
Volume 10, Issue 3, March – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25mar1677

IJISRT25MAR1677 www.ijisrt.com 2561

Enhancing Security in ASP.NET Core

Applications: Implementing Oauth, JWT, and

Zero-Trust Models

Sohan Singh Chinthalapudi1

1University of Bridgeport

Publication Date: 2025/04/11

Abstract: Application security has become critical since cyber adversaries now specifically target ASP.NET Core

applications to steal data while damaging their integrity. The research examines contemporary security threats affecting

.NET web applications through unauthorized entry and token fraud and API system vulnerabilities. The threats to

vulnerable systems can be managed through OAuth together with JSON Web Tokens (JWT) as well as Zero-Trust

application models. Through OAuth users can give third-party applications safe resource access without revealing their

account credentials to them. JWT authentication operates without state information which creates performance benefits

without reducing security measures. Under the Zero-Trust framework continuous authentication remains active to decrease

the number of potential attack vectors. The investigation of security authentication mechanisms happens through combined

assessments of real-world case studies and current best practices as well as security protocols analysis. The combination of

OAuth with JWT authentication creates strong defense against credential theft at the same time it protects users from session

hijacking attacks. The implementation of Zero-Trust principles enhances both identity verification practices and access

control measures to successfully prevent unauthorized access. The security system should be improved through the

deployment of anomaly detection AI technology and MFA authentication and token expiration protocols. Applying the

described methodologies leads to robust future-proof ASP.NET Core applications which satisfy industry standards for cyber

security while defending against changing security threats. The research presents an all-inclusive approach to protect .NET

applications in 2024 which provides secure performance in current web fields.

Keywords: ASP.NET Core Security, OAuth Authorization, JSON Web Tokens (JWT), Zero-Trust Model, Multi-Factor Authentication

(MFA), AI-Driven Anomaly Detection, Token-Based Authentication, Cyber Threat Mitigation.

How to Cite: Sohan Singh Chinthalapudi (2025). Enhancing Security in ASP.NET Core Applications: Implementing Oauth, JWT,

and Zero-Trust Models. International Journal of Innovative Science and Research Technology, 10(3), 2561-2575.

https://doi.org/10.38124/ijisrt/25mar1677

I. INTRODUCTION

A. Security Threats Targeting ASP.NET Core Applications

High-priority targets for hackers because these

applications power numerous cloud solutions together with

enterprise deployments and API-centric systems. Web

applications now perform multiple critical functions which

handle sensitive information and important business

operations yet remain at risk because of security attacks

including unauthorized access as well as session hijacking and
SQL injection and cross-site scripting (XSS) and distributed

denial-of-service (DDoS) attacks.

The most fundamental security flaw that exists in

ASP.NET Core applications results from insufficient

authentication together with authorization procedures. The

implementation of basic authentication with role-based access

control (RBAC) fails to stop modern cyber threats which

include credential stuffing as well as token forgery attacks.

Server-side session management creates scalability and

security problems which majorly affect distributed

authentication requirements in microservices architecture.

The protection of APIs remains an urgent matter of

necessity. APIs that follow RESTful standards joined with

GraphQL endpoints form essential components of modern

web applications which meanwhile generate extra security

threats. Attacks become possible because poor authorization

controls permit invaders to access essential but exposed

resources. The exploitation of insecure token-based
authentication systems can occur through such vulnerabilities

as token replay attacks as well as through leakage and

improper storage practices. ASP.NET Core applications

require enhanced security measures to mitigate upcoming

threats in their protection strategies.

B. Why Traditional Security Models are Insufficient

Traditionally web applications used perimeter-based

defenses and static firewall rules together with session-based

authentication for their security framework. The security

https://doi.org/10.38124/ijisrt/25mar1677
http://www.ijisrt.com/
https://doi.org/10.38124/ijisrt/25mar1677
https://doi.org/10.38124/ijisrt/25mar1677

Volume 10, Issue 3, March – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25mar1677

IJISRT25MAR1677 www.ijisrt.com 2562

methods previously used become insufficient in present-day

cloud-native distributed systems. Classic security designs

operate under the rule that external network threats will only

enable free entry to protected areas inside the perimeter.

Present security methods prove inadequate for the present-day

threat conditions which involve rising numbers of insider acts

and compromised user identity data and user movement

breaches.

When user session data gets stored on the server through

session-based authentication models these approaches create

scalability issues that also introduce security vulnerability

points. Theft of cookies turns into session hijacking while

Cross-Site Request Forgery (CSRF) provides attackers with

hijacking powers. The failure of username-password

authentication stems from password weakness since brute-

force attackers use breached account data and phishing

techniques exploit reused credentials easily.

Due to existing limitations security must advance by
adopting decentralized models which integrate risk awareness

into security approaches. The research presents OAuth

together with JSON Web Tokens (JWT) as well as Zero-Trust

models because they serve as next-generation frameworks that

replace conventional security systems. These security models

achieve identity verification while offering least privilege

access and continuous monitoring capabilities which suits

ASP.NET Core application security needs for 2024.

The research intends to eliminate traditional security

system shortcomings by studying innovative authentication as
well as authorization protocols. The key objectives include:

 This Section Provides an Evaluation of the Performance

Capabilities Displayed by OAuth and JWT Protocols as

well as the Zero-Trust Model Framework.

 Users can obtain third-party access through OAuth

security without revealing their credentials to unauthorized

parties.

 JWT serves as a protocol which supports stateless secure

authentication for web applications while providing
scalability to APIs.

 Review Zero-Trust security through evaluation of its

methods for instilling continuous access restrictions and

real-time authentication procedures.

 A Detailed Study of Recommended Security Procedures

which Target .NET Web Applications during the year 2024

 Determine the current security threats which target

ASP.NET Core application infrastructure.

 Effective implementation solutions for OAuth with

Parallel JWTAuth and Zero-Trust principles should be

provided.

 Security enhancement can be achieved by implementing

AI anomaly detection with MFA authentication together

with token expiration rules.

The study makes an important addition to web security

research by establishing an all-encompassing framework for

the security of ASP.NET Core applications against altering

cyber-attacks. This research evaluates concrete OAuth and
JWT deployment with Zero-Trust principles thus delivering

applicable findings to developers and IT professionals and

security architects.

Organizations developing APIs and increasing their use

of cloud solutions need strong comprehension of modern

authentication and authorization procedures. This research

enables organizations to boost their cybersecurity positions

and fulfill sector standards while protecting user information

through breach prevention. The research demonstrates how

security measures enhanced by AI detection capabilities help

ASP.NET Core applications to resist cyberattacks more
effectively.

II. LITERATURE REVIEW

Security threats such as SQL Injection and Cross-Site

Scripting (XSS) pose significant risks to ASP.NET Core

applications. Security threats generate access vulnerabilities

which endanger both data security and system integrity along

with data loss. Web application security depends on knowing

these threats because implementing proper countermeasures is

essential to protect applications.

A. SQL Injection

SQL Injection attacks occur when cybercriminals use

damaged SQL code in input spaces to control database queries

thus gaining unauthorized access to modify database content.

The problem develops due to bad practices when handling

SQL input from users. The attacker executes the malicious

code ' OR '1'='1 during the login process which permits an

attacker to bypass authentication checks.

The prevention of SQL Injection in ASP.NET Core

applications follows two methods including parameterized
queries and stored procedures. These data handling techniques

convert all user inputs into actual database values instead of

executable code which protects against injection hazards.

Implementing ORM frameworks such as Entity Framework

generates SQL abstractions that let developers work without

direct SQL syntax and minimizes possible security breaches.

 Cross-Site Scripting (XSS)

Attackers who perform XSS exploit the ability to embed

harmful scripts within web pages which run automatically

when viewed by other users who access the pages. Session
hijacking along with defacement and redirection to harmful

websites become possible through such attacks. Three

different XSS attack categories exist.

