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Abstract: Supervised machine learning algorithms are widely used for classification problems across various domains. 

However, selecting the best model requires a thorough evaluation of accuracy, robustness, and generalization ability. This 

research compares multiple supervised learning techniques using real- world datasets, focusing on evaluation metrics such 

as accuracy, sensitivity, specificity, and AUC-ROC. The study also considers the risk of overfitting, using cross- validation 

techniques to strengthen the conclusions. Results indicate that AdaBoost achieves near-perfect accuracy while Stochastic 

Gradient Descent (SGD) provides a balanced performance and generalisation, making their hybrid or combination a 

preferable choice for fraud detection. 
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I. INTRODUCTION 

 

The concept everyone relied on for getting access to 

banking services for a long time was simply the in-person 

services provided by Banking Organisations, until Citibank 

and Wells Forgo Bank introduced internet banking 

application in the United States of America in the year 1996. 

This was the beginning of a huge surge in online transactions, 

especially after the use of Credit Card services were adopted 

into online banking. All of a sudden, there was a huge market 

to entertain the use of online Card features such as payments. 

Loans, etc. across different types of platforms like e-

commerce sites, Social networking, online banking, work 

from home, etc. 

 

Now the online transaction space is more crowded than 

ever, with millions and even billions of online transactions 

taking place every single moment. With this increase in 

online transactions also comes the fraud transactions and 

scams that take place online to steal information and data and 

money from certain users or organisations as a whole. Online 

Cyber crime now more than ever is at an all time high, threat 

actors can access online data using methods like Cross Site 

Scripting to gain access to websites as other users using their 

session cookies, and using such actions, even gain 

administrative access. After all these actions, they also have 

services to mask their identities such as using VPN’s(Virtual 

Private Networks). One way to find them out would be to 

monitor the transactions happening to and from that account. 

These transactions will have certain features and attributes 

where the values will vary by a noticeable margin compared 

to legitimate transactions. Using these differences in 

attributes and properties between legit and fraud transactions 

combined with the modern day power and versatility of AI 

and ML, we can create systems and models using Machine 

Learning Algorithms which can assist the existing systems in 

place for purposes of detection fraudulent transactions. 

 

In the research we have undertaken, we are comparing 

12 Supervised Learning Algorithms, the Supervised here 

signifies that the model will be trained using labeled data. We 

use a balanced dataset, meaning the number of fraud and legit 

transactions is the exact same. However during Predictive and 

training sessions it will be imbalanced. Some of the models 

are Stochastic Gradient Descent, DecisionTree, Logistic 

Regression, Random Forest, Support Vector Machine, 

Perceptron. All the mentioned algorithms/ their models will 

be compared across multiple deciding factors across multiple 

stages of comparisons to be able to find out the optimal 

Algorithm and its model respectively for the task of detecting 

fraud transactions from a set of Supervised learning 

Algorithms. 
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II. LITERATURE REVIEW 

 

For this research, we have referred many informative 

papers and studies done on topics co-relating to our research 

such as the {1} investigation of performance of Naive Bayes, 

knn and LRM on highly skewed credit card fraud data, 

undertaking a hybrid technique of under and over sampling 

of data. Evaluations done using confusion matrix outputs. 

The next study proposes a {2}3-stage fraudulent card 

detection system which relies on a) Detection of invalid and 

fake credit from legitimate ones by using the Luhn algorithm 

for card number validation, b) dynamic verification of card 

expiry date, and c) a script code validation for Card 

Verification Value (CVV) or Card Verification Code (CVC) 

that compute the total number of digits which should be 

within the specified range. The next study proposes a model 

to {3} handle imbalanced data using XGBoost classifier to 

detect fraud transactions. The typical technique pre-

determines the threshold value, resulting in inefficiency 

where several threshold values are computed and compared 

to identify the ideal value that provides an optimal outcome 

and high efficiency. The next study {4} compares 3 ML 

algorithms (i.e. Random Forest, Logistic regression, and 

AdaBoost) and compared the machine learning algorithms 

based on their Accuracy and Mathews Correlation 

Coefficient (MCC) Score. In these three algorithms, the 

Random Forest Algorithm achieved the best Accuracy and 

MCC score. The Streamlit framework is used to create the 

machine learning web application. 

