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Abstract: In recent years, crowd simulation has gained increasing attention due to its vast potential, especially in 

architecture, urban planning, and disaster management fields. This involves creating computer-generated models that 
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simulations provides insight into the evolution of technology. Several studies dealing with urban planning implications 

were examined to analyze each pedestrian flow model and to synthesize their strengths, weaknesses, and ethical 

considerations. This review serves as a resource for urban development professionals, AI simulation specialists, and 

researchers working at the intersection of crowd dynamics and city planning. Overall, this article presents a systematic 

analysis of crowd simulation literature, elucidating current limitations, future trajectories and research opportunities for 

enhanced efficiency and realism. 
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I. INTRODUCTION 

 

Crowd simulation is an approach to understanding, 

predicting, and reproducing human crowd behavior, which 

replicates virtual individuals' movement dynamics. The 

notion of a crowd refers to gathering many people in one 

place. Human groups, animal herds, insect swarms, and 

vehicle flows are examples of crowds, which are complex 

systems that consist of collections of individuals, sharing the 

same physical environment. They exhibit collective 

behaviors distinct from individual actions. 
 

One of the earliest approaches to crowd simulation in 

computer graphics dates to Reynolds' "Boids" system from 

the 1980s [1]. In recent years, crowd simulation has gained 

significant attention across various research fields, 

extending beyond computer animation and simulation. 

Among its applications are urban planning, military 

simulation, safety science, entertainment, and sociology. 

Games, movies, and many other forms of entertainment use 

realistic computer simulations of human crowds as well as 

safety and security (e.g., crowd management, and 
evacuation studies). This multidisciplinary field intersects 

computer science, graphics, robotics, physics, cognitive 

science, traffic theory, civil engineering, and mathematics. 

 

 In public areas such as terminals, shopping malls, 

stadiums, and streets, people are exposed to crowded 

pedestrian movements. A pedestrian flow model can be 

classified into three categories: microscopic models, 

macroscopic models, and mesoscopic models. Study 

objectives and detail level determine the right crowd 

dynamics model. Research in crowd simulation 

encompasses experiments for understanding human 

behavior, algorithms for simulating this behavior, and 

applications of these algorithms for specific purposes. 

 

Despite notable progress and demonstrated 

applications in crowd simulation, the field remains rapidly 

evolving. Complex crowd behaviors driven by 
physiological, psychological, and social factors present 

ongoing challenges. Additionally, the computational 

complexity of modelling heterogeneous crowd limits crowd 

simulation realism. Given advancements in computer 

equipment, there is a growing interest in simulating realistic 

crowds. This is to enhance visual effects, improve virtual 

reality immersion, optimize urban planning, and facilitate 

efficient emergency evacuations.  

 

In this article, I examined various aspects of crowd 

simulations and envisioned how future research directions in 
crowd simulation will contribute to the development of 

more effective and realistic applications. This study begins 

by exploring the concept of the evolution of crowd 

simulation. Four distinct periods of its development are 

introduced, followed by an analysis of how each decade's 

evolution looked within the framework of research 

approaches developed at that time. Next, the three major 

https://doi.org/10.38124/ijisrt/25mar1176
http://www.ijisrt.com/
https://doi.org/10.38124/ijisrt/25mar1046


Volume 10, Issue 3, March – 2025                 International Journal of Innovative Science and Research Technology                                          

ISSN No:-2456-2165                                                                                                            https://doi.org/10.38124/ijisrt/25mar1176 

 

IJISRT25MAR1176                                                             www.ijisrt.com                                1440  

divisions of crowd simulation are illustrated: microscopic, 

macroscopic and mesoscopic models, and their sub-

categories. This deeper examination opens with a pedestrian 

flow model explanation and ends with their types. As a next 
step, crowd simulation models are evaluated and 

summarized in terms of their strengths and weaknesses, and 

their potential field applications, risks, ethical 

considerations, and taxonomical framework. Finally, it is 

concluded by identifying the remaining challenges and 

addressing those provides new avenues for crowd 

simulation as well as more inspiration for further research. 

 

II. CROWD SIMULATION: EVOLUTION  

OVER THE DECADES 

 
This section presents the historical development of 

crowd simulation in the form of four periods, illustrating the 

framework of research approaches taken at that time. 

 

 From the late 1990s 

Crowd simulation has evolved over many decades, 

beginning in the 1970s and 1980s. In the late 1990s, crowd 

simulation techniques and models were developed primarily 

for use in the entertainment industry, such as animating 

movies and playing video games. 

