
Volume 10, Issue 3, March – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25mar1761

IJISRT25MAR1761 www.ijisrt.com 2641

Credit Card Fraud Detection Comparing

Multiple Supervised Learning

Algorithms for Optimal Accuracy

Ayan Kumar Mahato1; Cezan Mendonca2; Harita Jasani3; Hariharan B4

1,2,3B. Tech 4th Year, 4Assistant Professor,
1,2,3,4Department of CSE, SRMIST, Chennai, India

Publication Date: 2025/04/12

Abstract: Supervised machine learning algorithms are widely used for classification problems across various domains.

However, selecting the best model requires a thorough evaluation of accuracy, robustness, and generalization ability. This

research compares multiple supervised learning techniques using real- world datasets, focusing on evaluation metrics such

as accuracy, sensitivity, specificity, and AUC-ROC. The study also considers the risk of overfitting, using cross- validation

techniques to strengthen the conclusions. Results indicate that AdaBoost achieves near-perfect accuracy while Stochastic

Gradient Descent (SGD) provides a balanced performance and generalisation, making their hybrid or combination a

preferable choice for fraud detection.

Keywords: Machine Learning, Accuracy, Classification, Generalisation.

How to Cite: Ayan Kumar Mahato; Cezan Mendonca; Harita Jasani; Hariharan B. (2025). Credit Card Fraud Detection Comparing

Multiple Supervised Learning Algorithms for Optimal Accuracy. International Journal of Innovative Science and

Research Technology, 10(3), 2641-2653. https://doi.org/10.38124/ijisrt/25mar1761.

I. INTRODUCTION

The concept everyone relied on for getting access to

banking services for a long time was simply the in-person

services provided by Banking Organisations, until Citibank

and Wells Forgo Bank introduced internet banking

application in the United States of America in the year 1996.

This was the beginning of a huge surge in online transactions,

especially after the use of Credit Card services were adopted

into online banking. All of a sudden, there was a huge market

to entertain the use of online Card features such as payments.

Loans, etc. across different types of platforms like e-

commerce sites, Social networking, online banking, work

from home, etc.

Now the online transaction space is more crowded than

ever, with millions and even billions of online transactions

taking place every single moment. With this increase in

online transactions also comes the fraud transactions and

scams that take place online to steal information and data and

money from certain users or organisations as a whole. Online

Cyber crime now more than ever is at an all time high, threat

actors can access online data using methods like Cross Site

Scripting to gain access to websites as other users using their

session cookies, and using such actions, even gain

administrative access. After all these actions, they also have

services to mask their identities such as using VPN’s(Virtual

Private Networks). One way to find them out would be to

monitor the transactions happening to and from that account.

These transactions will have certain features and attributes

where the values will vary by a noticeable margin compared

to legitimate transactions. Using these differences in

attributes and properties between legit and fraud transactions

combined with the modern day power and versatility of AI

and ML, we can create systems and models using Machine

Learning Algorithms which can assist the existing systems in

place for purposes of detection fraudulent transactions.

In the research we have undertaken, we are comparing

12 Supervised Learning Algorithms, the Supervised here

signifies that the model will be trained using labeled data. We

use a balanced dataset, meaning the number of fraud and legit

transactions is the exact same. However during Predictive and

training sessions it will be imbalanced. Some of the models

are Stochastic Gradient Descent, DecisionTree, Logistic

Regression, Random Forest, Support Vector Machine,

Perceptron. All the mentioned algorithms/ their models will

be compared across multiple deciding factors across multiple

stages of comparisons to be able to find out the optimal

Algorithm and its model respectively for the task of detecting

fraud transactions from a set of Supervised learning

Algorithms.

https://doi.org/10.38124/ijisrt/25mar1761
http://www.ijisrt.com/
https://doi.org/10.38124/ijisrt/25mar1761

Volume 10, Issue 3, March – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25mar1761

IJISRT25MAR1761 www.ijisrt.com 2642

II. LITERATURE REVIEW

For this research, we have referred many informative

papers and studies done on topics co-relating to our research

such as the {1} investigation of performance of Naive Bayes,

knn and LRM on highly skewed credit card fraud data,

undertaking a hybrid technique of under and over sampling

of data. Evaluations done using confusion matrix outputs.

The next study proposes a {2}3-stage fraudulent card

detection system which relies on a) Detection of invalid and

fake credit from legitimate ones by using the Luhn algorithm

for card number validation, b) dynamic verification of card

expiry date, and c) a script code validation for Card

Verification Value (CVV) or Card Verification Code (CVC)

that compute the total number of digits which should be

within the specified range. The next study proposes a model

to {3} handle imbalanced data using XGBoost classifier to

detect fraud transactions. The typical technique pre-

determines the threshold value, resulting in inefficiency

where several threshold values are computed and compared

to identify the ideal value that provides an optimal outcome

and high efficiency. The next study {4} compares 3 ML

algorithms (i.e. Random Forest, Logistic regression, and

AdaBoost) and compared the machine learning algorithms

based on their Accuracy and Mathews Correlation

Coefficient (MCC) Score. In these three algorithms, the

Random Forest Algorithm achieved the best Accuracy and

MCC score. The Streamlit framework is used to create the

machine learning web application.