 

The next study {5} is a research investigating the 

application of advanced machine learning techniques to 

effectively detect fraudulent transactions. The findings 

highlight the need for resilient, scalable, and real-time 

mechanisms to combat evolving fraud strategies. The next 

study {6} examines the latest advances and application in the 

field of machine learning-based credit card fraud detection 

where four machine learning algorithms have been analyzed 

and compared on the basis of their accuracies. It is found out 

that Catboost algorithm works best to detect credit card fraud 

with an accuracy of 99.87 percentage. The dataset for credit 

card fraud detection was taken from kaggle. The next study 

{7} proposes a method to overcome the problem of Credit 

Card identification by combining Deep Learning with 

Machine Learning techniques. To reduce the number of false 

negatives, this study has performed data-matching trials with 

the implementation of Deep Learning Techniques. Utilizing 

the suggested strategy, it is possible to locate Credit Card 

Fraud (CCF) remotely from any location. The next study {8} 

discusses the problem of detecting a credit score includes 

modelling of past transactions for credit cards with the facts 

of those who have been revealed to fraud. The version is then 

used to delay whether new transactions are fraudulent or are 

now not new transactions. In this method, focus was put on 

the analysis and preprocessing of several anomaly detection 

algorithms and record sets, such as "neighbor outliers" and 

"forest zone isolation" algorithms, in PCA-converted credit 

card transaction statistics. 

 

 

The next study {9} shows how algorithms like Logistic 

Regression and Random Forest were used in creating Fraud 

Fort, an advanced system designed to detect credit card fraud. 

The study illustrates the efficacy of integrating both models 

in Fraud Fort. The results indicate the combined advantages 

of logistic regression and random forest so that fraud 

detection system can become strong, eventually leading to a 

more secure and reliable economic ecosystem. The next study 

{10} depicts how popular supervised and unsupervised 

machine learning algorithms have been applied to detect 

credit card frauds in a highly imbalanced dataset. It was found 

that unsupervised machine learning algorithms can handle the 

skewness and give best classification results. The next study 

{11} is about how financial institutions aim to secure credit 

card transactions and allow their customers to use e-banking 

services safely and efficiently. To reach this goal, they try to 

develop more relevant fraud detection techniques that can 

identify more fraudulent transactions and decrease frauds. 

Defining the fundamental aspects of fraud detection, the 

current systems of fraud detection, the issues and challenges 

of frauds related to the banking sector, and the existing 

solutions based on machine learning techniques. The next 

study {12} implements six widely used machine learning 

techniques for credit card fraud detection. Their efficacy is 

analysed based on the parameters such as accuracy, 

precision, recall, specificity, misclassification, and F1 score. 

Results show that machine learning techniques are helpful for 

credit card fraud detection. We strongly recommend using 

multiple machine learning techniques for fraud detection 

before they occur or in the process of occurrence. The next 

study {13} performs a comparative experimental study to 

detect credit card frauds, as well as to tackle the imbalance 

classification problem by applying different machine 

learning algorithms for handling imbalanced datasets. The 

study shows that there is no need to process imbalance dataset 

by applying resampling techniques to measure the 

performance of our classifiers and it is sufficient to measure 

the performance through the three-performance 

measurements (Accuracy, Sensitivity, and Area Under 

Precision/Recall Curve (PRC) to prove the accuracy of the 

prediction of classification. 

 

III. MODULE DESCRIPTION 

 

This section provides an overview of the different 

components that make up the fraud detection system. Each 

module is responsible for a specific task, ensuring the 

pipeline runs smoothly from raw data input to fraud 

classification. Explained below are the different modules and 

their key purposes: 

 

A. Data Preparation and Preprocessing 

This is the starting or initial phase of the process. It 

ensures the below given processes: 

 

 Import Libraries: Loads essential Python libraries such as 

NumPy, Pandas, Scikit-Learn, Matplotlib, and Seaborn 

for data handling, model training, and visualization. 

 Load Dataset: Ensure correct dataset is loaded for all the 

algorithms and all their models are trained on the same 

https://doi.org/10.38124/ijisrt/25mar1761
http://www.ijisrt.com/


Volume 10, Issue 3, March – 2025                                International Journal of Innovative Science and Research Technology 

ISSN No:-2456-2165                     https://doi.org/10.38124/ijisrt/25mar1761 

 

  

IJISRT25MAR1761                                                              www.ijisrt.com                                                                                 2643 

dataset. We make use of a balanced dataset with equal 

share of fraud and legit attribute. The dataset is in the form 

of a CSV file and contains over half a million rows of data, 

with many columns with sensitive data having PCA based 

data. 

 Preprocess Data: Handle instances of missing data points 

with mean, median or mode replacement, do encoding and 

detecting outlier using methods like Z-score analysis. 

 Feature Scaling: To ensure uniform scale, standardise or 

normalise data in a certain specific format across all the 

data. Aids in convergence in Machine Learning models. 