 

 One of the first to suggest a distributed model for 

animating and directing a set of characters was in 1987 

[1]. He termed each member called boid. They could 

easily each sense and react to their surroundings and the 

other boids on their own. According to Reynolds, a flock 

is a boid's closest group. To avoid collisions and 

calculate speeds and directions, these boids in the flock 

communicate with one another. 

 An experimental study by Helbing et al. [2] used physics 

and socio-psychological factors to develop a model of 

particle systems, each with a predetermined speed that 

tends to change with time. This model explains how 
people behave in crowds during the panic. Interaction 

forces force particles to maintain a velocity-dependent 

distance from each other. 

 The first technique to model crowds was put forth by 

Musse and Thalmann in 1997 [3], using a hierarchical 

control to have the crowd composed of groups and made 

up of individuals. Additionally, leadership and other 

sociological factors were mathematically defined to 

incorporate crowd judgments. 

 Using steering behaviors in 1999 [4], Reynolds 

demonstrated how autonomous characters could move in 
a natural and improvised manner by demonstrating 

steering behaviors in animation and video games. 

 

 From the early 2000s until the late 2000s 

As computer graphics and simulation techniques based 

on environment and behavior advanced and the field began 

to diversify in the early 2000s, researchers of this generation 

focused on modelling individual behaviors with the group, 

crowd, and environmental structures. 

 

 One such is the ViCrowds concept presented by Musse 
and Thalmann [5], which suggests that individuals create 

groups, which then generate crowds. In this situation, 

users can utilize various sorts of information to govern 

each level of the hierarchy as they see fit. 

 In Anderson's [6], constrained flock animations are 

generated by creating constrained group animations, 
which allow users to constrain the location of agents at 

any point in the animation, or to compel them to remain 

in a single mass or shape constraint. 

 Loscos et al. [7] developed a method in 2003 that 

allowed 10,000 pedestrians to be simulated in real-time 

scenarios. The primary goal was to propose a method for 

simulating pedestrian crowds to improve pedestrian 

behavior on a local and global scale. 

 According to Farenc et al. [8], virtual humans can be 

replicated in complex environments. The project 

suggests building an environment that includes rules of 
behavior that virtual people could use in addition to the 

environment's geometric representations. 

 To enable quick pathfinding and effective navigation for 

virtual humans evolving inside a crowd, Lamarche and 

Donikian [9] developed a navigation algorithm. 

 It's interesting to note that few researchers offered data-

driven approaches to crowd simulation in the late 2000s. 

 According to Musse et al. [10], their approach is a 

computer vision-based method for simulating crowds.  

 Currently, microscopic models, such as psychological 

models, are incorporated into crowd simulations. Among 
the suggestions made by Pelechano et al. [11] is to 

incorporate psychological roles, communication, and 

modelling into crowd simulation. As well as creating 

crowd models, they created leaders who could influence 

the agents in the model. 

 In "Continuum Crowds" [12], macroscopic modelling is 

also used to model massive crowds without explicitly 

avoiding a collision. To do so, it presents a dynamic 

potential field which blends barriers that are continually 

moving with global navigation. 

 
 From the early 2010s until the late 2010s 

The need for more independent as well as intelligent 

agents became apparent in the late 2000s. Thus, the early 

2010s phase was particularly rich in terms of fresh 

perspectives and ideas, and some significant navigation and 

collision avoidance algorithms were pushed forth during this 

time. 

 

 The well-known Optimal Reciprocal Collision 

Avoidance (ORCA) approach has become a staple in 

crowd domain benchmarks since its initial proposal in 
2011 [13]. 

 According to Bicho et al. [14], BioCrowds is the first 

crowd-based algorithm free of collisions. Using a space 

subdivision strategy, agents compete for available space 

and only move when there is sufficient room. 

 Based on data collected from real-world crowd 

movement, Wolinski et al. [15] provided a methodology 

for assessing multi-agent crowd simulation techniques. 

 Moreover, SteerPlex was developed by Berseth et al. to 

quantify crowd simulation complexity [16], with 

SteerFit serving as its extension and aiming to present 

automatic parameter fitting for steering algorithms [17]. 
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When technological advancements, particularly in the 

fields of artificial intelligence, machine learning, and big 

data, allow for more sophisticated and precise analysis and 

simulation of crowd behavior, it can be said that the current 
state of the art in crowd stimulation began to take shape in 

the early 2010s with an influx of new ideas. Although AI 

techniques like deep learning and reinforcement learning 

were first established in the late 2000s, the early 2010s gave 

momentum to their development and allowed researchers to 

start using them to build more complicated models of crowd 

behavior. Since the late 2010s, there has been a noticeable 

rise in the application of data-driven technologies, such as 

deep learning and reinforcement learning, including 

machine learning and statistical prediction techniques. 