 Stored XSS allows attackers to embed malicious scripts

within the target server database because these scripts stay

https://doi.org/10.38124/ijisrt/25mar1677
http://www.ijisrt.com/

Volume 10, Issue 3, March – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25mar1677

IJISRT25MAR1677 www.ijisrt.com 2563

there to execute when users interact with the dangerous

content.

 An offensive script entered by attackers gets transmitted

through web applications to viewpoint browsers normally

through URL parameters and form submission

components.

 A DOM-Based XSS vulnerability appears exclusively

within client-side code since the browser will execute

harmful scripts because of insufficient DOM manipulation.

This text will explain how developers safeguard their

ASP.NET Core applications against XSS security issues.

 The encoding of output data should protect web page

information from being mistaken by browsers as

executable instructions.

 Applying strict input validation will help reject any

unexpected or malicious inputs. ASP.NET Core developers

can deploy data annotation attributes and model validation

capabilities along with their applications.

 Develop a Content Security Policy which limits the

possible sources of script execution to ensure vulnerability

protection against XSS attacks.

Table 1 Comparison of SQL Injection and XSS

Aspect Table Column Head

SQL Injection Cross-Site Scripting (XSS)

Target Database queries and data Client-side scripts and user browsers

Attack Method Injection of malicious SQL code Injection of malicious scripts (e.g., JavaScript)

Potential

Impact

Unauthorized data access, data modification, database

compromise

Session hijacking, defacement, redirection to

malicious sites

Prevention Parameterized queries, stored procedures, ORM

frameworks

Output encoding, input validation, Content Security

Policy (CSP)

B. Overview of OAuth 2.0 for Secure Authentication

 Industry Adoption and Effectiveness in Securing APIs

OAuth 2.0 functions as a popular security framework

which permits safe resource sharing between web applications

and APIs. IETF through RFC 6749 established OAuth 2.0 as

an authorization framework which allows users to grant secure

data access to external parties while protecting their

credentials (Hardt, 2012). The token-based mechanisms of

OAuth 2.0 create secure API security systems that function

better than traditional authentication methods both in terms of

scalability and security.

Leading technology platforms Google along with

Microsoft along with Facebook and Amazon use OAuth 2.0

extensively for API security and user authentication within

their industries. Research shows that OAuth 2.0 successfully

protects computer systems against credential-based attacks

including phishing and session hijacking attacks (Qazi, 2022).

OAuth 2.0 protects systems from unauthorized access because

it uses access tokens to replace direct credential sharing and

thus decreases attack opportunities.

 OAuth 2.0 Authorization Flow and Security Mechanisms
OAuth 2.0 functions as a popular security framework

which permits safe resource sharing between web applications

and APIs. IETF through RFC 6749 established OAuth 2.0 as

an authorization framework which allows users to grant secure

data access to external parties while protecting their

credentials (Hardt, 2012). The token-based mechanisms of

OAuth 2.0 create secure API security systems that function

better than traditional authentication methods both in terms of

scalability and security.

Leading technology platforms Google along with

Microsoft along with Facebook and Amazon use OAuth 2.0
extensively for API security and user authentication within

their industries. Research shows that OAuth 2.0 successfully

protects computer systems against credential-based attacks

including phishing and session hijacking attacks (Qazi, 2022).

OAuth 2.0 protects systems from unauthorized access because

it uses access tokens to replace direct credential sharing and

thus decreases attack opportunities.

https://doi.org/10.38124/ijisrt/25mar1677
http://www.ijisrt.com/

Volume 10, Issue 3, March – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25mar1677

IJISRT25MAR1677 www.ijisrt.com 2564

Fig 1 OAuth 2.0 Authorization Use Case Flow

The adoption of OAuth 2.0 in ASP.NET Core programs

delivers improved security because it supports token expiry

rules alongside refresh token authentication and scope

authorization limits. The research by Ometov et al. (2022)

demonstrates that configurations made properly in OAuth 2.0

implementations lower the number of attack paths by

implementing strict usage constraints and brief token

durations.

 Challenges and Best Practices in OAuth 2.0

Implementation

The security advantages of OAuth 2.0 do not prevent

potential security-related issues from occurring. Security

weaknesses arise from token leakage combined with

misconfigured scopes as well as improper encryption which

allows unauthorized access (Sharif et al., 2022). The practice

of storing security tokens insecurely within web applications

running on clients gives hackers opportunities to exploit

vulnerabilities especially when those applications use mobile

or browser platforms.

 Security best practices should be used to reduce these

potential risks.

 Public Clients should implement PKCE (Proof Key for

Code Exchange) to provide protection against

authorization code interception attacks according to

Parecki (2021).

 Technical applications should adopt an Access Token

expiration system in combination with Refresh Tokens to
minimize the effects of token leaks. Secure storage

protocols should be employed for refresh tokens which

must also receive periodic rotations.

 Tested applications require exclusive API permissions

through least privilege access for application approval to

block privilege abuse attacks.

 Client-side storage methods should be avoided because

refresh tokens should be stored securely by using

alternative mechanisms. A comparison of OAuth 2.0

security practices together with their effectiveness can be

found in Table 2.

Table 2 OAuth 2.0 Security Best Practices and Effectiveness

Security Measure Table Column Head

Effectiveness Recommended for

PKCE (Proof Key for Code Exchange) High SPAs, Mobile Apps

Token Expiration & Rotation High Web & Mobile Apps

Scope-based Access Control Medium APIs, Microservices

Secure Token Storage High All Applications

https://doi.org/10.38124/ijisrt/25mar1677
http://www.ijisrt.com/

Volume 10, Issue 3, March – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25mar1677

IJISRT25MAR1677 www.ijisrt.com 2565

C. JSON Web Tokens (JWT) for Authentication and

Authorization
Web security counts authentication and authorization as

vital elements which grant access to protected resources only

to authorized users. The JWT implementation has gained

traction for securing ASP.NET Core applications because it

provides stateless authentication capabilities and strengthens

data protection according to Kang et al. (2023). JWT serves as

an alternative to session authentication methods because it

brings scalability to systems running distributed and micro

services structures.

 How JWT Enhances Security in ASP.NET Applications

 Stateless Authentication and Scalability

JWT achieves its main advantage through being

completely stateless. High-traffic applications encounter

scalability concerns since traditional authentication systems

require ongoing server sessions along with continuous storage

and administration according to de Almieda and Canedo

(2022). JWT implements self-contained token storage since it

includes authentication details which allows for removing

server-side session management requirements.

Security tokens known as JWT usually contain three
essential components.

 Header – Specifies the token type and the signing

algorithm (e.g., HMAC SHA256 or RSA).

 The Payload contains statements known as claims in

addition to supplementary metadata.

 The signature element of JWTs implements authentication

by executing cryptographic operations on both the header
section and payload segment.

 Mathematically, the Signature is Generated using:

Signature = HMACSH A256(Base64UrlEncode(Header)

+′ .′ + Base64UrlEncode(Payload), SecretKey)

This cryptographic binding prevents tampering, ensuring

the authenticity of the JWT.

 Improved Security Through Token Expiration and Refresh

Mechanisms

The requirement to manage tokens strictly derives from
security threats like token hijacking as well as replay attacks.

JWT protects against such threats through its capability to add

expiration timestamps called "exp claim" and provide refresh

tokens JWTs differ from traditional cookies by functioning

only for the duration of their predetermined expiry time which

shortens the duration attackers can exploit the tokens.

Refresh tokens strengthen security measures because

they produce short-duration access tokens together with

uninterrupted user experiences. The current industry practice

involves access tokens that have a limited expiration period of
minutes before needing refresh tokens for extended

authorization (Solapurkar, 2016). The standard JWT

expiration plan appears as shown in Table 3.