 Data Splitting: Using splitting functions like 

train_test_split_data to split the dataset into training and 

testing data in a specified ration, in our case, we have used 

80% of the dataset for training and 20% to test against the 

trained and fitted model. 

 

B. Model Initialisation and Training 

Once the correct libraries have been imported, dataset 

has been imported and processed, we move to the steps given 

below which explain the continuing workflow. 

 

 Initialise Model: Selecting the required Machine Learning 

Algorithm to train the model and based on which model, 

defining parameters upon which model will have initial 

calibration and setting. 

 Timer: Using the Time library in python to calculate time 

taken to fit specific model. This becomes a big factor that 

contributes to deciding ultimately which algorithm’s 

model will be more efficient to train, test and fit. 

 Model Fitting: Trains the specific algorithm’s model on 

the provided training dataset. Some algorithms are 

equipped with hyper parameters and optimising functions 

and features like grid search for optimal n value (eg. knn), 

etc. 

 

C. Model Predictions and Evaluation 

The trained and tested model will now be evaluated 

based on it prediction capabilities and performance overview 

done via below given steps: 

 

 Predict on Training Data: Generates trained model 

predictions on the training dataset. A crucial component 

in detection of overfitting. 

 Predict on Test Data: Uses the trained model to generate 

predictions on the unseen testing data, provides first 

proper result of how well model has been trained. 

 Calculate Training Accuracy: Computes the model’s 

accuracy on training data. 

 Calculate Testing Accuracy: Computes the model’s 

accuracy on testing data in order to evaluate 

generalisation performance. 

 

D. Performance Metrics and Analysis 

The following steps provide results based on detailed 

evaluation using standard classification metrics— 

 

 Matrix and Plotting: Generating confusion matrix and 

plotting heat map of the confusion matrix for easy 

interpretation. 

 ROC AUC Score and curve plotting: Computing and 

plotting the Receiver Operating Characteristic curve and 

Area Under Curve score. This gives us an idea and 

understanding of the trade-off between sensitivity(recall) 

and specificity. 

 Determining Optimal Threshold and Prediction 

Recalculation: Identifying the best classification 

threshold for improving model accuracy and adjusts 

predictions based on the optimal threshold and re- 

evaluation performance. 

 Calculating Optimal Test Accuracy: Measures the new 

accuracy score after determining threshold optimisation. 

 

E. Data Insights and Visualisation 

The following steps involve he use of visual 

representations to analyse key data characteristics: 

 

 Plotting Distributions: V isualising the 

distributions of transaction amounts, their id’s, plotting 

correlation heat map to display feature relationships. 

 Organise Metrics: Summarise all evaluation factors and 

their values for comparison or study or further analysis. 

 

IV. DESIGN METHODOLOGY 

 

Methodology is used to describe the step-by-step 

approach to how the system as a whole was made and 

designed. What all parts have had to come together to make 

the system work. We will understand the methodology of our 

research below: 

 

A. Extra Trees Classifier (Extremely Randomised Trees) 

An ensemble learning method based on Decision Trees. 

Unlike Random Forest, Extra Trees selects features randomly 

and splits at random thresholds instead of calculating the best 

split. Faster than Random Forest due to random splits. Good 

for handling imbalanced datasets like fraud detection. 

Mathematical Formulation: 

 

 Given a dataset  with features  and labels, 

 Extra Trees 

 Selects a subset of features  randomly. 

 Picks a random split value instead of best split  

 Constructs multiple decision trees. 

 Prediction: 

 

 
 

Where s the output from the  decision tree, and 

 is the number of trees. 

 

B. Perceptron 

One of the earliest binary classifiers. It learns a linear 

decision boundary to separate fraud (1) and non-fraud (0) 

transactions. Uses Stochastic Gradient Descent (SGD) for 

weight updates. Mathematical Formulation: 
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 Given input. ,  

 Weights.  and bias.  

 

 
 

 Activation function (step function): 

 

 
 

 Weight Update Rule: 

 

 
 

Where.  is the learning rate. 

 

C. AdaBoost Classifier 

Boosting algorithm that combines multiple weak 

classifiers to form a strong classifier. Assigns weights to 

misclassified instances and re-trains on them. 

Mathematical Formulation: 

 

 Given classifiers. AdaBoost assigns a weight.  

 

 
 

Where.  is the weighted classification error. 

 

 Final prediction: 

 

 
 

D. Gaussian Naive Bayes 

A probabilistic classifier based on Bayes’ theorem. 

Assumes independence among features and normal 

distribution. Mathematical formulation: 

 

 Given features.  

 

 
 

 Gaussian probability for a feature.  

 

 
 

 Classification: Assign to the class with the highest 

posterior probability. 