 

 In the late 2010s, computer vision [18], natural language 

processing, and speech recognition began to use deep 

learning extensively. Deep learning is a subset of 

machine learning that uses multi-layered neural 

networks to retrieve features and patterns from datasets. 

To interpret crowd behavior, researchers started applying 

deep learning algorithms to examine social media data, 

such as texts and images. Regression neural networks 

(NN) are used by Liu et al.[19] to forecast the aggregate 

attributes of crowd dynamics. 

 A data-driven strategy for simulating crowds that may 
imitate the observed traffic of pedestrians in a certain 

location was presented by Amirian et al. [20] and trained 

using generative adversarial networks (GANs). 

 Furthermore, Testa et al. [21] present an innovative 

method for estimating complex environment evacuation 

times with a 5% error rate compared to real-life scenes. 

ANNs are developed by the authors for mastering 

evacuation times for rooms of different sizes, using per-

room data to estimate the whole environment accurately. 

 The use of reinforcement learning, a type of machine 

learning where agents learn from their environment by 

engaging with it, in the field of crowd stimulation began 
to surface in the late 2010s. As a result, it was feasible to 

predict crowd behavior in various circumstances and to 

create simulations of crowd behavior that were more 

realistic. Ravichandran et al. [22] developed a model 

where pedestrians were represented as autonomous and 

proactive learning agents. They employed reinforcement 

learning (RL) to ease continuous learning and adaptation 

in pedestrians' behavior. 

 The study went as far as to explore interactive 

experiences, virtual reality, and manipulating agent 

emotion. For instance, Borg et al. [23] proposed 
extending Bosse's approach [24] explicitly to the domain 

of crowds. The authors' work proposes spreading 

emotion among crowd agents. 

 Using parameters taken from real-world videos, Basak et 

al. [25] suggest a data-driven method for fine-tuning 

crowd simulation. 

 A study by Latoschik et al. [26] suggests examining user 

interaction and performance in Social Virtual Reality 

(SVR), which offers face-to-face interaction. Immersive 

interaction was found to help the user study. 

 
 

 

 From the early 2020s and beyond 

As technology advanced in the early 2020s, crowd 

simulation fundamentally transformed, expanding beyond 

traditional applications in transportation, urban planning, 
and disaster management to incorporate autonomous vehicle 

systems, unmanned aerial vehicles, and social media 

analysis in accordance with human social norms. Across 

both physical and virtual environments, these convergences 

have revolutionized methodologies for analysing, 

predicting, and managing crowd dynamics. 

 

 A few strategies have already been put up for 2021 to 

help with crowd management during COVID-19 and 

other cases concerning building evacuations, hazardous 

events like terrorist attacks, methods for finding the best 
route, and even the influence of groups of agents on 

crowd efficiency. Here are a few instances: Based on 

Dijkstra's well-known algorithm [27], Mirahadi and 

McCabe [28] provide a working model for generating 

evacuation scenarios. 

 Microscopic models like the Social Force Model (SFM) 

and cellular automata are often used. For example, Shi et 

al. study [29] employs the software called Viswalk to 

simulate the effects of evacuation flow in emergency and 

normal scenarios using the SFM (Social Force Model). 

Using an extended cellular automata framework, Li et al. 
[30] investigate paediatric hospital evacuation in a rule-

based model that considers agent grouping.  

 As social media platforms have grown in popularity, this 

field has shifted to understanding and forecasting crowd 

behavior. Thus, the field began to diversify into new 

areas like online communities, social networks, and 

virtual worlds. In an article by Alasmari et al. [31], they 

illustrate how deep learning applications can be used to 

analyze social media during the Hajj pilgrimage to 

predict and manage crowd behavior. 

 

It's noteworthy that crowd simulation is a 
multidisciplinary field that pulls on a broad range of 

disciplines, including computer science, engineering, 

physics, psychology, and sociology. This diversity of ideas 

and methodologies is one of its strengths, allowing it to 

adapt and for new trends to arise. The synergy between 

human behavior understanding and technological 

advancement continues to drive innovations in crowd 

simulation and management, preparing cities for the 

challenges of an increasingly automated future. 

