and evaluated three advanced object detection architectures—

YOLOv8, YOLOv9, and YOLOv11—on a custom dataset comprising thousands of images of beverage bottles captured 

under diverse conditions, including varying lighting, angles, and backgrounds. Among the models, YOLOv8 emerged as the 

most effective, achieving an impressive 78% accuracy across all defect classes. The model demonstrated exceptional 

performance in detecting subtle defects such as misaligned labels and minor cracks, which are often overlooked in manual 

inspections. 

 

The integration of AI-driven quality control systems into the beverage supply chain not only minimizes human error 

but also significantly enhances operational efficiency. By automating the detection of defects, this approach ensures that only 

products meeting stringent quality standards reach consumers. Furthermore, the system provides real-time feedback, 

enabling swift corrective actions and reducing waste. This research underscores the transformative potential of AI in 

revolutionizing quality assurance processes within the beverage industry, ultimately driving customer trust, reducing costs, 

and improving overall supply chain performance. 
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I. INTRODUCTION 

 
The beverage industry is a critical sector of the global 

economy, with millions of products manufactured and 

distributed daily. However, maintaining consistent product 

quality throughout the supply chain remains a significant 

challenge. Traditional quality control methods, which rely 

heavily on manual inspection, are not only labor-intensive but 

also prone to human error. These limitations often result in 

defective products reaching consumers, leading to increased 

return rates, financial losses, and a decline in brand trust. 

To address these challenges, this study 

leverages Artificial Intelligence (AI) and computer 
vision technologies [2] to automate the quality inspection [3] 

process for beverage bottles. By incorporating AI-powered 

object detection models into the production line, 

manufacturers can efficiently identify and separate defective 

bottles from intact ones, ensuring that only high-quality 

products reach the market. This not only minimizes human 

error but also reduces the manpower required for quality 

control, leading to significant cost savings and improved 

operational efficiency.
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Fig 1 CRISP - ML(Q) - Project Methodology 

 

This study adopts the CRISP-ML(Q) [1] methodology 

[Fig.1], a structured framework for developing machine 

learning solutions. The process begins with Business 
Understanding, where the primary goal is to automate defect 

detection in beverage bottles to enhance quality control. In 

the Data Understanding phase, a custom dataset is collected, 

comprising images of bottles with various defects, captured 

under different lighting, angles, and backgrounds. The Data 

Preparation phase involves preprocessing the dataset, 

including resizing, augmentation, and annotation, to ensure it 

is suitable for training. Key preprocessing steps include 

resizing images to 640x640, horizontal flipping, 90° rotation 

(clockwise and counter-clockwise), shear adjustments (±10° 

horizontal and vertical), saturation and brightness 
adjustments (±15%), and adding noise and blur (up to 0.5px 

and 0.5% of pixels, respectively). 

 

In the Model Building phase, state-of-the-art object 

detection models [4] such as YOLOv8, YOLOv9, 

and YOLOv11 are trained and evaluated. These models are 
implemented using the Ultralytics framework [5], with 

training conducted on an AWS EC2 g4dn Xlarge instance 

running Python 3.10. The Model Evaluation phase uses 

metrics like precision, recall, and mean average precision 

(mAP) to assess performance [6]. The best-performing model 

is then deployed using the Streamlit framework on an AWS 

EC2 t2 Xlarge instance for real-time defect detection [Fig 2] 

talks on the overall flow of the project. Finally, 

the Monitoring and Maintenance phase ensures the system's 

ongoing performance and adaptability to new data. 

 
 

 

 
Fig 2 Project Architecture Diagram 
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The integration of AI into the beverage supply chain 

offers numerous benefits. First, it reduces the reliance on 

manual labor, which is often inconsistent and error-prone. 

Second, it enables real-time detection of defects, allowing for 

immediate corrective actions and reducing waste. Third, it 
provides valuable data insights that can be used to optimize 

production processes and improve overall product quality. By 

addressing these challenges, this research aims to contribute 

to the advancement of AI-driven quality assurance systems in 

the beverage industry, ultimately leading to higher customer 

satisfaction and stronger brand loyalty. 

 

II. BUSINESS UNDERSTANDING 

 

The beverage industry is a critical sector of the global 

economy, with millions of products manufactured and 
distributed daily to meet consumer demand. According to 

recent market reports, the global beverage market is projected 

to grow significantly, driven by increasing consumer 

preferences for convenience and quality. However, 

maintaining consistent product quality throughout the supply 

chain remains a significant challenge. Issues such 

as defective packaging, misaligned labels, and improper 

filling can severely impact customer satisfaction and brand 

reputation. These defects, if undetected, can lead to increased 

return rates, financial losses, and a decline in consumer trust. 

