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Abstract: This paper presents an AI-powered system designed to automate the identification and cataloging of electric 

switchgear components, improving inventory management and minimizing errors caused by manual classification. 

Traditional identification methods rely on human efforts, which are labor-intensive and prone to misclassification, leading 

to inefficiencies in warehouse operations. To overcome these challenges, we leveraged YOLO-based deep learning models to 

classify switchgear components accurately while ensuring seamless integration with inventory records. Our approach 

involved training YOLO models to classify switchgear components based on their unique visual features. The model matches 

each identified component against a Master Data Sheet containing essential details such as part numbers, dimensions, 

weight, and material specifications. By leveraging YOLO’s advanced feature extraction and classification capabilities, our 

system achieves high precision in distinguishing visually similar components, ensuring reliable and real-time processing 

suitable for industrial deployment. During model development, we addressed critical challenges such as variations in lighting 

conditions, different orientations of components, and cluttered warehouse environments. Extensive data augmentation 

techniques[10] and model fine-tuning were applied to enhance robustness and maintain high classification accuracy across 

diverse scenarios. The final AI model achieves up to 95% accuracy, significantly reducing manual identification efforts by 

70%, demonstrating its effectiveness in real-world applications. By automating switchgear component identification, our 

system significantly enhances inventory tracking, minimizes human errors, and optimizes warehouse efficiency. This 

research highlights the transformative potential of YOLO-based AI automation in industrial inventory management, paving 

the way for future advancements in intelligent spare part classification and cataloging. 
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I. INTRODUCTION 

 

Electric switchgear is made up of different components, 

each playing an important role in controlling and distributing 
electrical power safely. These components, such as circuit 

breakers, switches, contactors, fuses, and protective relays, 

work together to prevent overloads, short circuits, and voltage 

fluctuations. Once all the parts are assembled, they form a 

complete switchgear unit, ensuring the safe and efficient 

operation of electrical systems. However, during the 

assembly process, some extra or unused parts are left behind, 

making it difficult to track and manage them properly. 

Identifying these leftover components is necessary to reduce 

waste, improve inventory management, and make better use 

of resources. Traditional methods like manual checking and 

barcode scanning often lead to misplaced items, wrong 

labeling, and delays in stock updates, and as the number of 

components increases, these issues become harder to handle. 

To solve this problem, this research focuses on developing an 

AI-powered system that can automatically recognize and 
classify both assembled and leftover components. This 

system will enable real-time inventory tracking, helping 

warehouses keep accurate records, reduce manual effort, and 

minimize errors. By using AI for classification, warehouse 

operations[11] can become faster, more efficient, and better 

organized, leading to improved productivity and resource 

management. 

 

Artificial intelligence has become a powerful tool for 

automating inventory processes, significantly reducing 

human effort and errors. The proposed system employs 

YOLO(You Only Look Once) single shot image 
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classification model to classify electric switchgear 

components even in challenging warehouse conditions, such 

as poor lighting, and varying orientations. Unlike traditional 

inventory tracking systems, AI-powered solutions provide 

faster, more accurate, and scalable inventory management, 

enabling seamless warehouse operations[11]. 

 

To build a robust and reliable classification system, a 
comprehensive dataset of switchgear component images was 

collected and annotated. These images, captured from 

multiple angles and under different environmental 

conditions, were carefully labeled to train the AI model 

effectively. To improve generalization, data augmentation 

techniques[10] such as brightness normalization, contrast 

adjustments, rotation, and noise filtering were applied, 

ensuring that the model maintains high classification 

accuracy across diverse warehouse settings. 

 

A structured methodology, CRISP-ML(Q)[5], was 

followed to develop the AI-based inventory system. This 
approach provides a systematic framework for building 

machine learning models, ensuring efficient execution of 

each phase from data collection and preprocessing to model 

training, evaluation, and deployment. The system was 

evaluated using key performance metrics, including 

precision, recall, confusion matrix analysis, and classification 

accuracy. Testing different YOLO versions allowed us to 

select the most efficient model for deployment, ensuring high 

accuracy in component classification and seamless inventory 

tracking. 