 

III. CLASSIFICATONS OF CROWD 

SIMULATION MODELS 

 

A systematic overview of crowd simulation models is 

presented in this section, which discusses microscopic, 

macroscopic, and mesoscopic, along with their respective 

subcategories, as shown in Fig 1. A pedestrian flow model is 

examined as a framework for understanding the sub-

categories of microscopic and macroscopic models. A 

comprehensive comparison of these modeling techniques, 

highlighting their key differences, is provided to grasp their 

unique characteristics and applicability. Afterwards, the 

subcategories of mesoscopic models - dynamic group 
behavior, interactive crowd formation, and social 

psychological factors - are explored in greater detail, as they 
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bridge the gap between microscopic and macroscopic 

approaches by combining individual-level interactions with 

flow-based crowd dynamics. 

 

 
Fig 1 Crowd Simulation Models: Microscopic, M acroscopic, and Mesoscopic Approaches with Their Sub-categories. 

 

 Microscopic crowd simulation modelling 
Microscopic simulation models, or "Bottom-Up" 

models, capture intricate details about individual behavior. 

Individuals are considered discrete entities whose 

movements are influenced by their surroundings and 

obstacles. Combining local behaviors, including collision 

avoidance, shapes overall movement. 

 
Within microscopic crowd simulations, each person is 

represented as an agent with unique properties such as size 

and walking speed. In addition, each person has motivations 

like a goal position. This bottom-up approach links 

individual behavior to crowd behavior. In each simulation 

step, agents update their velocity by considering 

neighboring agents and obstacles, following specific rules 

that govern their local behavior.  

 

A variety of microscopic models have been developed 

to accurately predict crowd motion and interpret self-

organized phenomena. These models include agent-based 
models, cellular automata, velocity-based models, social 

force models, multi-agent models, data-driven methods, 

vision-based models, geometrically based algorithms, lattice 

gas models, Bayesian models, psychological models, and 

behavioral models. Some surveyed studies explore the 

integration of two microscopic models to enhance the 

simulation's accuracy and realism, using the strengths and 

capabilities of each model. 

 

 Microscopic pedestrian flow model 

In the domain of microscopic crowd simulation, 
researchers often simplify the crowd's movement 

environment to a two-dimensional plane with polygonal 

obstacles. The individuals within the crowd are typically 

represented as disk-shaped particles, and all measurements 

are standardised in meters. This entails a collection of 'm' 

non-overlapping obstacles, denoted as Equation (1), where 

each obstacle Oi is a simple 2D polygon. Furthermore, the 

simulation incorporates a group of 'n' agents, denoted 

Equation (2), with each agent modelled as a disk of radius rj. 

Each agent Aj is assigned a preferred walking speed spref,j, 

expressed in meters per second, which remains constant 

throughout the simulation.  

 

 
 

The position of agent Aj at a given moment is 

represented by pj, while its velocity is represented by vj. In 

each step of the simulation, the focus is on updating the 

velocity vj of each agent, allowing them to navigate 

effectively while avoiding collisions. Each agent aims to 

achieve a preferred velocity, vpref, which may be driven by 

reaching a specific destination or following a designated 

route.  
 

In a microscopic crowd simulation, the simulation 

progresses in discrete time steps, typically representing 0.1 

seconds per frame. During each frame, every agent Aj goes 

through the following steps: 

 

 Neighbour search: Agents identify nearby agents and 

obstacles within a certain range, gathering information. 

This range can be a disk with a predetermined radius or 

a viewing angle. 

 Preferred velocity: Agents calculate a preferred velocity 
(vpref), based on the environment's geometry, 

considering their goal and potential obstacles. This 

preferred velocity can be a straight path to the goal or a 
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predetermined global path around obstacles. The 

calculation depends on whether global path planning is 

used. 

 Local navigation: Using both sets of information, each 
agent computes a new velocity (vnew) or acceleration to 

meet certain criteria, such as avoiding collisions with 

neighbours and staying close to the social group. 

 Movement: Agents update their position based on the 

new velocity or acceleration, using a common Euler 

integration method. 

 

By following these steps, the microscopic crowd 

simulation ensures that agents navigate effectively, 

considering their surroundings and interacting with 

neighbouring agents while avoiding collisions. 
 

 Microscopic pedestrian flow model 

After explaining the fundamental concepts of 

microscopic crowd simulation modelling, it's crucial to 

understand the distinct characteristics of various 

microscopic models from surveyed papers.  