 

E. Stochastic Gradient Descent 

Optimization method for large datasets. Iteratively 

updates weights for each instance instead of the entire batch. 

Mathematical formulation: 

 

 Given cost function.  

 

 
 

 Gradient update rule: 

 

 
 

Where.  is the learning rate. 

 

F. Multi-Layer Perceptron 

Neural Network with hidden layers. Uses 

backpropagation and activation functions like ReLU or 

Sigmoid. Mathematical formulation: 

 

 Forward propagation: 

 

 
 

 Error computation using Cross-Entropy Loss: 

 

 
 

 Backpropagation updates weights using gradient 

descent. 

 

G. XGBoost 

Gradient Boosting algorithm optimized for speed and 

accuracy. Uses tree pruning and regularization to prevent 

overfitting. Mathematical formulation: 

 

 Boosted trees minimize loss: 

 

 
 

H. Random Forest 

Ensemble of Decision Trees. Reduces variance 

compared to a single tree. Mathematical formulation: 
 

 Predictions are aggregated across trees: 
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I. Decision Trees 

Recursive partitioning based on feature splits. Uses Gini 

Impurity or Entropy for splitting. Mathematical formulation: 

 

 Gini Imputiry: 

 

 
 

 Entropy: 

 

 
 

J. K-Nearest Neighbours 

Classifies based on the majority of K nearest data 

points. Mathematical formulation: 

 

 Distance Metric: 

 

 
 

K. Support Vector Machine 

Finds the optimal hyperplane that separates classes. 

 

 Mathematical Formulation: 

 

 Decision boundary: 

 

 
 

 

 

 Objective: 

 

 
 

 Subject to: 

 

 
 

L. Logistic Regression 

Predicts probability using sigmoid function. 

 

 Mathematical formulation: 

 

 Sigmoid Function: 

 

 
 

M. Environmental Setup and Requirements 

The interactive environment used must be suitable for 

coding, particularly for Machine Learning and Deep 

Learning. Coding language of choice is Python, due to its ease 

of use and as it is the standard ML coding language to code 

models. Using a proper environment, in our case we have 

used 3 which are Google Colab, Jupyter Notebook and 

Kaggle. Writing and executing code in these notebooks in 

ipynb format files provides us with good visualisation of 

results including graphs and curves, and also properly 

highlighted errors and quick ways to resolve them, given 

below are the tables comparing the properties of the 3 

different interactive environment platforms or services we 

have used— 

Table 1: Dataset Handling Comparison 

Feature Jupyter Notebook Google Colab Kaggle Notebooks 

Dataset Access Local files, databases, cloud 

(manual setup required). 

Google Drive, cloud storage, 

or direct uploads. 

Direct access to Kaggle 

datasets; easy integration. 

File Storage Local machine storage. Temporary cloud storage 

(resets after session). 

Persistent storage (within 

Kaggle). 

Integration with 

Cloud Services 

Manual setup for AWS/GCP. Seamless integration with 

Google Drive. 

Kaggle datasets and APIs easily 

accessible. 

 

A factor that affects the scale to which a research can be 

done is based on resource availability and feasibility, the 

ttable given below addresses the cost comparison of the 

Interactive environments— 

 

Table 2: Cost Considerations Comparison 

Feature Jupyter Notebook Google Colab Kaggle Notebooks 

Free Access Free, but dependent on local 

hardware. 

Free with limited resources; Pro 

versions available. 

Free with fair usage limits. 

Pro/Paid Plans No paid plans  

(hardware- dependent). 

Colab Pro ($9.99/month), Colab 

Pro+ ($49.99/month) for better GPUs 

and longer runtimes. 

No paid version; completely 

free. 

 

The environment of choice must have acceptable levels 

of support for Libraries and Frameworks so that we can 

ensure that all of our algorithms are able to run and provide 

us with models. 
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Table 3: Framework Support Comparison 

Feature Jupyter Notebook Google Colab Kaggle Notebooks 

Pre-installed Libraries Requires manual installation 

(pip install). 

Most ML libraries pre- 

installed. 

ML/DL libraries pre-installed 

(TensorFlow, PyTorch, etc.). 

Custom Libraries Full control; can install any 

package. 

Can install new libraries 

(!pip install). 

Can install new libraries (!pip 

install). 

TensorFlow/ PyTorch 

Support 

Full support if installed. Pre-installed; supports 

TPUs. 

Pre-installed; optimized for 

Kaggle competitions. 

 

Another major factor that will definitely produce 

different values for us based on which environment is chosen 

is the performance levels at which each environment 

operates, the comparison of performance capabilities is given 

below. 