 

In the beverage industry, the physical construction of 
bottles and the many ways they travel during production and 

distribution make them susceptible to defects. These defects 

not only compromise the product's quality but also increase 

the likelihood of contamination, which can pose health risks 

to consumers. For instance, cracked bottles can lead to 

leakage, while misaligned labels can result in incorrect 

product information reaching the consumer. A strict quality 

control procedure is necessary since consumers depend on 

food and beverage products for their safety and quality. 

 

However, the high volume of demand and the 
complexity of modern supply chains make it challenging to 

maintain the high quality of beverage production. Manual 

inspection of bottles is time-consuming and highly 

susceptible to errors, especially in large-scale operations. 

Human inspectors may miss subtle defects due to fatigue or 

inconsistency, leading to defective products reaching the 

market. This not only affects consumer trust but also 

increases operational costs due to returns and recalls. 

 

To overcome this challenge [12], one viable solution is 

to automate the quality inspection process using computer 

vision technology [7]. Computer vision systems can extract 
information from images and videos in real-time, enabling the 

classification and detection of defects with high precision. 

These systems can be trained to identify and categorize 

defects [8], ensuring that only high-quality products reach the 

market. By automating the inspection process, manufacturers 

can significantly increase efficiency, accuracy, and quality 

assurance, while reducing the reliance on manual labor. 

 

This study follows a structured approach to automate the 

quality inspection process for beverage bottles. 1) The first 

step involves preparing the dataset, which consists of images 
of bottles captured under varying lighting conditions, angles, 

and backgrounds. This ensures the model is trained to handle 

real-world scenarios effectively. 2) Next, the collected data is 

uploaded to Roboflow, where it undergoes thorough 

preprocessing, including resizing, augmentation, and 

annotation, to optimize it for object detection tasks. 3) Object 
detection models [9] are then built using state-of-the-art 

architectures such as YOLOv8, YOLOv9, and YOLOv11. 

These models are designed to detect and classify defects in 

bottles, ensuring high accuracy and reliability. 4) After the 

model building phase, the models are evaluated using various 

metrics such as precision, recall, and mean average precision 

(mAP). This step is crucial in the machine learning workflow 

to assess the model's performance and determine the most 

effective algorithm for the specific task of defect detection in 

beverage bottles. 

 

III. DATA UNDERSTANDING 

 

The dataset used in this research is collected from 

primary sources within the beverage production environment. 

The dataset primarily consists of images of beverage bottles 

captured under various real-world conditions to account for 

the natural variation in lighting, camera angles, and 

backgrounds encountered in a production line or distribution 

network. The dataset was created to help identify and classify 

six distinct defects in beverage bottles: Defective_Bottle, 

Defective_Label, Missing_Label, Normal_Bottle, 

Over_Filled, and Under_Filled. 
 

 The Initial Dataset Distribution for each Defect Class is 

as Follows: 

 

 Defective_Bottle 152 images 

 Defective_Label 153 images 

 Missing_Label 154 images 

 Normal_Bottle 152 images 

 Over_Filled  152 images 

 Under_Filled  190 images 

 
These image counts were relatively low, especially for 

some classes, which made it necessary to apply data 

augmentation techniques to ensure the dataset was large and 

diverse enough for effective model training. The goal was to 

augment each class to approximately 1000 images, ensuring 

the model had enough data to generalize well. 

 

 Dataset Sources 

The primary data for this study were captured using a 

variety of cameras in the production environment, under 

varying conditions including different lighting, angles, and 
backgrounds. The images were taken from various stages of 

the production and packaging lines, ensuring the dataset 

represented real-world production scenarios. The variations 

in lighting, camera distances, and angles ensure that the 

model is exposed to as many realistic conditions as possible. 

 

The images were labeled according to the type of defect 

present in the beverage bottle, allowing for the classification 

of defects such as misaligned labels, cracked bottles, and 

overfilled or underfilled bottles. 

 

 

https://doi.org/10.38124/ijisrt/25mar1796
http://www.ijisrt.com/


Volume 10, Issue 3, March – 2025                              International Journal of Innovative Science and Research Technology 

ISSN No:-2456-2165                                                                                                            https://doi.org/10.38124/ijisrt/25mar1796 

 

 

IJISRT25MAR1796                                                             www.ijisrt.com                                                                                  2776  

 Class Distribution and Augmentation 

To ensure balanced training and reduce the potential for 

model bias, several data augmentation techniques [11] were 

employed. These techniques helped increase the number of 

images in each class and also improved the robustness of the 

model by simulating different conditions that may occur 

during production. 