The next study {5} is a research investigating the

application of advanced machine learning techniques to

effectively detect fraudulent transactions. The findings

highlight the need for resilient, scalable, and real-time

mechanisms to combat evolving fraud strategies. The next

study {6} examines the latest advances and application in the

field of machine learning-based credit card fraud detection

where four machine learning algorithms have been analyzed

and compared on the basis of their accuracies. It is found out

that Catboost algorithm works best to detect credit card fraud

with an accuracy of 99.87 percentage. The dataset for credit

card fraud detection was taken from kaggle. The next study

{7} proposes a method to overcome the problem of Credit

Card identification by combining Deep Learning with

Machine Learning techniques. To reduce the number of false

negatives, this study has performed data-matching trials with

the implementation of Deep Learning Techniques. Utilizing

the suggested strategy, it is possible to locate Credit Card

Fraud (CCF) remotely from any location. The next study {8}

discusses the problem of detecting a credit score includes

modelling of past transactions for credit cards with the facts

of those who have been revealed to fraud. The version is then

used to delay whether new transactions are fraudulent or are

now not new transactions. In this method, focus was put on

the analysis and preprocessing of several anomaly detection

algorithms and record sets, such as "neighbor outliers" and

"forest zone isolation" algorithms, in PCA-converted credit

card transaction statistics.

The next study {9} shows how algorithms like Logistic

Regression and Random Forest were used in creating Fraud

Fort, an advanced system designed to detect credit card fraud.

The study illustrates the efficacy of integrating both models

in Fraud Fort. The results indicate the combined advantages

of logistic regression and random forest so that fraud

detection system can become strong, eventually leading to a

more secure and reliable economic ecosystem. The next study

{10} depicts how popular supervised and unsupervised

machine learning algorithms have been applied to detect

credit card frauds in a highly imbalanced dataset. It was found

that unsupervised machine learning algorithms can handle the

skewness and give best classification results. The next study

{11} is about how financial institutions aim to secure credit

card transactions and allow their customers to use e-banking

services safely and efficiently. To reach this goal, they try to

develop more relevant fraud detection techniques that can

identify more fraudulent transactions and decrease frauds.

Defining the fundamental aspects of fraud detection, the

current systems of fraud detection, the issues and challenges

of frauds related to the banking sector, and the existing

solutions based on machine learning techniques. The next

study {12} implements six widely used machine learning

techniques for credit card fraud detection. Their efficacy is

analysed based on the parameters such as accuracy,

precision, recall, specificity, misclassification, and F1 score.

Results show that machine learning techniques are helpful for

credit card fraud detection. We strongly recommend using

multiple machine learning techniques for fraud detection

before they occur or in the process of occurrence. The next

study {13} performs a comparative experimental study to

detect credit card frauds, as well as to tackle the imbalance

classification problem by applying different machine

learning algorithms for handling imbalanced datasets. The

study shows that there is no need to process imbalance dataset

by applying resampling techniques to measure the

performance of our classifiers and it is sufficient to measure

the performance through the three-performance

measurements (Accuracy, Sensitivity, and Area Under

Precision/Recall Curve (PRC) to prove the accuracy of the

prediction of classification.

III. MODULE DESCRIPTION

This section provides an overview of the different

components that make up the fraud detection system. Each

module is responsible for a specific task, ensuring the

pipeline runs smoothly from raw data input to fraud

classification. Explained below are the different modules and

their key purposes:

A. Data Preparation and Preprocessing

This is the starting or initial phase of the process. It

ensures the below given processes:

 Import Libraries: Loads essential Python libraries such as

NumPy, Pandas, Scikit-Learn, Matplotlib, and Seaborn

for data handling, model training, and visualization.

 Load Dataset: Ensure correct dataset is loaded for all the

algorithms and all their models are trained on the same

https://doi.org/10.38124/ijisrt/25mar1761
http://www.ijisrt.com/

Volume 10, Issue 3, March – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25mar1761

IJISRT25MAR1761 www.ijisrt.com 2643

dataset. We make use of a balanced dataset with equal

share of fraud and legit attribute. The dataset is in the form

of a CSV file and contains over half a million rows of data,

with many columns with sensitive data having PCA based

data.

 Preprocess Data: Handle instances of missing data points

with mean, median or mode replacement, do encoding and

detecting outlier using methods like Z-score analysis.

 Feature Scaling: To ensure uniform scale, standardise or

normalise data in a certain specific format across all the

data. Aids in convergence in Machine Learning models.

 Data Splitting: Using splitting functions like

train_test_split_data to split the dataset into training and

testing data in a specified ration, in our case, we have used

80% of the dataset for training and 20% to test against the

trained and fitted model.

B. Model Initialisation and Training

Once the correct libraries have been imported, dataset

has been imported and processed, we move to the steps given

below which explain the continuing workflow.

 Initialise Model: Selecting the required Machine Learning

Algorithm to train the model and based on which model,

defining parameters upon which model will have initial

calibration and setting.

 Timer: Using the Time library in python to calculate time

taken to fit specific model. This becomes a big factor that

contributes to deciding ultimately which algorithm’s

model will be more efficient to train, test and fit.

 Model Fitting: Trains the specific algorithm’s model on

the provided training dataset. Some algorithms are

equipped with hyper parameters and optimising functions

and features like grid search for optimal n value (eg. knn),

etc.