 

By implementing this AI-powered vision system, 

warehouses can reduce manual stock verification efforts, 

improve tracking accuracy, and optimize inventory 

workflows. This study demonstrates how deep learning-

based classification can revolutionize warehouse 
management [11]by providing businesses with automated, 

real-time component identification, minimal human errors, 

and enhanced operational efficiency. Through this approach, 

organizations can achieve cost savings, increased 

productivity, and better resource utilization, making AI-

driven inventory automation an essential advancement in 

modern warehouse operations[11]. 

 

The project methodology followed here is the open 

source CRISP-ML(Q)[5] methodology from 

360DigiTMG(ak.1) [Fig 1], which stands for Cross Industry 

Standard Process for Machine Learning with Quality 
Assurance. This structured methodology ensures a systematic 

approach to problem identification, data preprocessing, 

model training, evaluation, deployment and monitoring and 

maintenance. By following CRISP-ML(Q), the project 

follows a well-defined lifecycle from data collection to real-

world implementation, ensuring robust and efficient model 

performance. 

 

 
Fig 1 This Figure Depicts the CRISP-ML(Q) Architecture that We have followed for this Research Study. 

(Source: Mind Map - 360DigiTMG) 

https://doi.org/10.38124/ijisrt/25mar1263
http://www.ijisrt.com/


Volume 10, Issue 3, March – 2025                  International Journal of Innovative Science and Research Technology                                          

ISSN No:-2456-2165                                                                                                              https://doi.org/10.38124/ijisrt/25mar1263 

 

IJISRT25MAR1263                                                            www.ijisrt.com                                2615  

II. METHODOLOGY AND TECHNOLOGY 

 

A. Data Collection 

The dataset utilized in this research was collected 

directly from the client's supplier location, capturing images 

under various real-world environmental conditions to ensure 

robust model performance. Over 1000+ images of different 

assembly components were gathered, featuring diverse 
orientations[9], backgrounds, and lighting scenarios. To 

further enhance the dataset, images were also obtained from 

secondary sources, including open-source platforms. 

Captured images exhibited varying resolutions, such as 

2560x1920, 3024x4032, and 4032x3024 pixels, providing a 

wide range of scale and quality to ensure effective model 

training. 

Below table [Fig 2] shows data description and sample 

component images. 

 

 
Fig 2 Data and Data Description 

 

B. Data Preprocessing and Augmentation 

Effective data preprocessing and augmentation 
significantly enhanced the performance and accuracy of the 

electric switchgear component[6] classification model. The 

preprocessing pipeline involved several critical steps: 

 

 Image Acquisition and Standardization: 

Images of switchgear components were systematically 

collected from diverse warehouse environments. To maintain 

dataset consistency and facilitate model training efficiency, 

all images were uniformly resized to dimensions of 320x320 

pixels. 

 

 Data Cleaning: 
Images that were blurry, noisy, poorly illuminated, or of 

substandard quality were identified and either corrected or 

excluded from the dataset. This ensured high-quality input 

data, thereby enhancing the accuracy and reliability of the 

classification model. 
 

 Dataset Balancing: 

To address the inherent class imbalance[12], images 

across various switchgear component categories were 

balanced by ensuring equal representation. Each component 

class was standardized to a specific number of images, 

significantly improving model generalization and minimizing 

potential bias. 

 

 Data Augmentation: 

Data augmentation techniques[10] were systematically 

applied to increase the variability and robustness of the 
dataset. These augmentations simulated real-world 

operational conditions encountered in warehouse 

environments: Below table [Table 1] shows data 

Augmentation techniques applied in training dataset. 
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Table 1 Augmentation Techniques Applied in Training Dataset 

 
 

These preprocessing and augmentation steps 
collectively ensured high-quality, diverse data inputs, 

significantly contributing to the robustness and accuracy of 

the model’s predictive capability in operational warehouse 

scenarios. 