 

Table 4: Performance Capability Comparison 

Feature Jupyter Notebook Google Colab Kaggle Notebooks 

Processing Power Limited by local machine 

resources (CPU/ GPU/RAM). 

Free tier provides cloud- based 

GPUs (T4, P100, V100 in 

Pro/Pro+). 

Free cloud GPUs (T4, 

P100); limited time usage. 

RAM 

Availability 

Dependent on local hardware 

(8GB, 16GB, etc.). 

Up to 12GB (Free), 24GB 

(Colab Pro), 32GB (Colab Pro+). 

16GB RAM for free users. 

Disk Storage Uses local disk; constrained 

by storage capacity. 

Limited to 107GB (temp storage, 

resets after session). 

20GB disk storage, persists 

across sessions. 

Runtime Limitations No restrictions (local 

execution). 

12-hour session limit (Free), 

longer in Pro. 

9-hour session limit, but state 

persists across runs. 

Internet Dependency Not required; runs offline. Required; cloud-based. Required; cloud-based. 

 

We primarily use and refer to the data and results we 

obtain from Jupyter Notebook because it caters to the needs 

of the research team. It is best for local execution, it has 

persistent environment, full control over dependencies and 

more power efficient on our systems. 

 

V. RESULTS AND EVALUATION 

 

We have done a 2 Stage analysis and evaluation of all 

the algorithms based on their output values for each 

Performance Evaluation Metric. In Stage 1, we simply 

compared all 12 algorithms based on their training, testing, 

and overall accuracies and their fit time. We managed to 

eliminate 7 algorithms from the running for multiple reason, 

such as unable to finish process-LRM, SVM, MLPC. We also 

eliminated based on overfitting- XGBoost, Decision Trees, 

Random Forest, Extra Trees Classifier. This left us with 5 

remaining algorithms to compare in Stage 2 using more 

Metrics. 

 

Table 5: Stage 1 Comparison of Algorithms 

Algorithm Fit Time (s) Train % Test % 

ETC 21.21 1.0 0.999824 

Perceptron 0.70 0.686103 0.685850 

Adaboost 116.79 0.999635 0.999674 

Naive Bayes 0.20 0.994491 0.994521 

SGD 107.21 0.748404 0.747920 

MLPC 148.51 0.998533 0.998355 

XGB 2.01 1.0 0.999718 

RandomForest 240.81 1.0 0.999672 

Decision Tree 22.65 1.0 0.999586 

KNN 0.12 0.999059 0.998497 

SVM - - - 

LRM - - - 

 

Stage 2 is the phase where we compare the algorithms 

that did not get eliminated in the comparison of Stage 1. Here, 

we compare the performance of the algorithm’s models 

across more sensitive and a bigger set of Evaluation 

Metrics.We must also consider Over-fitting for most of these 

Metrics. 

 

A. Highly Crucial Metrics 

Four basic metrics are used in evaluating the 

experiments, namely True positive (TPR), True Negative 

(TNR), False Positive (FPR) and False Negative (FNR) rates 

metric respectively. 
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The highly crucial metrics directly assess how well the 

model identifies fraud cases while handling class imbalance. 

 

 Sensitivity: 

 

 
 

 

 

 

 

 Precision: 

 

 
 

 F1-score: 

 

 
 

 Matthews Correlation Coefficient: 

 

 
 

 ROC-AUC:  

 

Table 6: Stage 2 High Crucial Metrics Comparison 

Metric SGD Perceptron ABC Gaussian NB KNN 

Sensitivity 0.76206 0.559397 0.999596 0.989044 0.999947 

Precision 0.758883 0.748764 0.999754 1.0 0.996427 

F1 Score 0.760468 0.640374 0.999675 0.994492 0.998209 

MCC 0.519938 0.38419 0.999349 0.989103 0.996418 

ROC AUC 0.76006 0.790711 0.999968 0.999107 0.999002 

 

B. Moderately Important Metrics Consists of: 

 

 Balanced Classification Rate(BCR) which ensures the 

model performs well across both classes (legitimate & 

fraud) and also balances sensitivity and specificity. 

 Cohen’s Kappa measures agreement between predicted & 

actual fraud cases and accounts for chance agreement. 

 Log Loss penalizes incorrect confident 

predictions. Helps in optimizing probabilistic models like 

Logistic Regression & Neural Networks. 

 Average Precision (AP Score) summarizes precision-

recall tradeoff at different thresholds. Useful for 

comparing models. 

 Optimal Threshold, based on the type of experimental 

setup being made, can matter even more Cohen’s Kappa, 

which is true in our case. 