C. Model Predictions and Evaluation

The trained and tested model will now be evaluated

based on it prediction capabilities and performance overview

done via below given steps:

 Predict on Training Data: Generates trained model

predictions on the training dataset. A crucial component

in detection of overfitting.

 Predict on Test Data: Uses the trained model to generate

predictions on the unseen testing data, provides first

proper result of how well model has been trained.

 Calculate Training Accuracy: Computes the model’s

accuracy on training data.

 Calculate Testing Accuracy: Computes the model’s

accuracy on testing data in order to evaluate

generalisation performance.

D. Performance Metrics and Analysis

The following steps provide results based on detailed

evaluation using standard classification metrics—

 Matrix and Plotting: Generating confusion matrix and

plotting heat map of the confusion matrix for easy

interpretation.

 ROC AUC Score and curve plotting: Computing and

plotting the Receiver Operating Characteristic curve and

Area Under Curve score. This gives us an idea and

understanding of the trade-off between sensitivity(recall)

and specificity.

 Determining Optimal Threshold and Prediction

Recalculation: Identifying the best classification

threshold for improving model accuracy and adjusts

predictions based on the optimal threshold and re-

evaluation performance.

 Calculating Optimal Test Accuracy: Measures the new

accuracy score after determining threshold optimisation.

E. Data Insights and Visualisation

The following steps involve he use of visual

representations to analyse key data characteristics:

 Plotting Distributions: V isualising the

distributions of transaction amounts, their id’s, plotting

correlation heat map to display feature relationships.

 Organise Metrics: Summarise all evaluation factors and

their values for comparison or study or further analysis.

IV. DESIGN METHODOLOGY

Methodology is used to describe the step-by-step

approach to how the system as a whole was made and

designed. What all parts have had to come together to make

the system work. We will understand the methodology of our

research below:

A. Extra Trees Classifier (Extremely Randomised Trees)

An ensemble learning method based on Decision Trees.

Unlike Random Forest, Extra Trees selects features randomly

and splits at random thresholds instead of calculating the best

split. Faster than Random Forest due to random splits. Good

for handling imbalanced datasets like fraud detection.

Mathematical Formulation:

 Given a dataset with features and labels,

 Extra Trees

 Selects a subset of features randomly.

 Picks a random split value instead of best split

 Constructs multiple decision trees.

 Prediction:

Where s the output from the decision tree, and

 is the number of trees.

B. Perceptron

One of the earliest binary classifiers. It learns a linear

decision boundary to separate fraud (1) and non-fraud (0)

transactions. Uses Stochastic Gradient Descent (SGD) for

weight updates. Mathematical Formulation:

https://doi.org/10.38124/ijisrt/25mar1761
http://www.ijisrt.com/

Volume 10, Issue 3, March – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25mar1761

IJISRT25MAR1761 www.ijisrt.com 2644

 Given input. ,

 Weights. and bias.

 Activation function (step function):

 Weight Update Rule:

Where. is the learning rate.

C. AdaBoost Classifier

Boosting algorithm that combines multiple weak

classifiers to form a strong classifier. Assigns weights to

misclassified instances and re-trains on them.

Mathematical Formulation:

 Given classifiers. AdaBoost assigns a weight.

Where. is the weighted classification error.

 Final prediction:

D. Gaussian Naive Bayes

A probabilistic classifier based on Bayes’ theorem.

Assumes independence among features and normal

distribution. Mathematical formulation:

 Given features.

 Gaussian probability for a feature.

 Classification: Assign to the class with the highest

posterior probability.

E. Stochastic Gradient Descent

Optimization method for large datasets. Iteratively

updates weights for each instance instead of the entire batch.

Mathematical formulation:

 Given cost function.

 Gradient update rule:

Where. is the learning rate.

F. Multi-Layer Perceptron

Neural Network with hidden layers. Uses

backpropagation and activation functions like ReLU or

Sigmoid. Mathematical formulation:

 Forward propagation:

 Error computation using Cross-Entropy Loss:

 Backpropagation updates weights using gradient

descent.

G. XGBoost

Gradient Boosting algorithm optimized for speed and

accuracy. Uses tree pruning and regularization to prevent

overfitting. Mathematical formulation:

 Boosted trees minimize loss:

H. Random Forest

Ensemble of Decision Trees. Reduces variance

compared to a single tree. Mathematical formulation:

 Predictions are aggregated across trees:

https://doi.org/10.38124/ijisrt/25mar1761
http://www.ijisrt.com/

Volume 10, Issue 3, March – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25mar1761

IJISRT25MAR1761 www.ijisrt.com 2645

I. Decision Trees

Recursive partitioning based on feature splits. Uses Gini

Impurity or Entropy for splitting. Mathematical formulation:

 Gini Imputiry:

 Entropy:

J. K-Nearest Neighbours

Classifies based on the majority of K nearest data

points. Mathematical formulation:

 Distance Metric:

K. Support Vector Machine

Finds the optimal hyperplane that separates classes.

 Mathematical Formulation:

 Decision boundary:

 Objective:

 Subject to:

L. Logistic Regression

Predicts probability using sigmoid function.