 

 

 

 Data Splitting:  
The raw dataset comprised 1000+ original images 

categorized into 34 distinct classes. After applying 

comprehensive data augmentation[10], the dataset expanded 

substantially to a total of 10,336 images. The dataset was then 

strategically partitioned into three subsets to facilitate 

efficient model training and validation: Below table [Table 2] 

shows Data splitting after Augmentation techniques applied. 

 

Table 2 Data Splitting after Augmentation Techniques 

 
 

This structured split enabled robust training, rigorous 

validation, and thorough evaluation, ensuring accurate and 

reliable classification outcomes across diverse real-world 

warehouse conditions. 
 

C. Model Architecture 

The component detection and classification system 

leverages a comprehensive and structured architecture 

designed for seamless integration of multiple stages, 

encompassing data collection, preprocessing, model training, 

evaluation, deployment, and maintenance. This systematic 

workflow ensures robust and efficient real-time performance 
tailored specifically for industrial and operational 

environments. 

 

 
Fig 3 End-to-End High-Level Architecture of the Component Classification System 

 

This architecture demonstrates the end-to-end pipeline, 

from image acquisition to model evaluation and deployment, 
ensuring that the system is scalable and efficient for real-

world warehouse applications. 

 

The architecture begins with an initial phase of client 

interaction and extensive business analysis, which clarifies 
the requirements and scopes the classification objectives. 

Subsequent data collection utilizes sources such as CCTV 

and local hardware systems to gather relevant visual data for 

analysis. 
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Data collected is then consolidated within an 

Operational Platform, leveraging tools and technologies like 

Python scripts and database systems for structured data 

handling. In the preprocessing phase, raw images undergo 

essential transformations including resizing, normalization, 

augmentation, and enhancement techniques to optimize their 

quality and suitability for model training. Python libraries like 

OpenCV and Pillow are extensively utilized to streamline and 
standardize the preprocessing procedures. 

 

The preprocessed images are then fed into the model-

building stage, where advanced deep-learning frameworks 

such as YOLO(You Only Look Once) from Ultralytics and 

PyTorch are employed. This step involves fine-tuning pre-

trained CNN(Convolutional Neural Network) architectures, 

allowing the extraction of critical image features necessary 

for accurate detection and classification tasks. 

 

Model evaluation follows a rigorous protocol to validate 

the effectiveness and accuracy of the developed model. 
Performance metrics such as precision, recall, F1-score, and 

mAP(mean Average Precision) are calculated to ensure the 

model’s reliability using tools like PyTorch evaluation 

modules. 

 

Once validated, the model is deployed using 

AWS(Amazon Web Services) cloud environment where 

streamlit Framework[7] for building AI/ML application, was 

used enabling easy integration and scalability. Post-

deployment, continuous monitoring and maintenance ensure 

model performance remains optimal, with real-time analytics 
and feedback loops for continual improvement and adaptation 

to new data or evolving scenarios. 

 

This complete and detailed pipeline, illustrated in [Table 

3], ensures an efficient, accurate, and highly adaptable 

component classification system suitable for real-world 

deployment. 

 

D. Model Building 

For the classification of components, a comprehensive 

approach was adopted using advanced deep learning models. 

The primary focus was on YOLO-cls(You Only Look Once 
classification)[1] models, specifically YOLOv8n-cls[8], 

YOLOv8s-cls[8], YOLOv8m-cls[8], ResNet50[2], 

MobileNetV2[2], MobileNetV3_small_100[3], ViT-base-

patch 16-224[4], and ViT_B_16[4], due to their proven 

capability in real-time object detection and classification 

tasks. These models were trained using all available 

component classes, amounting to 34 distinct categories. 

YOLO's efficient architecture facilitated high accuracy and 

low latency, making it ideal for real-world industrial 

applications. 

 
The diverse selection of architectures, especially YOLO 

variants trained across the full spectrum of 34 classes, 

ensured a robust comparative study. This systematic 

evaluation facilitated the identification of optimal models for 

deployment, balancing high accuracy, efficient inference, and 

scalability for industrial component classification. 