 

The class distribution [Table 1] of the augmented dataset 

after applying the data augmentation techniques is as follows: 
 

Table 1 Class Distribution Before and After Data Augmentation 

Defect Class Initial Count Augmented Count Final Count 

Defective_Bottle 152 861 1013 

Defective_Label 153 926 1079 

Missing_Label 154 916 1070 

Normal_Bottle 152 856 1008 

Over_Filled 152 907 1059 

Under_Filled 190 834 1024 

 

By augmenting the images to a target of 1000 and above 

images per class, the final dataset was made sufficiently large 

to support training of the object detection models [10] 

effectively. 

 

IV. DATA PREPARATION 

 

In this phase, the gathered images were processed and 

prepared for model training. The dataset was uploaded to 

Roboflow, a platform that streamlines dataset management 

for machine learning projects. Roboflow provides tools for 

data annotation, augmentation, and preprocessing, making it 

a suitable tool for handling large image datasets efficiently. 

 

 Image Annotation 

The images were manually annotated [Fig 3] using 
bounding boxes to identify and label the defects present in 

each bottle. These annotations were crucial for the object 

detection models, as they allow the models to learn the spatial 

locations of the defects within each image. 

 
Each image was labeled according to the defect present, 

and the following defect classes were used: 

 

 Defective_Label: Bottles with misaligned or damaged 

labels. 

 Missing_Label: Bottles with no label. 

 Over_Filled: Bottles filled above the required level. 

 Defective_Bottle: Bottles with visible deformations such 

as cracks or dents. 

 Normal_Bottle: Bottles with nil defects. 

 Under_Filled: Bottles filled below the required level

 

 
Fig 3 Classes Annotations using Roboflow 

 

 Preprocessing and Augmentation 

Once the images were annotated, several preprocessing 
and data augmentation techniques were applied to the dataset 

to enhance its diversity and improve the generalization 

capability of the models. 

 Preprocessing Steps: 

 

 Resizing:  

All images were resized to a standard 640x640 pixels to 

maintain consistency and facilitate faster processing. 

https://doi.org/10.38124/ijisrt/25mar1796
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 Normalization:  

The pixel values of all images were normalized to a 

range of 0 to 1 by dividing each pixel by 255. This 

normalization ensures that the model can efficiently process 

the images. 

 

 Auto-orientation:  

Images that were not aligned properly (e.g., rotated or 

upside down) were automatically corrected to ensure 

consistent orientation. 

 

 Null Filtering:  

Images without valid annotations (null images) were 

filtered out to improve model performance and reduce errors 

during training. 

 

 Data Augmentation Techniques:  

To augment the dataset and ensure the model could 

generalize well across different scenarios, the following 

augmentation techniques were applied: 

 

 Horizontal and Vertical Flipping:  

Images were flipped horizontally and vertically to 

introduce variability in the orientation of bottles. 

 

 Rotation:  

Images were rotated randomly by 90°, 180°, or 270° to 
expose the model to different angles. 

 

 Brightness Adjustment:  

The brightness of the images was varied between -10% 

and +10% to simulate different lighting conditions. 

 

 Zooming and Cropping:  

Random zooming and cropping were applied to focus 

on different parts of the bottle, especially the defect regions. 

 

 Noise Addition:  
Gaussian noise (0.1%) was added to simulate 

imperfections in the images, such as sensor noise or 

interference. 

 

 Gaussian Blur:  

A 1px Gaussian blur was applied to build resilience 

against slight focus variations. 

 

After these preprocessing and augmentation techniques 

were applied, the total dataset size grew substantially, 

providing a more diverse and comprehensive dataset for 

training the models. The augmented dataset contains 7000 

images, with approximately 1000 images per class. 

 

 Exporting the Dataset 

Once the dataset was fully prepared, it was exported 

from Roboflow in formats compatible with the training 

frameworks. The most commonly used formats for exporting 

datasets include: 

 

 JSON:  

Used for compatibility with frameworks like 

TensorFlow Object Detection API and Detectron. 

 

 TXT:  

A format suitable for YOLO models, which is 

particularly well-suited for object detection tasks. 

 

With the dataset fully prepared and exported, the next 
step involved training the object detection models using 

YOLOv8, YOLOv9, and YOLOv11 architectures to evaluate 

their effectiveness in detecting and classifying defects in 

beverage bottles. 