 Mathematical formulation:

 Sigmoid Function:

M. Environmental Setup and Requirements

The interactive environment used must be suitable for

coding, particularly for Machine Learning and Deep

Learning. Coding language of choice is Python, due to its ease

of use and as it is the standard ML coding language to code

models. Using a proper environment, in our case we have

used 3 which are Google Colab, Jupyter Notebook and

Kaggle. Writing and executing code in these notebooks in

ipynb format files provides us with good visualisation of

results including graphs and curves, and also properly

highlighted errors and quick ways to resolve them, given

below are the tables comparing the properties of the 3

different interactive environment platforms or services we

have used—

Table 1: Dataset Handling Comparison

Feature Jupyter Notebook Google Colab Kaggle Notebooks

Dataset Access Local files, databases, cloud

(manual setup required).

Google Drive, cloud storage,

or direct uploads.

Direct access to Kaggle

datasets; easy integration.

File Storage Local machine storage. Temporary cloud storage

(resets after session).

Persistent storage (within

Kaggle).

Integration with

Cloud Services

Manual setup for AWS/GCP. Seamless integration with

Google Drive.

Kaggle datasets and APIs easily

accessible.

A factor that affects the scale to which a research can be

done is based on resource availability and feasibility, the

ttable given below addresses the cost comparison of the

Interactive environments—

Table 2: Cost Considerations Comparison

Feature Jupyter Notebook Google Colab Kaggle Notebooks

Free Access Free, but dependent on local

hardware.

Free with limited resources; Pro

versions available.

Free with fair usage limits.

Pro/Paid Plans No paid plans

(hardware- dependent).

Colab Pro ($9.99/month), Colab

Pro+ ($49.99/month) for better GPUs

and longer runtimes.

No paid version; completely

free.

The environment of choice must have acceptable levels

of support for Libraries and Frameworks so that we can

ensure that all of our algorithms are able to run and provide

us with models.

https://doi.org/10.38124/ijisrt/25mar1761
http://www.ijisrt.com/

Volume 10, Issue 3, March – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25mar1761

IJISRT25MAR1761 www.ijisrt.com 2646

Table 3: Framework Support Comparison

Feature Jupyter Notebook Google Colab Kaggle Notebooks

Pre-installed Libraries Requires manual installation

(pip install).

Most ML libraries pre-

installed.

ML/DL libraries pre-installed

(TensorFlow, PyTorch, etc.).

Custom Libraries Full control; can install any

package.

Can install new libraries

(!pip install).

Can install new libraries (!pip

install).

TensorFlow/ PyTorch

Support

Full support if installed. Pre-installed; supports

TPUs.

Pre-installed; optimized for

Kaggle competitions.

Another major factor that will definitely produce

different values for us based on which environment is chosen

is the performance levels at which each environment

operates, the comparison of performance capabilities is given

below.

Table 4: Performance Capability Comparison

Feature Jupyter Notebook Google Colab Kaggle Notebooks

Processing Power Limited by local machine

resources (CPU/ GPU/RAM).

Free tier provides cloud- based

GPUs (T4, P100, V100 in

Pro/Pro+).

Free cloud GPUs (T4,

P100); limited time usage.

RAM

Availability

Dependent on local hardware

(8GB, 16GB, etc.).

Up to 12GB (Free), 24GB

(Colab Pro), 32GB (Colab Pro+).

16GB RAM for free users.

Disk Storage Uses local disk; constrained

by storage capacity.

Limited to 107GB (temp storage,

resets after session).

20GB disk storage, persists

across sessions.

Runtime Limitations No restrictions (local

execution).

12-hour session limit (Free),

longer in Pro.

9-hour session limit, but state

persists across runs.

Internet Dependency Not required; runs offline. Required; cloud-based. Required; cloud-based.

We primarily use and refer to the data and results we

obtain from Jupyter Notebook because it caters to the needs

of the research team. It is best for local execution, it has

persistent environment, full control over dependencies and

more power efficient on our systems.

V. RESULTS AND EVALUATION

We have done a 2 Stage analysis and evaluation of all

the algorithms based on their output values for each

Performance Evaluation Metric. In Stage 1, we simply

compared all 12 algorithms based on their training, testing,

and overall accuracies and their fit time. We managed to

eliminate 7 algorithms from the running for multiple reason,

such as unable to finish process-LRM, SVM, MLPC. We also

eliminated based on overfitting- XGBoost, Decision Trees,

Random Forest, Extra Trees Classifier. This left us with 5

remaining algorithms to compare in Stage 2 using more

Metrics.

Table 5: Stage 1 Comparison of Algorithms

Algorithm Fit Time (s) Train % Test %

ETC 21.21 1.0 0.999824

Perceptron 0.70 0.686103 0.685850

Adaboost 116.79 0.999635 0.999674

Naive Bayes 0.20 0.994491 0.994521

SGD 107.21 0.748404 0.747920

MLPC 148.51 0.998533 0.998355

XGB 2.01 1.0 0.999718

RandomForest 240.81 1.0 0.999672

Decision Tree 22.65 1.0 0.999586

KNN 0.12 0.999059 0.998497

SVM - - -

LRM - - -

Stage 2 is the phase where we compare the algorithms

that did not get eliminated in the comparison of Stage 1. Here,

we compare the performance of the algorithm’s models

across more sensitive and a bigger set of Evaluation

Metrics.We must also consider Over-fitting for most of these

Metrics.