 

 Model Variants for Image Classification: 

 

 YOLOv8n-cls: 

The nano (n) version of YOLOv8 is optimized for fast 

inference with minimal computational requirements. It 

consists of approximately 3.2 million parameters and 8.7 

billion FLOPs(Floating Point Operations per Second). It is a 

lightweight model suitable for real-time applications where 

processing speed is crucial. In this project, it was evaluated to 

determine whether a compact architecture could still achieve 
accurate component classification while maintaining high 

processing speeds, making it viable for rapid operational 

decision-making. 

 

 YOLOv8s-cls: 

The small(s) variant of YOLOv8 offers a balanced 

approach, featuring approximately 11.2 million parameters 

and 28.6 billion FLOPs. This version aims to achieve a 

favorable trade-off between computational efficiency and 

classification accuracy. It was utilized to validate 

performance across a broader range of scenarios, ensuring 

scalability and reliability for general industrial deployments. 
 

 YOLOv8m-cls: 

The medium (m) variant of YOLOv8 provides enhanced 

performance capabilities with around 25.9 million parameters 

and 78.9 billion FLOPs. It was selected for scenarios 

requiring greater accuracy and robustness without sacrificing 

significant inference speed. Its evaluation aimed to confirm 

its suitability for complex component classifications where 

accuracy is paramount. 

 

 ResNet50: 
ResNet50[2], a residual neural network with 50 layers, 

is renowned for its ability to efficiently handle complex 

image classification tasks by mitigating the vanishing 

gradient problem through residual connections. Its deep 

architecture enables high accuracy, particularly suitable for 

detailed component differentiation. 

 

 MobileNetV2: 

MobileNetV2[2] is optimized for mobile and embedded 

vision applications. Utilizing depthwise separable 

convolutions, it provides a highly efficient architecture with 
fewer parameters, making it ideal for scenarios demanding 

high-speed inference with minimal computational resources. 

 

 MobileNetV3_small_100: 

MobileNetV3_small_100[3] represents the smallest and 

most efficient variant of the MobileNetV3[3] family, 

designed for high efficiency and performance on resource-

constrained devices. It combines innovative design 

techniques with advanced architecture search for optimized 

performance in industrial classification tasks. 

 

 ViT-base-patch 16-224: 
Vision Transformer (ViT)[4] base variant, with a patch 

size of 16 pixels and input image size of 224 pixels, utilizes 

self-attention mechanisms instead of traditional 

convolutional approaches. It excels at capturing global 
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context, making it highly effective for detailed component 

classification tasks requiring global spatial relationships. 

 

 ViT_B_16: 

Similar to ViT-base, ViT_B_16[4] employs transformer 

architectures for image recognition, providing robust 

performance and efficient context understanding through 

attention mechanisms. This model is particularly suitable for 
complex scenarios involving detailed visual component 

classification. 

 

E. Model Evaluation 

A rigorous model evaluation strategy was implemented 

to assess the performance, scalability, and applicability of 

various deep learning architectures. Models evaluated 

included YOLOv8 (variants: nano, small, and medium)[8], 

ResNet50[2], MobileNetV2[2], MobileNetV3_small_100[3], 

and Vision Transformer variants (ViT-base-patch 16-224 and 

ViT_B_16)[4]. These models were systematically compared 

across multiple critical metrics: accuracy, inference speed, 
resource utilization, ease of deployment, and scalability. 

 

The YOLOv8 models consistently outperformed other 

architectures in terms of achieving a balance between 

accuracy and computational efficiency, demonstrating their 

suitability for real-time industrial image classification tasks. 

Specifically, the YOLOv8m-cls[8] variant exhibited the 

highest validation accuracy of 95.20%, clearly indicating its 

effectiveness in accurately classifying 34 distinct industrial 

components while maintaining moderate resource demands. 

 

MobileNet variants, including MobileNetV2[2] and 

MobileNetV3_small_100, showcased notable efficiency and 

were optimal for scenarios involving constrained 

computational resources, such as edge or mobile devices. 

However, they displayed comparatively lower accuracy, 
limiting their suitability for critical deployments requiring 

very high precision. 