 

V. MODEL BUILDING 

 

Model building is a crucial step in the CRISP-ML(Q) 

methodology, and it plays a significant role in object 

detection tasks. For this project, we explored various model 

architectures to automate the detection of defects in beverage 
bottles. The models we considered include different versions 

of YOLO (You Only Look Once) — YOLOv8, YOLOv9, 

and YOLOv11 — all of which are known for their accuracy, 

speed, and suitability for real-time object detection tasks. 

 

We selected YOLO models due to their real-time object 

detection capabilities, accuracy, and performance in 

identifying defects like cracked bottles, missing caps, and 

misaligned labels. YOLO models have revolutionized object 

detection in computer vision by offering fast and efficient 

predictions. 

 
 YOLO V8 

YOLOv8, the 8th version of the YOLO family, was 

designed to provide a balance between speed and accuracy. It 

includes improvements in its backbone architecture and 

enhancements in the detection head. YOLOv8 is known for 

its speed and higher accuracy in detecting defects compared 

to previous versions. The model uses CSPDarknet53 as its 

backbone as seem in its architecture diagram [Fig 3] and 

incorporates self-attention mechanisms to improve detection 

performance in cluttered environments. 
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Fig 4 YOLOv8 Architecture, Visualization made by GitHub user RangeKing (Source:-YOLOv8 Architecture) 

 

 YOLO V9 

YOLOv9 is the latest state-of-the-art (SOTA) 

architecture in the YOLO family. It combines 

Programmable Gradient Information (PGI) and the 

Generalized Efficient Layer Aggregation Network 

(GELAN), which significantly reduces the number of 

parameters while maintaining or improving accuracy. 

YOLOv9 is faster and more computationally efficient than 

previous versions, achieving up to 5-15% fewer calculations 

while maintaining a significant performance boost in average 

precision (mAP). It is designed for real-time use, making it 

ideal for object detection in industrial settings. 

 

https://doi.org/10.38124/ijisrt/25mar1796
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Fig 5 YOLOv9 Architecture, Visualization made by https://stunningvisionai.com author Dr. Priyanto Hidayatullah (Source:-

YOLOv9 Architecture) 

 

 YOLO V11 

YOLOv11 builds upon the advancements of YOLOv8 

and YOLOv9 by incorporating more advanced techniques for 

detecting subtle defects in object detection tasks. The model 

uses multi-scale feature aggregation and contextual 

learning to enhance its ability to detect and classify objects 

with higher precision. YOLOv11's architecture focuses on 

improving its mean average precision (mAP) across 

multiple defect classes, particularly in challenging conditions 

like low light or cluttered backgrounds. 
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Fig 6 YOLOv11 Architecture, Visualization made by Medium user nikhil-rao-20 (Source:-YOLOv9 Architecture) 

 

VI. HYPERPARAMETERS AND TRAINING 

DETAILS 

 
In the training process, several key hyperparameters 

were consistent across all models to ensure a fair comparison. 

These hyperparameters included the learning rate, image size, 

batch size, optimizer, device, and number of epochs. The 

learning rate was set to 0.001, which is the default for most 

object detection models [13], to ensure stable convergence 

during training. The image size was standardized to 640x640 

pixels, allowing the models to learn from images of a 

consistent size, which is particularly important for object 

detection tasks where spatial relationships between objects 

need to be preserved. The batch size was set to 16, balancing 
memory usage and computational efficiency. The Adam 

optimizer was chosen for its adaptive learning rate 

capabilities, which helps the model converge more 

efficiently. The training was performed on a CUDA-enabled 

GPU to accelerate the processing and minimize training time. 

The random seed was set to 42 to ensure reproducibility of 

results, and the models were trained for 30 epochs to allow 

sufficient training time for the models to learn the patterns in 

the dataset. 

 

VII. MODEL EVALUATION 

 
Model evaluation plays a pivotal role in assessing the 

performance of the trained models. To evaluate our models, 

we used standard metrics for object detection tasks [14], 

which are key indicators of how well the models can detect 

and classify defects in the beverage bottles. 

 Evaluation Metrics 

 

 Precision:  
Measures the proportion of true positive detections 

among all detected instances. Precision tells us how often the 

model correctly detects a defect without misclassifying a non-

defective bottle. 

 

 Recall:  

Measures the model’s ability to identify all actual 

defects, focusing on how many true positive instances are 

found relative to all possible defects. 

 

 F1-Score:  
A harmonic mean of precision and recall, providing a 

balanced measure of the model’s accuracy. 