A. Highly Crucial Metrics

Four basic metrics are used in evaluating the

experiments, namely True positive (TPR), True Negative

(TNR), False Positive (FPR) and False Negative (FNR) rates

metric respectively.

https://doi.org/10.38124/ijisrt/25mar1761
http://www.ijisrt.com/

Volume 10, Issue 3, March – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25mar1761

IJISRT25MAR1761 www.ijisrt.com 2647

The highly crucial metrics directly assess how well the

model identifies fraud cases while handling class imbalance.

 Sensitivity:

 Precision:

 F1-score:

 Matthews Correlation Coefficient:

 ROC-AUC:

Table 6: Stage 2 High Crucial Metrics Comparison

Metric SGD Perceptron ABC Gaussian NB KNN

Sensitivity 0.76206 0.559397 0.999596 0.989044 0.999947

Precision 0.758883 0.748764 0.999754 1.0 0.996427

F1 Score 0.760468 0.640374 0.999675 0.994492 0.998209

MCC 0.519938 0.38419 0.999349 0.989103 0.996418

ROC AUC 0.76006 0.790711 0.999968 0.999107 0.999002

B. Moderately Important Metrics Consists of:

 Balanced Classification Rate(BCR) which ensures the

model performs well across both classes (legitimate &

fraud) and also balances sensitivity and specificity.

 Cohen’s Kappa measures agreement between predicted &

actual fraud cases and accounts for chance agreement.

 Log Loss penalizes incorrect confident

predictions. Helps in optimizing probabilistic models like

Logistic Regression & Neural Networks.

 Average Precision (AP Score) summarizes precision-

recall tradeoff at different thresholds. Useful for

comparing models.

 Optimal Threshold, based on the type of experimental

setup being made, can matter even more Cohen’s Kappa,

which is true in our case.

Table 7: Stage 2 Moderately Important Metrics Comparison

Metric SGD Perceptron ABC Gaussian NB KNN

BCR 0.759967 0.685085 0.999675 0.994522 0.998206

Cohen's Kappa 0.519434 0.3717 0.999349 0.989044 0.996412

Log Loss 8.651668 - 0.300422 0.057248 0.007822

Average Precision 0.692371 0.807149 0.999926 0.999456 0.999085

Optimal Threshold 8.086462

× 10⁻³³

-1.196368

× 10¹⁰

0.502309 0.321221 0.88

Sensitivity 0.76206 0.559397 0.999596 0.989044 0.999947

Specificity 0.757874 0.812303 0.999754 1.0 0.996465

The remainder of the metrics are not of utmost

importance in the case of our experiment pertains to Credit

Card Fraud Detection. We would now switch over to

representing the usable levels of our algorithms in the form

of graphs.

C. Less Important Metrics

These metrics are still useful and referred to but, in

comparison to the other metrics, their significance diminishes

greatly in the case of a Credit Card fraud detection system:

 Training Accuracy and Testing Accuracy can be

misleading in an imbalanced dataset and overall not

crucial.

 Optimal Test Accuracy is not compulsory either because

it doesnt pertain specifically to our needs of fraud

detection.

https://doi.org/10.38124/ijisrt/25mar1761
http://www.ijisrt.com/

Volume 10, Issue 3, March – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25mar1761

IJISRT25MAR1761 www.ijisrt.com 2648

Fig 1: Graphical Comparison of Testing Accuracy

Fig 2: Graphical comparison of Sensitivity

Fig 3: Graphical Comparison of F1-Score

https://doi.org/10.38124/ijisrt/25mar1761
http://www.ijisrt.com/

Volume 10, Issue 3, March – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25mar1761

IJISRT25MAR1761 www.ijisrt.com 2649

Fig 4: Graphical Comparison of MCC

VI. DISCUSSION

This section of our research allows us to discuss and

come up with ideas on which algorithm or what combination

of algorithms would be most suitable based on all the data we

have collected and processed through and made the models to

be tested for their predictive capabilities and fraud detection

prowess. We will go over all of our findings point wise based

on what category that factor falls into.

A. Best Practise for Model Selection

While we have narrowed down the set of algorithms

from which we have to choose, we must also narrow down

the criteria by which we choose the most optimal or most

optimal combination of the algorithms and their models. For

Credit Card Fraud detection, while Test Accuracy is not a

high priority, we will still have to consider and eliminate all

overfit models. That was the base criteria for Stage 1, for

Stage 2 , the order of importance of criteria is given below—

Table 8: Ranking Importance of Crucial Metrics

Rank Metric Importance

1 Recall (Sensitivity) Detects fraud cases (avoids false negatives)

2 Precision Reduces false alarms (avoids blocking real transactions)

3 F1-Score Balances Recall & Precision

4 ROC-AUC Measures overall fraud detection ability

5 MCC Best single-number metric for imbalanced data

6 BCR Balances performance across both classes

7 Cohen’s Kappa Accounts for chance predictions

8 Log Loss Useful for probabilistic models

9 Average Precision Summarizes precision- recall tradeoff

10 Training/Testing Accuracy Misleading in imbalanced datasets

11 Optimal Test Accuracy Not directly useful for fraud detection

12 Specificity (TNR) Less important than Recall & Precision

13 Training Time Speed matters but not at the cost of fraud detection

B. Performance Evaluation Tables

We will now go through the results of each of our 5

algorithms individually discussing their values, how they

stack up to our requirements based on Industry Ranges of the

same values and also whether it is Optimal for Credit Card

Fraud Detection. We will also discuss each of their Strengths

and Weaknesses—

 AdaBoost Classifier (Boosting)

 Strengths:

 Excellent accuracy and generalization ability.