 

ResNet50[2], although robust in general image 

recognition tasks, showed moderate performance in this 

application due to relatively high computational costs and 

lower achieved accuracy. Vision Transformer(ViT) models 

offered promising accuracy, particularly ViT_B_16[4], but 

their computational overhead and inference latency were 

significantly higher, restricting practical deployment to cloud 

environments with ample computational resources. 

 
Based on this comprehensive evaluation, YOLOv8m-

cls[8] emerged as the most suitable model for practical 

implementation, offering the optimal balance among 

accuracy, inference speed, resource efficiency, and 

scalability. Its performance aligns precisely with the 

objectives of enhancing component reuse through efficient 

and precise classification, thereby supporting intelligent 

resource optimization in industrial applications. 

 

Table 3 Model Selection and Performance Evaluation using Decision Analysis and Resolution (DAR) 

 
 
This analysis visually highlights how each model 

compares regarding accuracy, resource efficiency, ease of 

use, system requirements, and scalability. YOLOv8m-cls[8] 

is clearly identified as the optimal model choice due to its 

superior balance of high accuracy, moderate computational 

requirements, ease of deployment, and broad scalability, thus 

confirming its suitability for real-time industrial applications 

aimed at component reuse and intelligent resource 

optimization. 
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F. Model Hyperparameter Tuning 

To improve the performance of the YOLOv8m-cls 

model, hyperparameter tuning was carried out by adjusting 

key settings such as learning rate, weight decay, optimizer 

type, and data augmentation techniques[10]. The goal was to 

increase the model’s accuracy while keeping it stable and 

efficient for real-world industrial use. Different tuning 

strategies were tested by changing how the model learns, how 

much regularization is applied, and how image enhancements 

like flipping and brightness adjustments are used. These 

tuning methods are summarized in Table 4. 

 

The objective of this hyperparameter tuning was to 

achieve the best possible trade-off between accuracy, 

computational efficiency, and model stability for practical 

deployment in industrial applications 
 

Table 4 Hyperparameter Tuning for the Best Model (YOLOv8m-cls) 

 
 

After testing various tuning approaches, the best model 

setup showed significant improvements``in accuracy and 

detection performance. As seen in Table 5, the validation 

accuracy increased from 95.20% to 97.35%, making the 

model more reliable in correctly identifying switchgear 

components. The mAP50(Mean average precision calculated 

at an intersection over union (IoU) threshold of 0.50) score 

improved from 0.963 to 0.995, meaning the model became 

more precise in detecting objects. The precision increased 

from 0.926 to 0.964, reducing incorrect classifications, while 

the recall improved from 0.911 to 0.959, ensuring fewer 

missed detections. Although training time rose slightly by 

12%, the model’s inference speed improved, allowing faster 

real-time classification. The GPU usage remained moderate, 

meaning it still runs efficiently without requiring excessive 

computing power. Additionally, scalability improved from 

good to excellent, making the model more adaptable for 

large-scale industrial applications. 

 

Table 5 Model Performance Metrics after Hyperparameter Tuning 
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These improvements show that fine-tuning the model’s 

parameters significantly enhances its performance, making it 

highly accurate, efficient, and reliable for warehouse 

inventory tracking[11]. By reducing human errors and 

automating the classification process, this optimized AI 

model helps industries manage their components more 

effectively, improving productivity and resource utilization. 

 
The optimized YOLOv8m-cls model (Set 1) achieved 

remarkable improvements in accuracy, precision, and recall, 

demonstrating its efficacy in real-time industrial applications. 

This tuning provided a robust model, capable of precise and 

rapid component classification, critical for enhancing 

component reuse and intelligent resource optimization. 

III. MODEL DEPLOYMENT 

 

After testing and fine-tuning different models, the 

YOLOv8m-cls (Set 1) model was deployed in an AWS cloud 

environment to ensure scalability, real-time processing, and 

easy accessibility. The Streamlit framework[7] was used to 

build an interactive AI-powered web application, allowing 

users to easily upload images of switchgear components and 
receive instant classification results. Figure 4 shows 

streamlit’s lightweight and efficient design enabled seamless 

integration with the trained YOLO model, ensuring smooth 

real-time inference. 