 

Table 7: Stage 2 Moderately Important Metrics Comparison 

Metric SGD Perceptron ABC Gaussian NB KNN 

BCR 0.759967 0.685085 0.999675 0.994522 0.998206 

Cohen's Kappa 0.519434 0.3717 0.999349 0.989044 0.996412 

Log Loss 8.651668 - 0.300422 0.057248 0.007822 

Average Precision 0.692371 0.807149 0.999926 0.999456 0.999085 

Optimal Threshold 8.086462 

× 10⁻³³ 

-1.196368 

× 10¹⁰ 

0.502309 0.321221 0.88 

Sensitivity 0.76206 0.559397 0.999596 0.989044 0.999947 

Specificity 0.757874 0.812303 0.999754 1.0 0.996465 

 

The remainder of the metrics are not of utmost 

importance in the case of our experiment pertains to Credit 

Card Fraud Detection. We would now switch over to 

representing the usable levels of our algorithms in the form 

of graphs. 

 

C. Less Important Metrics 

These metrics are still useful and referred to but, in 

comparison to the other metrics, their significance diminishes 

greatly in the case of a Credit Card fraud detection system: 

 

 Training Accuracy and Testing Accuracy can be 

misleading in an imbalanced dataset and overall not 

crucial. 

 Optimal Test Accuracy is not compulsory either because 

it doesnt pertain specifically to our needs of fraud 

detection. 
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Fig 1: Graphical Comparison of Testing Accuracy 

 

 
Fig 2: Graphical comparison of Sensitivity 

 

 
Fig 3: Graphical Comparison of F1-Score 
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Fig 4: Graphical Comparison of MCC 

 

VI. DISCUSSION 

 

This section of our research allows us to discuss and 

come up with ideas on which algorithm or what combination 

of algorithms would be most suitable based on all the data we 

have collected and processed through and made the models to 

be tested for their predictive capabilities and fraud detection 

prowess. We will go over all of our findings point wise based 

on what category that factor falls into. 

 

A. Best Practise for Model Selection 

While we have narrowed down the set of algorithms 

from which we have to choose, we must also narrow down 

the criteria by which we choose the most optimal or most 

optimal combination of the algorithms and their models. For 

Credit Card Fraud detection, while Test Accuracy is not a 

high priority, we will still have to consider and eliminate all 

overfit models. That was the base criteria for Stage 1, for 

Stage 2 , the order of importance of criteria is given below— 

Table 8: Ranking Importance of Crucial Metrics 

Rank Metric Importance 

1 Recall (Sensitivity) Detects fraud cases (avoids false negatives) 

2 Precision Reduces false alarms (avoids blocking real transactions) 

3 F1-Score Balances Recall & Precision 

4 ROC-AUC Measures overall fraud detection ability 

5 MCC Best single-number metric for imbalanced data 

6 BCR Balances performance across both classes 

7 Cohen’s Kappa Accounts for chance predictions 

8 Log Loss Useful for probabilistic models 

9 Average Precision Summarizes precision- recall tradeoff 

10 Training/Testing Accuracy Misleading in imbalanced datasets 

11 Optimal Test Accuracy Not directly useful for fraud detection 

12 Specificity (TNR) Less important than Recall & Precision 

13 Training Time Speed matters but not at the cost of fraud detection 

 

B. Performance Evaluation Tables 

We will now go through the results of each of our 5 

algorithms individually discussing their values, how they 

stack up to our requirements based on Industry Ranges of the 

same values and also whether it is Optimal for Credit Card 

Fraud Detection. We will also discuss each of their Strengths 

and Weaknesses— 

 

 

 

 

 

 

 

 

 AdaBoost Classifier (Boosting) 

 

 Strengths: 

 

 Excellent accuracy and generalization ability. 

 Works well with imbalanced datasets (boosting improves 

minority class detection). 

 Strong precision, recall, and F1-score. 

 

 Weaknesses: 

 

 Training time is longer due to boosting iterations. 

 Sensitive to noisy data and outliers. 

 May overfit on complex datasets. 
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Table 9: Ada Boost Performance Evaluation Table 

Metric Value Industry Standard Compliance 

Test Accuracy 0.9997 High (Excellent) 

Precision ~0.9997 High 

Sensitivity (Recall) ~0.9996 High 

Log Loss Low Good (Indicates Confidence in Predictions) 

F1 Score ~0.9996 High (Balanced Precision & Recall) 

ROC AUC Score ~0.9997 High (Near Perfect Discrimination Ability) 

MCC High Strong Positive Correlation 

 

 Perceptron (Linear Classifier) 

 

 Strengths: 
 

 Computationally efficient (low training time). 