Table 3 The Standard JWT Expiration and Refreshed Plan

Token Type Table Column Head

Expiration Time Renewal Mechanism

Access Token 15 minutes Requires refresh token

Refresh Token 7 days Reissued upon expiration

 Enhanced API Security with JWT

ASP.NET Core applications in modern systems use
RESTful APIs as their main service communication protocol.

The authorization claims within JWT tokens serve as a

security backbone for protecting RESTful service interactions.

ге APIs validate resource access using role-based access

control (RBAC) and attribute-based access control (ABAC)

thus denying unauthorized requests without consulting a

central database (Badwhar, 2021).

 An Example of a JWT Payload for API Authentication:

{ "sub": "user123",

"role": "admin",

"exp": 1716278400}

Application programming interface access requirements

are authorized by the server that verifies both the

cryptographic signature and declaration information of JSON

Web Tokens. This method maintains security and

functionality. The JWT authentication process in an ASP.NET

Core application appears as shown in this diagram which

presents the Web API components.

https://doi.org/10.38124/ijisrt/25mar1677
http://www.ijisrt.com/

Volume 10, Issue 3, March – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25mar1677

IJISRT25MAR1677 www.ijisrt.com 2566

Fig 2 A Diagram Showing user Login, token Issuance, and API Request Validation.

The role of Web API controllers in this setup establishes

them as resource servers. An authentication filter checks

access tokens and the [Authorize] attribute protects a single

resource. The protection of accessing controllers and actions

becomes mandatory when [Authorize] attributes get attached

to them. Any request without authentication authorization
results in a 401 (Unauthorized) error from Web API.

 Mitigating Common JWT Security Risks

Previous research shows that JWT presents benefits to

developers yet proper implementation demands careful

execution because of dangers related to token leakage along

with insufficient validation. Best practices include:

 HTTPS implementation ensures the prevention of token

interception opportunities.

 Short-lived tokens should be used to decrease potential
exposure duration.

 The integration of RS256 cryptographic algorithms should

replace HS256 algorithms because it strengthens signature

protection against forgery attacks.

 The secure storage of refresh tokens should be done

through HTTPS Http only cookies.

D. The Zero-Trust Security Model

Web application security now demands the essential

Zero-Trust Security Model (ZTM) due to climbing cyber

threats. The Zero-Trust security model diverges from

conventional perimeter-based security by enforcing trust
restrictions toward potential threats that lead both from

external and internal network environments. Identity

verification standards and access control protocols based on

least privilege are implemented by the model to address

unauthorized access threats (Paul et al, 2022).

 Principles of Zero-Trust (Never Trust, Always Verify)
Under the Zero-Trust model users must verify everything

without trusting any system or device by default. Under this

strategy all users’ devices and systems must gain approval

before being accepted into the network regardless of their

original position outside or inside the perimeter (Kang et al,

2023). The core principles include:

 The verification process for authentication along with

authorization requires permanent enforcement while MFA

along with risk-based access controls represent vital

techniques (Syed et al, 2022).

 Users need only access permissions that match their tasks

to reduce security vulnerabilities according to Shibli et al,

2014 document.

 A breach response strategy applies organizational divisions

that create separate network sections to restrict attackers

from spreading through the system (Basta et al., 2022).

 Given that security breaches are seen as inevitable events

the architecture designers should apply Breach Mentality

principles to detect breaches quickly and respond swiftly

(He et al, 2022).

Table 4 Traditional Security vs. Zero-Trust Security

Feature Table Column Head

Traditional Security Zero-Trust Security

Trust Model Perimeter-based Identity-based

Authentication One-time login Continuous

Access Control Role-based Least privilege

Network Security Firewalls Micro-segmentation

Assumption of Safety Trusted internal network Always assume breach

https://doi.org/10.38124/ijisrt/25mar1677
http://www.ijisrt.com/

Volume 10, Issue 3, March – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25mar1677

IJISRT25MAR1677 www.ijisrt.com 2567

 Implementation in Modern Web Applications

Modern ASP.NET Core web applications adopt Zero-
Trust through integration of solid identity management along

with continuous monitoring features together with precise

access control mechanisms. Key strategies include:

 Security authentication depends on OAuth 2.0 and JSON

Web Tokens (JWT) to achieve Identity and Access

Management (IAM) in contemporary Zero-Trust

deployments. OAuth alongside JWT authentication

protects users by providing trusted identity authentication

which at the same time implements stateless authentication

to mitigate session hijacking risks (Barabanov et al., 2020).

 Adaptive Multi-Factor Authentication (MFA) serves as a

security enhancement mechanism which deploys adaptive

authentication protocols according to growing risk levels.

The system employed contextual information which

incorporates device fingerprints together with

geographical data combined with behavioral analysis

techniques (Kendyala, 2020).

 The Zero-Trust principles can be enforced through

ASP.NET Core applications by using Role-Based Access
Control (RBAC) along with Attribute-Based Access

Control (ABAC). Users can leverage ABAC to enhance

the capabilities of RBAC through user location tracking as

well as device security status monitoring and access

timestamp evaluation (Kaseur 2019).

 EZT security necessitates the use of network segmentation

through API gateways for controlling potential threat

exposure. Micro services structures gain security benefits

through endpoint-based API policies that provide enforced

authentication and authorization rules (Qazi, 2022).

 The implementation of artificial intelligence for anomaly
detection helps Zero-Trust security within ASP.NET Core

applications through continuous monitoring. AI-driven

models evaluate behavioral data for anomalies which

indicate both insider threats and compromised credentials

according to Dash (2024).

Fig 3 Zero-Trust in ASP.NET Core Applications Security Model Architecture

E. Existing Security Best Practices for .NET Applications

 Comparing Traditional vs. Modern Security Frameworks

The development of .NET application security

frameworks underwent substantial changes throughout the last

twenty years. Web applications used to secure their perimeter

with network firewalls and role-based access control (RBAC)

and session-based authentication over the years (Smith &

Brown, 2018). Systems relied on external network threats

detection methods while permitting users with passing
authentication to freely access system resources. The former

security approach has demonstrated inadequacy in dealing

with contemporary threats which include credential stuffing

and two-stage movement between internal networks as well as

malicious insider activities (Johnson et al., 2020).

Security frameworks today use dynamic access control

through identity and access management (IAM) while

implementing token-based authentication features together

with Zero-Trust principles. The delegated authorization

functionality of OAuth 2.0 helps organizations bypass

password authentication to achieve secure third-party
connections (Kumar & Li, 2021). The JWT authentication

technology provides stateless authentication through JSON

https://doi.org/10.38124/ijisrt/25mar1677
http://www.ijisrt.com/

Volume 10, Issue 3, March – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25mar1677

IJISRT25MAR1677 www.ijisrt.com 2568

Web Tokens to support scalable distributed systems (He et al,

2022). People use real-time threat identification systems with

AI-driven anomaly detection capabilities to monitor security

frameworks according to Wang et al. (2023).

 Security Gaps in Current Implementations

The security function of numerous .NET applications

remains imperfect despite recent improvements. Improper
implementation of OAuth and JWT creates security problems

that result in token replay attacks and token leakage as well as

weak access control policies (Qazi, 2022). Applications that

do not enforce expiration rules for tokens expose their systems

to higher chances of session hijacking attacks. The

implementation of Zero-Trust principles encounters

difficulties among organizations because of performance

considerations and implementation complexities (Basta et al,

2022).

The table in Figure 1 shows an analysis between
traditional security approaches and contemporary frameworks

through which security gaps appear together with key

distinctions.