 Works well with imbalanced datasets (boosting improves

minority class detection).

 Strong precision, recall, and F1-score.

 Weaknesses:

 Training time is longer due to boosting iterations.

 Sensitive to noisy data and outliers.

 May overfit on complex datasets.

https://doi.org/10.38124/ijisrt/25mar1761
http://www.ijisrt.com/

Volume 10, Issue 3, March – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25mar1761

IJISRT25MAR1761 www.ijisrt.com 2650

Table 9: Ada Boost Performance Evaluation Table

Metric Value Industry Standard Compliance

Test Accuracy 0.9997 High (Excellent)

Precision ~0.9997 High

Sensitivity (Recall) ~0.9996 High

Log Loss Low Good (Indicates Confidence in Predictions)

F1 Score ~0.9996 High (Balanced Precision & Recall)

ROC AUC Score ~0.9997 High (Near Perfect Discrimination Ability)

MCC High Strong Positive Correlation

 Perceptron (Linear Classifier)

 Strengths:

 Computationally efficient (low training time).

 Works well in linearly separable problems.

 Weaknesses:

 Extremely poor performance in fraud detection.

 Cannot handle non-linearly separable data.

 Low precision, recall, and accuracy.

Table 10: Perceptron Performance Evaluation Table

Metric Value Industry Standard Compliance

Test Accuracy 0.4983 Low (Below Industry Standard)

Precision ~0.498 Low

Sensitivity (Recall) ~0.498 Low

Log Loss High Bad (Indicates Poor Confidence in Predictions)

F1 Score ~0.498 Low (Poor Balance of Precision & Recall)

ROC AUC Score ~0.50 Random Guessing Level

MCC ~0.0 No Correlation

 Gaussian Naïve Bayes (NB)

 Strengths:

 Fast & scalable (low training time).

 Performs well with independent features.

 Weaknesses:

 Assumes feature independence.

 Lower accuracy.

Table 11: Gaussian Naive Bayes (NB) Performance Evaluation Table

Metric Value Industry Standard Compliance

Test Accuracy 0.9945 High (Good)

Precision ~0.9944 High

Sensitivity (Recall) ~0.9945 High

Log Loss Low Good

F1 Score ~0.9944 High (Good Balance)

ROC AUC

Score

~0.9945 High

MCC High Strong Correlation

 K-Nearest Neighbors (KNN)

 Strengths:

 Simple and effective model.

 Works well for small to medium datasets.

 Good performance across all metrics.

 Weaknesses:

 Computationally expensive for large datasets.

 Memory-intensive (stores all training data).

 Sensitive to choice of k and feature scaling.

Table 12: K-Nearest Neighbour (KNN) Performance Evaluation Table

Metric Value Industry Standard Compliance

Test Accuracy 0.9990 High (Good Enough)

Precision ~0.9985 High

Sensitivity (Recall) ~0.9984 High

Log Loss Low Good

https://doi.org/10.38124/ijisrt/25mar1761
http://www.ijisrt.com/

Volume 10, Issue 3, March – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25mar1761

IJISRT25MAR1761 www.ijisrt.com 2651

F1 Score ~0.9985 High

ROC AUC Score ~0.9986 High

MCC High Strong Correlation

 Stochastic Gradient Descent (SGD)

 Strengths:

 Efficient for large datasets.

 Works well for high-dimensional data.

 Fast training time.

 Weaknesses:

 Low accuracy, precision, and recall.

 Does not generalize well to complex fraud detection

patterns.

 Highly sensitive to learning rate and hyper

parameters.

With the results we have tallied for each of the

Algorithm’s models, we can come up with a table that

perfectly sums up the best points and the impending

drawback of the algorithm with respect to our research on

which would be ideal for a Credit Card Fraud Detection

system. We will discuss alternative ways alongside picking

the best one for the job and catering to industry metrics and

values, meaning we must ensure that we not follow the

biggest most pleasing values but ones that cater to the

industry standard ranges for what the individual values must

be.

Table 13: Stochastic Gradient Descent (SGD) Performance Evaluation Table

Metric Value Industry Standard Compliance

Test Accuracy 0.7479 Below Standard (Too Low)

Precision ~0.748 Low

Sensitivity (Recall) ~0.747 Low

Log Loss Very Low (8.08e-303) Good

F1 Score ~0.747 Low

ROC AUC Score ~0.748 Low

MCC Low Weak Correlation

Table 14: Best Use Case for Model Table

Algorithm Best Use Case

AdaBoost Excellent accuracy, works well with imbalanced data

KNN Good accuracy but computationally expensive

Naive Bayes Fast and scalable but makes independence assumptions

SGD Fast with good Generalisation

Perceptron Performs worse than random guessing

Combining SGD and AdaBoost is a promising approach

because it balances generalization (SGD) with high accuracy

(AdaBoost). This type of hybrid model can leverage the

strengths of both algorithms:

 SGD: Works well with large datasets, avoids

overfitting, and complies with industry standards.