 Works well in linearly separable problems. 

 Weaknesses: 

 

 Extremely poor performance in fraud detection. 

 Cannot handle non-linearly separable data. 

 Low precision, recall, and accuracy. 

 

Table 10: Perceptron Performance Evaluation Table 

Metric Value Industry Standard Compliance 

Test Accuracy 0.4983 Low (Below Industry Standard) 

Precision ~0.498 Low 

Sensitivity (Recall) ~0.498 Low 

Log Loss High Bad (Indicates Poor Confidence in Predictions) 

F1 Score ~0.498 Low (Poor Balance of Precision & Recall) 

ROC AUC Score ~0.50 Random Guessing Level 

MCC ~0.0 No Correlation 

 

 Gaussian Naïve Bayes (NB) 

 

 Strengths: 

 

 Fast & scalable (low training time). 

 Performs well with independent features. 

 

 Weaknesses: 

 

 Assumes feature independence. 

 Lower accuracy. 

Table 11: Gaussian Naive Bayes (NB) Performance Evaluation Table 

Metric Value Industry Standard Compliance 

Test Accuracy 0.9945 High (Good) 

Precision ~0.9944 High 

Sensitivity (Recall) ~0.9945 High 

Log Loss Low Good 

F1 Score ~0.9944 High (Good Balance) 

ROC AUC 

Score 

~0.9945 High 

MCC High Strong Correlation 

 

 K-Nearest Neighbors (KNN) 

 

 Strengths: 

 

 Simple and effective model. 

 Works well for small to medium datasets. 

 Good performance across all metrics. 

 

 Weaknesses: 

 

 Computationally expensive for large datasets. 

 Memory-intensive (stores all training data). 

 Sensitive to choice of k and feature scaling.

Table 12: K-Nearest Neighbour (KNN) Performance Evaluation Table 

Metric Value Industry Standard Compliance 

Test Accuracy 0.9990 High (Good Enough) 

Precision ~0.9985 High 

Sensitivity (Recall) ~0.9984 High 

Log Loss Low Good 
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F1 Score ~0.9985 High 

ROC AUC Score ~0.9986 High 

MCC High Strong Correlation 

 

 Stochastic Gradient Descent (SGD) 

 

 Strengths: 

 

 Efficient for large datasets. 

 Works well for high-dimensional data. 

 Fast training time. 

 

 Weaknesses: 

 

 Low accuracy, precision, and recall. 

 Does not generalize well to complex fraud detection 

patterns. 

 Highly sensitive to learning rate and hyper 

parameters. 

 

With the results we have tallied for each of the 

Algorithm’s models, we can come up with a table that 

perfectly sums up the best points and the impending 

drawback of the algorithm with respect to our research on 

which would be ideal for a Credit Card Fraud Detection 

system. We will discuss alternative ways alongside picking 

the best one for the job and catering to industry metrics and 

values, meaning we must ensure that we not follow the 

biggest most pleasing values but ones that cater to the 

industry standard ranges for what the individual values must 

be. 

 

Table 13: Stochastic Gradient Descent (SGD) Performance Evaluation Table 

Metric Value Industry Standard Compliance 

Test Accuracy 0.7479 Below Standard (Too Low) 

Precision ~0.748 Low 

Sensitivity (Recall) ~0.747 Low 

Log Loss Very Low (8.08e-303) Good 

F1 Score ~0.747 Low 

ROC AUC Score ~0.748 Low 

MCC Low Weak Correlation 

 
Table 14: Best Use Case for Model Table 

Algorithm Best Use Case 

AdaBoost Excellent accuracy, works well with imbalanced data 

KNN Good accuracy but computationally expensive 

Naive Bayes Fast and scalable but makes independence assumptions 

SGD Fast with good Generalisation 

Perceptron Performs worse than random guessing 

 

Combining SGD and AdaBoost is a promising approach 

because it balances generalization (SGD) with high accuracy 

(AdaBoost). This type of hybrid model can leverage the 

strengths of both algorithms: 

 

 SGD: Works well with large datasets, avoids 

overfitting, and complies with industry standards. 

 AdaBoost: Offers high accuracy, strong recall, and 

precision for detecting fraudulent cases. 
 

Now we shall further discuss how to approach this 

idea of combining two algorithms and their use cases. 

 

C. Combining SGD with AdaBoost 

Now that we have established SGD gives us the most 

stable values and a very small margin of error by considering 

it’s immensely low Log Loss value in comparison to the other 

algorithm’s present in this algorithm, we will choose it as a 

potential model to work on a Credit Card Fraud Detection 

System alongside a model that works with far more efficiency 

and better handle on imbalanced data, that is AdaBoost. 