Table 5 Comparison of Traditional and Modern Security Frameworks

Feature Table Column Head

Traditional Security Modern Security (OAuth, JWT, Zero-Trust)

Authentication Session-based (cookies) Token-based (JWT, OAuth 2.0)

Access Control Role-based (RBAC) Policy-based (Zero-Trust, adaptive IAM)

Threat Mitigation Firewalls, static rules AI-driven anomaly detection, continuous monitoring

Scalability Limited, server-dependent Stateless, cloud-native scalability

Vulnerabilities Session hijacking, password attacks Token leakage, improper token expiration policies

The analysis demonstrates that contemporary security

frameworks handle multiple defects of traditional systems yet

establish new difficulties which need meticulous deployment.

An analysis of authentication models which use artificial

intelligence together with blockchain security must be the

focus of future research studies to enhance .NET application
trustworthiness (Martinez et al., 2023).

III. RESEARCH METHODOLOGY

A. Research Approach

A comparative study has been conducted to determine

the security efficiency between OAuth and JSON Web

Tokens (JWT) and Zero-Trust approaches when protecting

ASP.NET Core applications. A systematic examination of

security implementation details takes place which considers

both mechanisms' strengths and weaknesses in contemporary

web application security environments.

 Comparative Analysis of OAuth, JWT, and Zero-Trust

Implementations

The authorization framework OAuth 2.0 allows external

applications to retrieve user resources without exposing

actual passwords to authenticating parties. The procedure

issues access tokens to requesting applications enabling those

applications to obtain restricted permissions. Widespread use

of this mechanism occurs in situations where users need to

authorize third-party access to their resources such as social

media connections and third-party API access. Implementing
OAuth requires complex work because it results in reduced

application performance through multiple server directives.

JWT serves as a URL-safe token format which enables

secure information transmission during dialogues between

two parties. The token system contains entire information

requirements since its content keeps all data independent of

server-side session storage needs. JWTs become an optimal

choice for scalable applications because their stateless nature

fits well with micro services architecture. Security risks from

token mishandling and token revocation continue to be

critical challenges that need proper solutions.

Users under Zero-Trust rules face the default position

that they neither receive trust nor face verification until all

entities inside and outside the network perimeter receive
proper authentication. User access verification remains

continuous alongside stringent access management and

restricted privileges that are the main features of this model.

A Zero-Trust implementation requires implementing several

safety controls which combine multi-factor authentication

with micro-segmentation protocols along with real-time

monitoring capabilities for maximum security protection.

 Security Performance Evaluation Criteria

Different factors will help evaluate security mechanism

effectiveness through these performance benchmarks:

 The authentication speed parameter determines how

rapidly users get authenticated because this element

influences both user experience and system operational

speed.

 The evaluation examines the level of encryption algorithm

strength which protects data confidentiality together with

data integrity.

 The mechanism's ability to stop unauthorized access and

minimize security breaches is one of the components
measured by this assessment.

The following analysis evaluates OAuth and JWT, Zero-

Trust mechanisms through these validation measures to

achieve complete evaluation.

B. Implementation Environment

Timeout for sessions and implementing security

protocols in ASP.NET Core applications requires a well-

structured setting which includes contemporary development

tools along with programming frameworks. ASP.NET Core

https://doi.org/10.38124/ijisrt/25mar1677
http://www.ijisrt.com/

Volume 10, Issue 3, March – 2025 International Journal of Innovative Science and Research

Technology ISSN No:-2456-2165

https://doi.org/10.38124/ijisrt/25mar1677

IJISRT25MAR1677 www.ijisrt.com 2569

provides high-performance cross-platform capabilities that

deliver authentication features together with authorisation

capabilities through middleware security libraries.

IdentityServer4 operates as an open-source framework that

uses OAuth 2.0 and OpenID Connect features to create

protected token systems which secure authentication between

APIs and client applications. OpenID Connect (OIDC)
creates an identity system that extends OAuth 2.0

authentication features to enhance user login processes.

The user authentication and authorization processes are

handled by the ASP.NET Core Identity framework alongside

IdentityServer4. The framework enables users to configure

MFA protection and password hash functions as well as

external authentication providers. Through the

implementation of JSON Web Tokens (JWT) users gain

authentication tokens that operate without server state and

prevent tampering thus reducing server session management

overhead. The implementation of OAuth 2.0 for API

endpoints allows applications to access resources as

delegated users by avoiding the disclosure of sensitive

credentials during the process. The Microsoft Authentication

Library (MSAL) brings enterprise-level security through its

integrated partnership with Azure Active Directory (Azure
AD) which grants SSO capabilities.

C. Threat Model and Security Evaluation

The security assessment of ASP.NET Core applications

relies on developing an extensive threat model by exploring

potential attack vectors. The STRIDE model classifies

security risks through Spoofing, Tampering, Repudiation,

Information Disclosure, Denial of Service, and Elevation of

Privilege concepts.

Table 6 Threat model and Security Assessment of ASP.NET Core Applications

Threat Category Table Column Head

Vulnerability Mitigation Strategy

Spoofing Unauthorized identity access Implement OAuth with strong authentication

Tampering Token forgery, data manipulation Use JWT with HMAC and RSA encryption

Repudiation Lack of transaction traceability Enable logging and audit trails

Information Disclosure Exposure of sensitive API data Enforce HTTPS and secure token storage

Denial of Service (DoS) Excessive API requests, resource exhaustion Rate limiting, API gateway security

Elevation of Privilege Bypassing authorization controls Implement role-based and claims-based access

Implementing a Zero-Trust security model, additional

layers of verification are enforced, reducing the attack surface.

Continuous authentication, least privilege access, and

behavioral anomaly detection further strengthen application

security.

D. Data Collection and Testing Scenarios

The authentication and authorization techniques of

OAuth and JWT and Zero-Trust approach get tested through

real-world examples and penetration evaluation methods. The
evaluation process includes:

 Case Study: Securing a Multi-Tenant ASP.NET Core

Application.

 The identity management system which enables

authentication functions by using IdentityServer4 within a

cloud-based software as a service platform.

 An OAuth token system operating through JWT performs

stateless authentication to grant users API access.

 The analysis of security logs includes three security

monitoring elements: authentication attempts, token

validation failures and anomaly detection.

 Penetration Testing Scenarios

 The Simulation Monitored MFA and rate Limiting during

Brute Force Attacks on Unauthorized Logins.

 The researcher’s evaluated JWT expiration methods and
refresh token procedures through Token Hijacking and

Replay Attack Simulation.

 OWASP ZAP and Burp Suite executed API security testing

to uncover SQL injection and broken authentication and

improper error handling vulnerabilities within the system.

Web applications should avoid using Public OpenID

Connect/OAuth clients as authorization solutions because they

have lost their functionality recommendation. The default flow

exists in this format according to the following diagram:

https://doi.org/10.38124/ijisrt/25mar1677
http://www.ijisrt.com/

Volume 10, Issue 3, March – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25mar1677

IJISRT25MAR1677 www.ijisrt.com 2570

Fig 4 OAuth and OpenID Connect Flow in ASP.NET Core

OpenID Connect exists with multiple versions that lead

to differences between server implementations concerning

their parameters and requirements. Part of the OpenID

Connect variations include servers that lack user info endpoint

support together with servers that don't support PKCE and

those that need unique request parameters for token
acquisition. A client assertion serves as a secure alternative to

client secrets. The OpenID Connect Core standard receives

supplementary security measures from several new standards

such as FAPI, CIBA and DPoP for downstream API

interaction.

IV. IMPLEMENTATION AND BEST PRACTICES

A. Implementing OAuth in ASP.NET Core

The deployment of OAuth 2.0 into ASP.NET Core needs

developers to know both the OAuth 2.0 authentication
sequence and safe methods to combine it with .NET Identity

and techniques to defend against token theft and replay

attacks.