 AdaBoost: Offers high accuracy, strong recall, and

precision for detecting fraudulent cases.

Now we shall further discuss how to approach this

idea of combining two algorithms and their use cases.

C. Combining SGD with AdaBoost

Now that we have established SGD gives us the most

stable values and a very small margin of error by considering

it’s immensely low Log Loss value in comparison to the other

algorithm’s present in this algorithm, we will choose it as a

potential model to work on a Credit Card Fraud Detection

System alongside a model that works with far more efficiency

and better handle on imbalanced data, that is AdaBoost.

This approach ensure working security in a real life

scenario where the industry acceptable fit values of SGD

ensure reliability and no over-fitting combined with the high

levels of precision, sensitivity and security of imbalanced

data handling abilities of AdaBoost classifier.

Given below are some methods by which we can

combine the 2 algorithm’s to make the most of their strong

points while having minimal problems in implementation

complexity:

 Boosting SGD as a Weak Learner:

AdaBoost traditionally works with weak classifiers (like

decision stumps), but we can use SGD as a weak learner.

Since SGD is fast and performs well in high- dimensional

spaces, we can apply AdaBoost to iteratively improve it:

 Step 1: Train an SGD model on the dataset.

 Step 2: Use AdaBoost to assign more weight to

misclassified samples.

 Step 3: Boost multiple weak SGD classifiers into a

https://doi.org/10.38124/ijisrt/25mar1761
http://www.ijisrt.com/

Volume 10, Issue 3, March – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25mar1761

IJISRT25MAR1761 www.ijisrt.com 2652

stronger ensemble model.

 Pros:

 Retains SGD’s generalization power, reducing

overfitting.

 Boosts performance where SGD alone struggles.

 Cons:

 Training time is higher due to boosting multiple SGD

classifiers.

 Hybrid Stacking Model:

Instead of AdaBoost, we can stack SGD and AdaBoost

separately, then use a meta-classifier (like Logistic

Regression or a simple Neural Network) to make final

decisions:

 Model 1: Train an SGD classifier to capture

generalization and prevent overfitting.

 Model 2: Train an AdaBoost classifier to maximize

recall and precision.

 Meta-Classifier: Combine predictions from both models

to make a final decision.

 Pros:

 Balances bias and variance (SGD reduces overfitting,

AdaBoost improves accuracy).

 Industry compliance while boosting detection

power.

 Cons:

 More computationally expensive (training two models.

 Dynamic Model Switching:

Use SGD for general cases and AdaBoost for high-

risk cases:

 Step 1: Train SGD on the entire dataset (general

fraud detection).

 Step 2: Identify high-confidence fraud cases using

AdaBoost.

 Step 3: If SGD is unsure, use AdaBoost as a fallback

decision-maker.

 Pros:

 Reduces computational cost compared to full ensemble

learning.

 Uses SGD’s generalization while relying on AdaBoost

only when necessary.

 Cons:

 Requires a threshold mechanism to decide when to

switch models

With the necessary data tallied and all the subsequent

discussions made, we will now provide the final verdict in

the conclusion section of this research.

VII. CONCLUSION

 Combining SGD with AdaBoost is not only Possible but

Strategically Beneficial! It Helps Balance:

 SGD’s industry compliance (no overfitting, strong

generalization).

 AdaBoost’s high accuracy, recall, and fraud detection

capability.

Table 15: Conditional Approach Table

Condition Approach

If computation is

not an issue

Stacking (SGD + AdaBoost + Meta-

Classifier)

If efficiency is

required

Dynamic Switching (SGD for

general, AdaBoost for high-risk

cases)

FUTURE SCOPE

Combining SGD (Stochastic Gradient Descent) and

AdaBoost (Adaptive Boosting) for credit card fraud detection

creates a balanced and robust system, leveraging SGD’s

compliance with industry standards and AdaBoost’s high

accuracy in complex data scenarios. Below are the key future

scopes for such a system:

A. Improved Fraud Detection Efficiency

 The hybrid model can adaptively learn from new fraud

patterns while avoiding overfitting, ensuring long-term

effectiveness.

 SGD prevents overfitting, keeping the model aligned with

real-world data, while AdaBoost enhances feature

selection and identifies subtle fraud patterns.

B. Real-Time Fraud Detection with Adaptive Learning

 Using online learning capabilities of SGD, the system can

update itself with new fraud cases without retraining from

scratch.

 AdaBoost’s adaptive nature helps in improving the

classification of difficult fraudulent transactions.

C. Scalability for High-Volume Transactions

 The hybrid model can be deployed in large-scale banking

and financial institutions, handling millions of

transactions efficiently.

 Can be optimized for cloud-based deployment, enabling

fraud detection in distributed financial systems.

D. Robust Against Evolving Fraud Tactics

 Fraud patterns continuously evolve, making it essential

for models to adapt dynamically.

 The combined approach ensures resilience to emerging

fraud techniques, reducing false positives and false

negatives.