 

 Mean Average Precision (mAP):  

This metric evaluates the model’s overall ability to 

correctly identify and localize objects across different defect 

categories, with mAP@50 focusing on strict IoU thresholds 

(50%) and mAP@50-95 evaluating the model’s robustness 

over a range of IoU thresholds. 

 

The performance of each YOLO model variant was 

evaluated [15] based on mean average precision (mAP), 
which is the primary metric for object detection tasks. The 

mAP was calculated at two different thresholds: mAP@50 

(evaluating the precision at an Intersection over Union (IoU) 

threshold of 0.50) and mAP@50-95 (which averages the 

precision over IoU thresholds from 0.50 to 0.95). 

https://doi.org/10.38124/ijisrt/25mar1796
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 YOLO11s achieved a mAP@50 of 0.80 and a mAP@50-

95 of 0.66, demonstrating solid performance, especially at 

the 50% IoU threshold, but with room for improvement at 

stricter IoU values. 

 YOLOv8m performed better, with a mAP@50 of 0.88 and 
a mAP@50-95 of 0.75, indicating a more balanced 

performance across both IoU thresholds. 

 YOLO11s achieved a mAP@50 of 0.85 and a mAP@50-

95 of 0.75, demonstrating solid performance, especially at 

the 50% IoU threshold, but with room for improvement at 

stricter IoU values. 

 YOLOv9c showed slightly lower performance, achieving 

mAP@50 of 0.79 and mAP@50-95 of 0.66, suggesting it 

was less effective than the other models, particularly at the 

stricter IoU threshold. 

 YOLOv8s demonstrated similar performance to 
YOLOv8m, with a mAP@50 of 0.83 and a mAP@50-95 

of 0.71, indicating strong accuracy across both evaluation 

metrics. 

 YOLOv8m achieving a mAP@50 of 0.88 and a 

mAP@50-95 of 0.75, making it the most accurate and 

robust model in this comparison, with the highest 
performance at both IoU thresholds. 

 

These results underline the importance of selecting the 

right model for the task at hand, with YOLOv8m being the 

top performer showing strong potential for real-world 

deployment. 

 

VIII. MODEL PERFORMANCE COMPARISON 

 

The following table compares the performance of the 

different models based on the mean average precision 

(mAP): 

 

Table 2 Model Performance Comparison (mAP) 

Models Epochs map 50 map 50-95 

Yolo 11s 30 0.8 0.66 

Yolo V8m 30 0.88 0.75 

Yolo 11m 30 0.85 0.75 

Yolo v9c 30 0.79 0.66 

Yolo V8s 30 0.83 0.71 

 

Based on the results [Table 2], YOLOv8m achieved the 

highest performance, making it the model of choice for our 

defect detection system. It not only had the highest mAP 

scores but also demonstrated better generalization across 

different defect classes. 

 

IX. CONCLUSION 

 

 
Fig 7 Defect Detection in Beverage Bottles 

 

After conducting extensive training and evaluation, it is 
clear that YOLOv8m stands out as the best model for 

detecting defects [Fig 7] in beverage bottles within a 

production line. The model’s superior performance in terms 

of both speed and accuracy makes it highly suitable for 

deployment in real-time industrial applications. By 
automating the defect detection process, we are able to 

significantly improve the quality control system, ensuring 

only high-quality products reach consumers. This research 

demonstrates the potential of AI-driven solutions in 
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optimizing the beverage industry’s quality assurance 

processes, ultimately contributing to better customer 

satisfaction and reduced operational costs. 

 

FUTURE SCOPE 
 

Future advancements for the defect detection system in 

beverage bottles could focus on expanding the range of 

detectable defects by integrating more specialized object 

detection models, such as segmentation models to identify 

even the smallest imperfections. Additionally, incorporating 

other sensors, such as infrared or ultrasonic sensors, could 

allow for detecting hidden defects that may not be visible to 

traditional camera systems. The system could also be adapted 

to monitor additional stages in the production line, such as 

labeling and packaging, to ensure that the quality control 
process covers the entire production cycle. Future work will 

focus on improving model generalization, ensuring robust 

performance across different production environments and 

conditions, and enhancing the system's ability to detect 

defects under varying lighting and camera angles. Integrating 

the system with IoT platforms will allow for real-time 

monitoring and predictive maintenance of production lines, 

reducing downtime and improving overall operational 

efficiency. Moreover, user feedback systems could be 

implemented to further fine-tune and personalize the defect 

detection capabilities. 
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