 Understanding OAuth 2.0 Authentication Flow

The authorization framework OAuth 2.0 allows external

applications to retrieve user information while preventing

them from learning authentication passwords. Several stages

make up the standard OAuth 2.0 workflow which includes:

 The authorization process begins when the client

application moves the user to the authorization server.

 The user authenticates and grants permissions.

 The authorization code issuance to the client occurs after

authentication by the authorization server.

 The client requests authorization through the code and
receives an access token as a result.

 Using the access token people can access protected

resources.

The OAuth flow in ASP.NET Core executes through

middleware combination involving `AddAuthentication` and

`AddOAuth`. The framework enables connection to well-

known providers Google, Facebook and Microsoft through an

integrated system.

 Securely Integrating OAuth with .NET Identity
The configuration of OAuth provider needs to be added

in the `Startup.cs` file to integrate OAuth with .NET Identity.

The `AddOAuth` method requires parameters for client

credentials as well as callback information and scopes

selection. The storage of client secrets and other sensitive

information should use Azure Key Vault or environment

variables for secure protection. External login claims should

be mapped to .NET Identity claims for maintaining a single

user experience framework.

https://doi.org/10.38124/ijisrt/25mar1677
http://www.ijisrt.com/

Volume 10, Issue 3, March – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25mar1677

IJISRT25MAR1677 www.ijisrt.com 2571

The system implements security measures to stop Token

Theft and Replay Attack instances.

You can stop token theft by using HTTPS for every

communication and by requiring short-lived access tokens

alongside refresh tokens. Programming systems must provide

protected tokens by using either cookies with encryption or

HTTP-only secure cookies. Nonces along with signature
validation must be used for attack defense against replay

attacks. Security measures through anti-forgery functionality

and token validation pipelines become available as built-in

features of ASP.NET Core.

Web applications use JWT as their standard

authentication and authorization tool because of their compact

design while also providing stateless features. Secure

application security depends on proper understanding of token

structure alongside detailed validation execution alongside

secure token storage protocols and vulnerability management

practices.

B. Using JWT for Authentication and Authorization

JSON Web Tokens (JWT) have become a cornerstone in

modern web application security, facilitating both

authentication and authorization processes. Their compact and

self-contained nature allows for secure information exchange

between parties. However, to harness their full potential

securely, it's imperative to understand their structure,

implement robust validation techniques, handle token storage

and expiration prudently, and safeguard against common

vulnerabilities.

 JWT Token Structure and Validation Techniques

The standardized JavaScript Web Token consists of three

distinct parts.

 The token type is shown in the header section as "JWT"

while detail is provided about which signing algorithm the

token uses such as HMAC SHA256 or RSA.

 A JWT payload contains two elements consisting of claims

and additional semantic data that describe an entity

normally referred to as the user.

 Verification through signature enables users to check that

the content remains unmodified. The encoding process of

header and payload leads to signature generation through

the selected algorithm.

 Security checks during validation make a JWT trustworthy.

 The authentication token requires three differentiated

sections which should be separated with dots.

 A proper signature validation procedure must compare the

token signature against its expected value while utilizing

either a secure key or public key and proper algorithm. The
token verification process checks if it remains unaffected

by unauthorized modification. The algorithm verifies

claims through three assessments on attributes iss (issuer),

aud (audience) and exp (expiration) to establish alignment

with expectations and expiration validation.

 Securely Handling Token Storage and Expiration

JWT security exists mostly in the methods that

developers select to store tokens:

 Since attackers can exploit XSS vulnerabilities to access

localStorage it becomes a risky storage mechanism for

tokens. HTTP-only Cookies act as a security mechanism

to store tokens because the cookies block JavaScript access
which minimizes potential XSS risks. Implementing this

method needs protection against CSRF attacks to stay

secure.

 The security risk period becomes shorter when tokens have

limited expiration dates. The time range for token

expiration should be set at a minute or hour duration. To

maintain long-term sessions you should employ refresh

tokens which enable getting new access tokens without

needing user authentication.

 Protecting Against JWT-Related Vulnerabilities

JSON Web Tokens (JWTs) remain at risk of security
problems when their management is improper.

 Every system that uses JWT authentication should

maintain a clear definition of signing algorithms to ensure

proper implementation at the server side. Security breaches

occur when the token is given the authority to select the

algorithm.

 Unterrated tokens without expiration dates keep their

validity throughout time which increases the dangers in

case of compromise. All tokens need to include an

expiration (exp) claim which makes them invalid after a
designated period.

 Token storage in client-side accessible localStorage

presents a security vulnerability which makes them

available to XSS attacks. Secure storage mechanisms

should be adopted to minimize this risk factor.

C. Adopting the Zero-Trust Model in ASP.NET Applications

Under the Zero-Trust security model you must verify

everything because trust ought to be absent even inside

network boundaries. Multiple essential strategies for

implementing this model in ASP.NET applications consist of
identity-based access control along with multi-factor

authentication (MFA) and continuous monitoring and micro-

segmentation.

 Implementing Identity-Based Access Control

The primary security boundary in Zero-Trust

corresponds to identity verification. Each user device

application needs authentication authorization to reach

company resources. ASP.NET applications achieve their

verification processes through identity management systems

which integrate strict management of user identities and

authorizations. ASP.NET Core Identity serves developers to
manage user accounts together with roles and claims in a

manner which ensures access decisions rest on verified

identities rather than trusting users without verification.

 Role of Multi-Factor Authentication (MFA)

MFA requires users to present multiple verification

methods as an added security measure when accessing

https://doi.org/10.38124/ijisrt/25mar1677
http://www.ijisrt.com/

Volume 10, Issue 3, March – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25mar1677

IJISRT25MAR1677 www.ijisrt.com 2572

software programs. For MFA authentication users must

provide three verification factors that contain either

information they know such as passwords or objects they have

like hardware tokens or physical characteristics they are like

their fingerprints. The integration of MFA security protocols

into ASP.NET applications reduces the probability of

unauthorized entry because compromised credentials remain

insufficient for access authorization. The integration of Azure
Active Directory by developers enables secure MFA

implementation to boost application security postures.

 Continuous Monitoring and Micro-Segmentation

Security personnel monitor activities in real time to

detect irregularities because they reveal potential security

threats from user actions and network traffic as well as system

behavior. Naive security breaches can be prevented through

continuous monitoring because logging and monitoring tools

detect unpredictable data activity within ASP.NET

applications.

Network segmentation becomes vital for security

through micro-segmentation which splits the network into

isolated sections with their own secure entry controls.

Separating the network into segments through micro-

segmentation effectively contains security threats to isolated

network regions. When executing micro-segmentation for

ASP.NET applications developers should establish services

and APIs that enforce strict access mechanisms to enable

components to communicate through necessary pathways

bounded by set security boundaries.

V. COMPARATIVE ANALYSIS

Evaluation of security models including OAuth, JSON

Web Tokens (JWT), and Zero-Trust necessitates an analysis of

their capabilities to ensure security along with performance

effects and implementation simplicity and their practical

deployment situations.

 Security Strength Comparison: OAuth vs. JWT vs. Zero-

Trust

 Through OAuth users grant certain permissions to external
applications since the framework functions as an

authorization method that provides specific resource

access while keeping credentials secure. Secure token

management remains essential for the protection of access

because its access delegation system depends on access

tokens.

 JWT serves as a small URL-friendly token structure which

finds frequent use in authentication systems and

information transmission roles. JWT tokens perform fast

verification because they are stateless yet they become
vulnerable to attacks when their signing or validation

processes are not properly executed.

 Under this security model threats emerge from internal and

external sources due to its principle of zero-trust. Zero-

Trust implements an effective defense system through

identity verification protocols while also granting limited

access permissions which it supports with continuous

monitoring requirements.