REFERENCES

[1]. J. O. Awoyemi, A. O. Adetunmbi and S. A.

Oluwadare, "Credit card fraud detection using

machine learning techniques: A comparative

analysis," 2017 International Conference on

Computing Networking and Informatics (ICCNI),

https://doi.org/10.38124/ijisrt/25mar1761
http://www.ijisrt.com/

Volume 10, Issue 3, March – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25mar1761

IJISRT25MAR1761 www.ijisrt.com 2653

Lagos, Nigeria, 2017, pp. 1-9, doi:

10.1109/ICCNI.2017.8123782.

[2]. Singh, A. Singh, A. Aggarwal and A. Chauhan,

"Design and Implementation of Different Machine

Learning Algorithms for Credit Card Fraud

Detection," 2022 International Conference on

Electrical, Computer, Communications and

Mechatronics Engineering (ICECCME), Maldives,

Maldives, 2022, pp. 1-6, doi:

10.1109/ICECCME55909.2022.9988588.

[3]. Alneyadi, H. Lamaazi, M. Alshamsi, M. Albaloushi,

M. Alneyadi and N. Megrez, "Toward an Efficient

Credit Card Fraud Detection," 2024 Arab ICT

Conference (AICTC), Manama, B a h r a i n , 2 0 2 4 ,

p p . 7 3 - 7 8 , d o i : 1 0 . 1 1 0 9 /

AICTC58357.2024.10735025.

[4]. S. Jain, N. Sharma and M. Kumar, "FraudFort:

Harnessing Machine Learning for Credit Card Fraud

Detection," 2024 First International Conference on

Technological Innovations and Advance Computing

(TIACOMP), Bali, Indonesia, 2024, pp. 41-46, doi:

10.1109/TIACOMP64125.2024.00017.

[5]. S. Nijwala, S. Maurya, M. P. Thapliyal and R. Verma,

"Extreme Gradient Boost Classifier based Credit Card

Fraud Detection Model," 2023 International

Conference on Device Intelligence, Computing and

Communication Technologies, (DICCT), Dehradun,

India, 2023, pp. 500-504, doi: 10.1109/

DICCT56244.2023.10110188.

[6]. V. Jain, H. Kavitha and S. Mohana Kumar, "Credit

Card Fraud Detection Web Application using

Streamlit and Machine Learning," 2022 IEEE

International Conference on Data Science and

Information System (ICDSIS), Hassan, India, 2022,

pp. 1-5, doi: 10.1109/ICDSIS55133.2022.9915901.

[7]. V. R. Sonwane, S. Zanje, S. Yenpure, Y. Gunjal, Y.

Kulkarni and R. Yeole, "Advanced Machine Learning

Techniques for Credit Card Fraud Detection: A

Comprehensive Study," 2024 5th International

Conference on Smart Electronics and Communication

(ICOSEC), Trichy, India, 2024, pp. 1978-1981, doi:

10.1109/ICOSEC61587.2024.10722667.

[8]. Y. Singh, K. Singh and V. Singh Chauhan, "Fraud

Detection Techniques for Credit Card Transactions,"

2022 3rd International Conference on Intelligent

Engineering and Management (ICIEM), London,

United Kingdom, 2022, pp. 821-824, doi: 10.1109/

ICIEM54221.2022.9853183.

[9]. P. Y. Prasad, A. S. Chowdary, C. Bavitha, E.

Mounisha and C. Reethika, "A Comparison Study of

Fraud Detection in Usage of Credit Cards using

Machine Learning," 2023 7th International

Conference on Trends in Electronics and Informatics

(ICOEI), Tirunelveli, India, 2023, pp. 1204-1209, doi:

10.1109/ ICOEI56765.2023.10125838.

[10]. S. Mittal and S. Tyagi, "Performance Evaluation of

Machine Learning Algorithms for Credit Card Fraud

Detection," 2019 9th International Conference on

Cloud Computing, Data Science & Engineering

(Confluence), Noida, India, 2019, pp. 320-324, doi:

10.1109/CONFLUENCE.2019.8776925.

[11]. N. Boutaher, A. Elomri, N. Abghour, K. Moussaid and

M. Rida, "A Review of Credit Card Fraud Detection

Using Machine Learning Techniques," 2020 5th

International Conference on Cloud Computing and

Artificial Intelligence: Technologies and Applications

(CloudTech), Marrakesh, Morocco, 2020, pp. 1-5, doi:

10.1109/CloudTech49835.2020.9365916.

[12]. Shah and A. Mehta, "Comparative Study of Machine

Learning Based Classification Techniques for Credit

Card Fraud Detection," 2021 International Conference

on Data Analytics for Business and Industry

(ICDABI), Sakheer, Bahrain, 2021, pp. 53-59, doi:

10.1109/ICDABI53623.2021.9655848.

[13]. T. Baabdullah, A. Alzahrani and D. B. Rawat, "On the

Comparative Study of Prediction Accuracy for Credit

Card Fraud Detection wWith Imbalanced

Classifications," 2020 Spring Simulation Conference

(SpringSim), Fairfax, VA, USA, 2020, pp. 1-12, doi:

10.22360/SpringSim.2020.CSE.004.

https://doi.org/10.38124/ijisrt/25mar1761
http://www.ijisrt.com/