 

 
Fig 4 A Streamlit Framework for Automated Component Identification and Attribute Extraction 
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The deployed system allows warehouse staff to upload 

images, which are processed in real time to classify the 

component. Along with classification, the system retrieves 

and displays key attributes such as Material Description, 

Length, Width, Thickness, Coating Type, and Part Weight to 

provide comprehensive inventory insights. 

 

This cloud-based deployment ensures that warehouses 
can automate component classification, reduce manual 

efforts, and improve inventory accuracy while maintaining 

seamless and efficient operations. By leveraging AWS 

services, the system supports real-time tracking, minimizes 

classification errors, and enhances overall warehouse 

management[11], making AI-driven inventory automation an 

essential advancement in modern industrial operations. 

 

IV. CONCLUSION 

 

This research successfully developed an AI-powered 

system for classifying and identifying electric switchgear 
components, significantly improving warehouse inventory 

management. Traditional manual classification methods 

often result in misidentification, misplaced inventory, and 

operational inefficiencies. By leveraging YOLO-based deep 

learning models, the proposed system automates component 

identification with high precision, reducing human errors and 

increasing efficiency. 

 

The model was trained on a comprehensive dataset, 

incorporating diverse environmental conditions to ensure 

robustness. Data augmentation techniques further enhanced 
the model’s generalization, making it effective in real-world 

warehouse settings. Among the tested models, YOLOv8m-

cls(Set1) emerged as the best-performing model after 

hyperparameter tuning, significantly improving classification 

performance. 

 

Before tuning, the YOLOv8m-cls baseline model 

achieved a validation accuracy of 95.20%, with a precision of 

0.926 and a recall of 0.911. The mAP50 score was 0.963, 

indicating strong detection performance. The model 

exhibited moderate inference speed and scalability, making it 

suitable for deployment but with room for optimization. 
 

After tuning (Set 1), the model demonstrated notable 

improvements, achieving a validation accuracy of 97.35%, 

precision of 0.964, and recall of 0.959. The mAP50 score 

increased to 0.995, showcasing enhanced detection 

performance. Although training time increased by 12%, 

inference speed improved, and scalability was enhanced from 

good to excellent. 

 

To ensure scalability and accessibility, the model was 

deployed in an AWS cloud environment using the Streamlit 
framework, allowing warehouse staff to upload images and 

receive instant classification results. This cloud-based 

approach enables real-time tracking, seamless inventory 

updates, and smooth integration with warehouse management 

systems. 

 

By implementing this AI-driven system, warehouses 

can reduce manual effort, enhance tracking accuracy, and 

optimize workflows. The findings of this research 

demonstrate the transformative impact of AI in industrial 

inventory management, paving the way for future 

advancements in automated component classification, 

predictive analytics, and mobile-friendly AI applications. 

 

FUTURE SCOPE 
 

The model can also be used on tablets or mobile phones 

by turning this AI application into a mobile app. This would 

allow workers to scan and classify switchgear components 

instantly, making inventory management easier and more 

efficient. The mobile version would run smoothly using 

lightweight AI models, ensuring fast results even without an 

internet connection. 

 

In the future, the system could also be improved to 

identify multiple components in a single image. This would 
help warehouse staff scan entire shelves at once instead of 

classifying parts one by one, saving time and reducing 

manual work. Additionally, AI-powered image enhancement 

techniques could be integrated to improve detection accuracy 

in low-light or cluttered environments. 

 

Another potential enhancement is the incorporation of 

augmented reality (AR) to overlay real-time classification 

and inventory details directly on the device’s screen. This 

would help workers quickly locate and verify components 

without needing to cross-check with manual records. 
 

Furthermore, integrating cloud connectivity and 

predictive analytics could enable real-time stock monitoring, 

automated restocking alerts, and data-driven decision-making 

for inventory optimization. Future versions might also 

support voice commands, making hands-free operation 

possible for increased efficiency in fast-paced warehouse 

environments. 

 

These advancements will make the system more 

powerful, user-friendly, and indispensable for modern 

warehouse operations. 
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