 Performance and Scalability: Impact on Authentication

Speed and System Load

 The secure systems use OAuth and JWT protocols that

have been designed for large-scale applications. Renting
tokens through OAuth as well as the stateless

characteristics of JWT eliminate the requirement to store

session data on servers which improves system

performance. The cryptographic operations needed to sign

and verify tokens result in latency unless these operations

receive proper optimization.

 The continuous verification along with monitoring

operations within Zero-Trust implementation might lead to

additional overhead expenses. Security enhancements can

deliver minimized performance-related challenges through

proper infrastructure optimization while modern system

utilization.

 Ease of Implementation and Maintenance: Complexity and

Integration Challenges

 ASP.NET applications benefit from wide adoption of

OAuth and JWT technologies because they have extensive

libraries together with developer support. Developers need

to establish strong secure configurations when

implementing these technologies because their setup

remains straightforward.

 The implementation of a Zero-Trust security model

demands major changes in underlying security structures

at a level that proves complex and resource-intensive for

development teams. The security enhancement process

requires organizations to redesign networks and enhance

access protocols and tighten system surveillance. When

evaluating the long-term security benefits against

preliminary investments they usually present sufficient

value to accept the initial costs.

 Real-World Case Studies: Examples of Companies Using

These Models for Security

 Several major organizations like social media companies

together with cloud service providers depend on OAuth

and JWT to enable protected authorization features for

authentication needs. The authentication service OAuth

2.0 enables Google and Microsoft to let third parties

connect while protecting user authentication credentials.

 The company Google developed BeyondCorp as an

internal Zero-Trust architecture which gave them internal

network defense against advanced threats by treating all
communications as untrusted.

VI. CHALLENGES AND FUTURE DIRECTIONS

Organizations that want to improve ASP.NET application

security face several challenges which require them to forecast

forthcoming security threats to maintain a strategic lead.

https://doi.org/10.38124/ijisrt/25mar1677
http://www.ijisrt.com/

Volume 10, Issue 3, March – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25mar1677

IJISRT25MAR1677 www.ijisrt.com 2573

A. Challenges in Implementing OAuth, JWT, and Zero-Trust

 Key Adoption Barriers for Developers and Enterprises:

Administering these security measures needs developers

to deeply understand their core ideas together with their

possible issues. Programmers often encounter difficulties

securing OAuth and JWT implementation when they need to

validate and expire token correctly. Giving organizations
adopting the Zero-Trust model must deal with cultural

transformations since it needs both extensive employee

training and changes in workplace behaviors for successful

adoption.

B. Future Security Trends in .NET Applications

 AI-Driven Security Enhancements:

Security research will experience revolution through

Artificial Intelligence (AI) which enables both automated

responses and predictive threat detection. The implementation

of AI within ASP.NET applications enables better preventative
security methods that identify threats during their

development phase.

 Blockchain for Identity Verification:

Identity verification processes managed through

blockchain technology operate as decentralized systems which

maintain tamper-proof operations. ASP.NET applications that

incorporate blockchain achieve better identity management

security by fostering trust while eliminating the requirement

for central authority control and eliminating single points of

failure.

 Quantum-Resistant Encryption for ASP.NET Applications:

The advancement of quantum computing technology

makes traditional encryption methods vulnerable to becoming

obsolete. The protection of data through quantum-based

attacks requires developers to deploy quantum-resistant

encryption algorithms throughout ASP.NET application

frameworks.

VII. CONCLUSION

Security models used traditionally do not effectively
handle present-day security threats in ASP.NET Core

applications. The implementation of OAuth and JWT along

with the Zero-Trust model proved to be highly effective

methods for application security improvement. The

authorization security of OAuth works through unobstructed

third-party access pathways while JWT maintains an efficient

stateless process for token-based authentication across

different application parties. By adopting the Zero-Trust

model developers must verify all user actions continuously

while denying trust at all times to reduce exposure

vulnerabilities.

Security enhancement is essential for ASP.NET

developers who need these security frameworks in their

development practice. The implementation of OAuth together

with JWT decreases vulnerabilities regarding credential theft

and session hijacking attacks. Developers should ensure

proper configuration of JWT bearer authentication in

ASP.NET Core to validate tokens effectively. Implementing

the Zero-Trust model requires a shift in mindset towards

continuous verification and least-privilege access, which can

be achieved by leveraging ASP.NET Core's built-in security

features. Additionally, employing multi-factor authentication

(MFA) and AI-driven anomaly detection can further

strengthen security measures.

Research in the future must critically inspect modern

security methods that utilize Zero-Trust architecture while

incorporating AI threat detection mechanisms to improve

ASP.NET Core application defense. Analysis of machine

learning systems in real-time threat monitoring has valuable

applications for security prevention and response. The analysis

of Zero-Trust implementation barriers alongside successful

strategies applied across different organizational types would

produce greater comprehension of its practical deployment.

ASP.NET developers need to implement novel security

frameworks including OAuth and JWT and Zero-Trust models
because cyber security threats will persist in their existing

form. Developers who both embrace these security methods

and track new security trends will achieve maximum

protection of their applications despite growing digital

complexity.

REFERENCES

[1]. Badhwar, R. (2021). Intro to API Security-Issues and

Some Solutions!. In The CISO’s Next Frontier: AI,

Post-Quantum Cryptography and Advanced Security
Paradigms (pp. 239-244). Cham: Springer

International Publishing. https://doi.org/10.1007/978-

3-030-75354-2_29

[2]. Barabanov, A., & Makrushin, D. (2020).

Authentication and authorization in microservice-

based systems: survey of architecture patterns. arXiv

preprint arXiv:2009.02114.

https://doi.org/10.48550/arXiv.2009.02114

[3]. Basta, N., Ikram, M., Kaafar, M. A., & Walker, A.

(2022, April). Towards a zero-trust micro-segmentation

network security strategy: an evaluation framework. In

NOMS 2022-2022 IEEE/IFIP Network Operations and
Management Symposium (pp. 1-7). IEEE.

https://doi.org/10.1109/NOMS54207.2022.9789888

[4]. Bhawiyuga, A., Data, M., & Warda, A. (2017,

October). Architectural design of token based

authentication of MQTT protocol in constrained IoT

device. In 2017 11th International Conference on

Telecommunication Systems Services and Applications

(TSSA) (pp. 1-4). IEEE.

https://doi.org/10.1109/TSSA.2017.8272933

[5]. Bojinov, H., & Boneh, D. (2011, March). Mobile

token-based authentication on a budget.
In Proceedings of the 12th Workshop on Mobile

Computing Systems and Applications (pp. 14-19).

https://doi.org/10.1145/2184489.2184494

[6]. Cirani, S., Picone, M., Gonizzi, P., Veltri, L., & Ferrari,

G. (2014). Iot-oas: An oauth-based authorization

service architecture for secure services in iot

https://doi.org/10.38124/ijisrt/25mar1677
http://www.ijisrt.com/
https://doi.org/10.1007/978-3-030-75354-2_29
https://doi.org/10.1007/978-3-030-75354-2_29
https://doi.org/10.48550/arXiv.2009.02114
https://doi.org/10.1109/NOMS54207.2022.9789888
https://doi.org/10.1109/TSSA.2017.8272933
https://doi.org/10.1145/2184489.2184494

Volume 10, Issue 3, March – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25mar1677

IJISRT25MAR1677 www.ijisrt.com 2574

scenarios. IEEE sensors journal, 15(2), 1224-1234.

https://doi.org/10.1109/JSEN.2014.2361406

[7]. Cirani, S., Picone, M., Gonizzi, P., Veltri, L., & Ferrari,

G. (2014). Iot-oas: An oauth-based authorization

service architecture for secure services in iot

scenarios. IEEE sensors journal, 15(2), 1224-1234.

https://doi.org/10.1145/2976749.2978385

[8]. Dash, B. (2024). Zero-Trust Architecture (ZTA):
Designing an AI-Powered Cloud Security Framework

for LLMs' Black Box Problems. Available at SSRN

4726625. https://dx.doi.org/10.2139/ssrn.4726625

[9]. de Almeida, M. G., & Canedo, E. D. (2022).