This approach ensure working security in a real life 

scenario where the industry acceptable fit values of SGD 

ensure reliability and no over-fitting combined with the high 

levels of precision, sensitivity and security of imbalanced 

data handling abilities of AdaBoost classifier. 

 

Given below are some methods by which we can 

combine the 2 algorithm’s to make the most of their strong 

points while having minimal problems in implementation 

complexity: 

 

 Boosting SGD as a Weak Learner:  

AdaBoost traditionally works with weak classifiers (like 

decision stumps), but we can use SGD as a weak learner. 

Since SGD is fast and performs well in high- dimensional 

spaces, we can apply AdaBoost to iteratively improve it: 

 

 Step 1: Train an SGD model on the dataset. 

 Step 2: Use AdaBoost to assign more weight to 

misclassified samples. 

 Step 3: Boost multiple weak SGD classifiers into a 
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stronger ensemble model. 

 Pros: 

 Retains SGD’s generalization power, reducing 

overfitting. 

 Boosts performance where SGD alone struggles. 

 Cons: 

 Training time is higher due to boosting multiple SGD 

classifiers. 

 

 Hybrid Stacking Model:  

Instead of AdaBoost, we can stack SGD and AdaBoost 

separately, then use a meta-classifier (like Logistic 

Regression or a simple Neural Network) to make final 

decisions: 

 

 Model 1: Train an SGD classifier to capture 

generalization and prevent overfitting. 

 Model 2: Train an AdaBoost classifier to maximize 

recall and precision. 

 Meta-Classifier: Combine predictions from both models 

to make a final decision. 

 Pros: 

 Balances bias and variance (SGD reduces overfitting, 

AdaBoost improves accuracy). 

 Industry compliance while boosting detection 

power. 

 Cons: 

 More computationally expensive (training two models. 

 

 Dynamic Model Switching:  

Use SGD for general cases and AdaBoost for high-

risk cases: 

 

 Step 1: Train SGD on the entire dataset (general 

fraud detection). 

 Step 2: Identify high-confidence fraud cases using 

AdaBoost. 

 Step 3: If SGD is unsure, use AdaBoost as a fallback 

decision-maker. 

 Pros: 

 Reduces computational cost compared to full ensemble 

learning. 

 Uses SGD’s generalization while relying on AdaBoost 

only when necessary. 

 Cons: 

 Requires a threshold mechanism to decide when to 

switch models 

 

With the necessary data tallied and all the subsequent 

discussions made, we will now provide the final verdict in 

the conclusion section of this research. 

 

VII. CONCLUSION 

 

 Combining SGD with AdaBoost is not only Possible but 

Strategically Beneficial! It Helps Balance: 

 

 SGD’s industry compliance (no overfitting, strong 

generalization). 

 

 AdaBoost’s high accuracy, recall, and fraud detection 

capability. 

 

Table 15: Conditional Approach Table 

Condition Approach 

If computation is 

not an issue 

Stacking (SGD + AdaBoost + Meta- 

Classifier) 

If efficiency is 

required 

Dynamic Switching (SGD for 

general, AdaBoost for high-risk 

cases) 

 

FUTURE SCOPE 

 

Combining SGD (Stochastic Gradient Descent) and 

AdaBoost (Adaptive Boosting) for credit card fraud detection 

creates a balanced and robust system, leveraging SGD’s 

compliance with industry standards and AdaBoost’s high 

accuracy in complex data scenarios. Below are the key future 

scopes for such a system: 

 

A. Improved Fraud Detection Efficiency 

 

 The hybrid model can adaptively learn from new fraud 

patterns while avoiding overfitting, ensuring long-term 

effectiveness. 

 SGD prevents overfitting, keeping the model aligned with 

real-world data, while AdaBoost enhances feature 

selection and identifies subtle fraud patterns. 

 

B. Real-Time Fraud Detection with Adaptive Learning 

 

 Using online learning capabilities of SGD, the system can 

update itself with new fraud cases without retraining from 

scratch. 

 AdaBoost’s adaptive nature helps in improving the 

classification of difficult fraudulent transactions. 

 

C. Scalability for High-Volume Transactions 

 

 The hybrid model can be deployed in large-scale banking 

and financial institutions, handling millions of 

transactions efficiently. 

 Can be optimized for cloud-based deployment, enabling 

fraud detection in distributed financial systems. 

 

D. Robust Against Evolving Fraud Tactics 

 

 Fraud patterns continuously evolve, making it essential 

for models to adapt dynamically. 

 The combined approach ensures resilience to emerging 

fraud techniques, reducing false positives and false 

negatives. 
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