Authentication and authorization in microservices

architecture: A systematic literature review. Applied

Sciences, 12(6), 3023.

https://doi.org/10.3390/app12063023

[10]. Emerson, S., Choi, Y. K., Hwang, D. Y., Kim, K. S., &

Kim, K. H. (2015, October). An OAuth based

authentication mechanism for IoT networks. In 2015

International Conference on Information and
Communication Technology Convergence (ICTC) (pp.

1072-1074). IEEE.

https://doi.org/10.1109/ICTC.2015.7354740

[11]. Ferry, E., O Raw, J., & Curran, K. (2015). Security

evaluation of the OAuth 2.0 framework. Information &

Computer Security, 23(1), 73-101.

[12]. Greitzer, F. L., Moore, A. P., Cappelli, D. M., Andrews,

D. H., Carroll, L. A., & Hull, T. D. (2008). Combating

the insider cyber threat. IEEE Security & Privacy, 6(1),

61-64.https://doi.org/10.1109/MSP.2008.8

[13]. Haekal, M. (2016, October). Token-based
authentication using JSON web token on SIKASIR

RESTful web service. In 2016 International

Conference on Informatics and Computing (ICIC) (pp.

175-179). IEEE.

https://doi.org/10.1109/IAC.2016.7905711

[14]. He, Y., Huang, D., Chen, L., Ni, Y., & Ma, X. (2022).

A survey on zero trust architecture: Challenges and

future trends. Wireless Communications and Mobile

Computing, 2022(1), 6476274.

https://doi.org/10.1155/2022/6476274

[15]. Heiland, R., Koranda, S., Marru, S., Pierce, M., &

Welch, V. (2015, June). Authentication and
authorization considerations for a multi-tenant service.

In Proceedings of the 1st Workshop on The Science of

Cyberinfrastructure: Research, Experience,

Applications and Models (pp. 29-35).

https://doi.org/10.1145/2753524.2753534

[16]. Herceg, T. (2024). Modernizing. NET Web

Applications: Everything You Need to Know About

Migrating ASP. NET Web Applications to the Latest

Version of. NET. Springer Nature.

https://doi.org/10.1177/1550147717712627

[17]. Indu, I., PM, R. A., & Bhaskar, V. (2017). Encrypted
token based authentication with adapted SAML

technology for cloud web services. Journal of Network

and Computer Applications, 99, 131-145.

https://doi.org/10.1016/j.jnca.2017.10.001

[18]. Jones, M., Bradley, J., & Sakimura, N. (2015). Rfc

7519: Json web token (jwt).

https://doi.org/10.17487/RFC7519

[19]. Jung, S. W., & Jung, S. (2017). Personal OAuth

authorization server and push OAuth for Internet of

Things. International Journal of Distributed Sensor

Networks, 13(6), 1550147717712627.

https://doi.org/10.1177/1550147717712627

[20]. Kang, H., Liu, G., Wang, Q., Meng, L., & Liu, J.

(2023). Theory and application of zero trust security: A

brief survey. Entropy, 25(12), 1595.
https://doi.org/10.3390/e25121595

[21]. Kauser, S., Rahman, A., Khan, A. M., & Ahmad, T.

(2019). Attribute-based access control in web

applications. In Applications of Artificial Intelligence

Techniques in Engineering: SIGMA 2018, Volume 1

(pp. 385-393). Springer Singapore.

https://doi.org/10.1007/978-981-13-1819-1_36

[22]. Kavitha, D., & Thejas, S. (2024). Ai enabled threat

detection: Leveraging artificial intelligence for

advanced security and cyber threat mitigation. IEEE

Access.https://doi.org/10.1109/ACCESS.2024.349395

7
[23]. Kendyala, S. H. (2020). THE ROLE OF MULTI

FACTOR AUTHENTICATION IN SECURING

CLOUD BASED ENTERPRISE APPLICATIONS.

Available at SSRN 5074876 .

https://dx.doi.org/10.2139/ssrn.5074876

[24]. Leiba, B. (2012). Oauth web authorization

protocol. IEEE Internet Computing, 16(1), 74-77.

https://doi.org/10.1109/MIC.2012.11

[25]. Machireddy, J. R. (2024). Machine Learning and

Automation in Healthcare Claims Processing. Journal

of Artificial Intelligence General science (JAIGS)
ISSN: 3006-4023, 6(1), 686-701.

https://doi.org/10.60087/jaigs.v6i1.335

[26]. Matta, V., Di Mauro, M., Longo, M., & Farina, A.

(2018). Cyber-threat mitigation exploiting the birth–

death–immigration model. IEEE Transactions on

Information Forensics and Security, 13(12), 3137-

3152.https://doi.org/10.1109/TIFS.2018.2838084

[27]. Munonye, K., & Péter, M. (2022). Machine learning

approach to vulnerability detection in OAuth 2.0

authentication and authorization flow. International

Journal of Information Security, 21(2), 223-237.

https://doi.org/10.23919/EECSI48112.2019.8977061
[28]. Machireddy, Jeshwanth, Harnessing AI and Data

Analytics for Smarter Healthcare Solutions (January

14, 2023). International Journal of Science and

Research Archive, 2023, 08(02), 785-798 , Available at

SSRN: http://dx.doi.org/10.2139/ssrn.5159750

[29]. Norberg, S. (2020). Advanced ASP .NET Core 3

Security. Apress.

https://doi.org/10.1007/978-1-4842-6014-2

[30]. Norberg, S., & Norberg, S. (2020). Introducing ASP.

NET Core. Advanced ASP. NET Core 3 Security:

Understanding Hacks, Attacks, and Vulnerabilities to
Secure Your Website, 1-29.

https://doi.org/10.1007/978-1-4842-6014-2_1

[31]. Oh, S. R., & Kim, Y. G. (2020). AFaaS: Authorization

framework as a service for Internet of Things based on

interoperable OAuth. International Journal of

Distributed Sensor Networks, 16(2),

https://doi.org/10.38124/ijisrt/25mar1677
http://www.ijisrt.com/
https://doi.org/10.1109/JSEN.2014.2361406
https://doi.org/10.1145/2976749.2978385
https://dx.doi.org/10.2139/ssrn.4726625
https://doi.org/10.3390/app12063023
https://doi.org/10.1109/ICTC.2015.7354740
https://doi.org/10.1109/MSP.2008.8
https://doi.org/10.1109/IAC.2016.7905711
https://doi.org/10.1155/2022/6476274
https://doi.org/10.1145/2753524.2753534
https://doi.org/10.1177/1550147717712627
https://doi.org/10.1016/j.jnca.2017.10.001
https://doi.org/10.17487/RFC7519
https://doi.org/10.1177/1550147717712627
https://doi.org/10.3390/e25121595
https://doi.org/10.1007/978-981-13-1819-1_36
https://doi.org/10.1109/ACCESS.2024.3493957
https://doi.org/10.1109/ACCESS.2024.3493957
https://dx.doi.org/10.2139/ssrn.5074876
https://doi.org/10.1109/MIC.2012.11
https://doi.org/10.60087/jaigs.v6i1.335
https://doi.org/10.1109/TIFS.2018.2838084
https://doi.org/10.23919/EECSI48112.2019.8977061
http://dx.doi.org/10.2139/ssrn.5159750
https://doi.org/10.1007/978-1-4842-6014-2
https://doi.org/10.1007/978-1-4842-6014-2_1

Volume 10, Issue 3, March – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25mar1677

IJISRT25MAR1677 www.ijisrt.com 2575

1550147720906388.

https://doi.org/10.1177/1550147720906388

[32]. Pai, S., Sharma, Y., Kumar, S., Pai, R. M., & Singh, S.

(2011, June). Formal verification of OAuth 2.0 using

Alloy framework. In 2011 International Conference on

Communication Systems and Network

Technologies (pp. 655-659). IEEE.

https://doi.org/10.1109/CSNT.2011.141
[33]. Polo, L. (2024). Revolutionizing sales and operations

planning with artificial intelligence: Insights and

results. International Journal For Multidisciplinary

Research, 6(6).

https://doi.org/10.36948/ijfmr.2024.v06i06.34053

[34]. Paul, B., & Rao, M. (2022). Zero-trust model for smart

manufacturing industry. Applied Sciences, 13(1), 221.

https://doi.org/10.3390/app13010221

[35]. Poudel, B. P., Mustafa, A., Bidram, A., & Modares, H.

(2020). Detection and mitigation of cyber-threats in the

DC microgrid distributed control system. International

Journal of Electrical Power & Energy Systems, 120,
105968.https://doi.org/10.1111/risa.13900

[36]. Poudel, B. P., Mustafa, A., Bidram, A., & Modares, H.

(2020). Detection and mitigation of cyber-threats in the

DC microgrid distributed control system. International

Journal of Electrical Power & Energy Systems, 120,

105968.https://doi.org/10.1016/j.ijepes.2020.105968

[37]. Qazi, F. A. (2022, December). Study of zero trust

architecture for applications and network security. In

2022 IEEE 19th international conference on smart

communities: improving quality of life using ICT, IoT

and AI (HONET) (pp. 111-116). IEEE.
https://doi:10.1109/HONET56683.2022.10019186.

[38]. Rozaliuk, T., Kopyl, P., & Smołka, J. (2022).

Comparison of ASP. NET Core and Spring Boot

ecosystems. Journal of Computer Sciences

Institute, 22, 40-45. https://doi.org/10.35784/jcsi.2794

[39]. Sadqi, Y., Belfaik, Y., & Safi, S. (2020, March). Web

oauth-based SSO systems security. In Proceedings of

the 3rd International Conference on Networking,

Information Systems & Security (pp. 1-7).

https://doi.org/10.1145/3386723.3387888

[40]. Sendor, J., Lehmann, Y., Serme, G., & de Oliveira, A.

S. (2014, March). Platform-level support for
authorization in cloud services with OAuth 2. In 2014

IEEE International Conference on Cloud

Engineering (pp. 458-465). IEEE.

https://doi.org/10.1109/IC2E.2014.60

[41]. Sharif, A., Carbone, R., Scia rretta, G., & Ranise, S.

(2022). Best current practices for OAuth/OIDC Native

Apps: A study of their adoption in popular providers

and top-ranked Android clients. Journal of Information

Security and Applications, 65, 103097.

https://doi.org/10.1016/j.jisa.2021.103097

[42]. Sheffer, Y., Hardt, D., & Jones, M. (2020). RFC 8725:
JSON web token best current practices.

https://doi.org/10.17487/RFC8725

[43]. Shibli, M. A., Masood, R., Habiba, U., Kanwal, A.,

Ghazi, Y., & Mumtaz, R. (2014). Access control as a

service in cloud: challenges, impact and strategies.

Continued Rise of the Cloud: Advances and Trends in

Cloud Computing, 55-99. https://doi.org/10.1007/978-

1-4471-6452-4_3

[44]. Singh, J., & Chaudhary, N. K. (2022). OAuth 2.0:

Architectural design augmentation for mitigation of

common security vulnerabilities. Journal of

Information Security and Applications, 65, 103091.

https://doi.org/10.1016/j.jisa.2021.103091

[45]. Solapurkar, P. (2016, December). Building secure
healthcare services using OAuth 2.0 and JSON web

token in IOT cloud scenario. In 2016 2nd International

Conference on Contemporary Computing and

Informatics (IC3I) (pp. 99-104). IEEE.

https://doi.org/10.1109/IC3I.2016.7917942

[46]. Sudarsan, S. V., Schelén, O., & Bodin, U. (2023).

Multilevel subgranting by power of attorney and oauth

authorization server in cyber–physical systems. IEEE

internet of things journal, 10(17), 15266-15282.

https://doi.org/10.1109/JIOT.2023.3265407

[47]. Syed, N. F., Shah, S. W., Shaghaghi, A., Anwar, A.,

Baig, Z., & Doss, R. (2022). Zero trust architecture
(zta): A comprehensive survey. IEEE access, 10,

57143-57179.

https://doi:10.1109/ACCESS.2022.3174679.

[48]. Tanvi, P., Sonal, G., & Kumar, S. M. (2011, June).

Token based authentication using mobile phone.

In 2011 International Conference on Communication

Systems and Network Technologies (pp. 85-88). IEEE.

https://doi.org/10.1109/CSNT.2011.24

[49]. Tassanaviboon, A., & Gong, G. (2011, November).

Oauth and abe based authorization in semi-trusted

cloud computing: aauth. In Proceedings of the second
international workshop on Data intensive computing in

the clouds (pp. 41-50).

https://doi.org/10.1145/2087522.2087531

[50]. Wang, C. (2022, December). Design and

Implementation of Ideological and Political Education

Network Platform for College Students under ASP.

NET. In 2022 3rd International Conference on

Artificial Intelligence and Education (IC-ICAIE

2022) (pp. 923-930). Atlantis Press.

https://doi.org/10.2991/978-94-6463-040-4_139

[51]. Wang, Y., & Huang, Y. (2018). Research on education

and teaching resources management system based on
ASP. NET. In Lecture Notes in Real-Time Intelligent

Systems (pp. 425-431). Springer International

Publishing. https://doi.org/10.1007/978-3-319-60744-

3_46

[52]. Whitesell, S., Richardson, R., Groves, M. D.,

Whitesell, S., Richardson, R., & Groves, M. D. (2022).

ASP. NET Core Overview. Pro Microservices in. NET

6: With Examples Using ASP. NET Core 6,

MassTransit, and Kubernetes, 29-49.

https://doi.org/10.1007/978-1-4842-7833-8_2

https://doi.org/10.38124/ijisrt/25mar1677
http://www.ijisrt.com/
https://doi.org/10.1177/1550147720906388
https://doi.org/10.1109/CSNT.2011.141
https://doi.org/10.36948/ijfmr.2024.v06i06.34053
https://doi.org/10.3390/app13010221
https://doi.org/10.1111/risa.13900
https://doi.org/10.1016/j.ijepes.2020.105968
https://doi:10.1109/HONET56683.2022.10019186
https://doi.org/10.35784/jcsi.2794
https://doi.org/10.1145/3386723.3387888
https://doi.org/10.1109/IC2E.2014.60
https://doi.org/10.1016/j.jisa.2021.103097
https://doi.org/10.17487/RFC8725
https://doi.org/10.1007/978-1-4471-6452-4_3
https://doi.org/10.1007/978-1-4471-6452-4_3
https://doi.org/10.1016/j.jisa.2021.103091
https://doi.org/10.1109/IC3I.2016.7917942
https://doi.org/10.1109/JIOT.2023.3265407
https://doi:10.1109/ACCESS.2022.3174679
https://doi.org/10.1109/CSNT.2011.24
https://doi.org/10.1145/2087522.2087531
https://doi.org/10.2991/978-94-6463-040-4_139
https://doi.org/10.1007/978-3-319-60744-3_46
https://doi.org/10.1007/978-3-319-60744-3_46
https://doi.org/10.1007/978-1-4842-7833-8_2