 

 Agent-based modelling:  

Agent-based microscopic modelling is a powerful 

technique used in crowd simulation to examine the 

behaviour of individuals within a crowd. This method 
involves the creation of autonomous entities called agents, 

which represent individuals in the crowd. Agents have 

distinct characteristics, behaviours, and decision-making 

processes [29]. They interact with each other and the 

environment, such as physical obstacles, landmarks, and 

fellow agents. A variety of techniques are used to model 

each agent's behaviour, such as rule-oriented models, 

decision trees, and machine learning algorithms. Modelling 

approaches consider an agent's personality, goals, 

preferences, and beliefs. By using real-time information, 

agents can make dynamic decisions and adapt their 

behaviour based on available data. Due to this adaptability, 
crowd behaviour can be simulated more realistically as 

agents respond to changing conditions. To ensure 

scalability and effectively simulate complex human 

behaviours at both local and global levels, agent-based 

models can be combined with path planning or 

macroscopic models. 

  

Crowd-related phenomena, such as pedestrian 

dynamics, evacuation scenarios, and crowd behaviour in 

public spaces,  studied using agent-based microscopic 

modelling. Besides that, it can be used to test different 
scenarios and interventions to determine whether crowd-

management strategies work in diverse settings. It is a 

versatile tool in emergency management, urban planning, 

and safety engineering. 

 

 Cellular automata 

 A cellular automata microscopic model can be used 

to analyse individual behaviour in a crowd through crowd 

simulation. Individuals' movements are represented using a 

grid of cells in a given space [32]. Each cell corresponds to 

a specific area of the environment. This modelling 

approach divides the environment into multiple cells, each 
adopting various states. Rules dictate how each cell's state 

changes in time as changes within the environment occur. 

These rules consider the presence of other agents, 

obstacles, destinations, preferred speed and landmarks, as 

well as neighbouring cells' behaviour. Crowds are 

represented by particles or agents that move between 
adjacent cells. The surrounding cells determine how these 

agents move. 

 

Cellular automata models are used for pedestrian 

flow, congestion, evacuation scenarios, and crowd 

behaviour to capture emerging phenomena. This is where 

intricate patterns or behaviours emerge from interactions 

between individual agents and their environment. In 

addition to exploring the underlying mechanisms, these 

models also examine environmental factors and agent 

behaviours. In conclusion, it is a potent tool for crowd 
behaviour study. It has significant potential in diverse fields 

such as urban planning, safety engineering, and emergency 

management. 

 

 Velocity-Based Modelling 

Velocity-based models run on the principle of 

allowing each agent to actively decide its next velocity. The 

velocity stands for the speed and direction of the agent's 

movement. Agents evaluate multiple velocity options based 

on specific criteria, such as collision avoidance, to select 

the most proper choice. This approach fundamentally alters 

the way agents interact with their neighbours, enabling 
trajectory adjustments depending on expected outcomes. 

Despite their higher computational complexity, velocity-

driven methods produce superior outcomes and are more 

representative of human behaviour. 

 

The University of North Carolina research group has 

made notable contributions to the field with widely used 

velocity-based collision avoidance models, including 

Velocity Obstacle (VO) [33] (as shown in Fig 2.a), 

Reciprocal Velocity Obstacle (RVO) [34] (as shown in Fig 

2.b), Optimal Reciprocal Collision Avoidance (ORCA) 
[35] (as shown in Fig 2.c), and Hybrid Reciprocal Velocity 

Obstacle (HRVO) [36] (as shown in Fig 2.d). These models 

use neighbour information for decision-making, resulting in 

a collective movement of individuals driven by local 

interactions, without the need for explicit environment 

representation using techniques like grid division. 
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Fig 2 Diverse velocity barriers. 

 

 Social force modelling 

In 2000, Helbing et al. introduced the Social Force 

Model (SFM) [37] as a framework for analysing crowd panic 

dynamics during escape scenarios. Drawing inspiration from 

interaction forces, it has become a prominent and widely 

used approach to simulating human behaviours. Its 

introduction was a significant milestone in microscopic 

human crowd simulation, as it incorporated physical criteria, 

influencing subsequent research efforts. Within SFM, 
individual behaviours are influenced by socio-psychological 

and physical forces. Factors such as desired target direction, 

velocity, and interactions with the environment decide 

individuals' actual movement. 

 

In Equation (3), the acceleration [37] of an individual 

denoted by 𝑖, influenced by various components, reflects the 

interplay of different forces. These components include the 

desired walking speed ( ), mass ( ), target direction ( ), 

current velocity ( ), interaction forces with other individuals 

( ), and forces exerted by walls ( ). Fig 3 illustrates the 

update time-step ( ) within the model. Within this 

framework, each agent is represented as a particle and meets 

two primary types of forces: an attractive force guiding them 

towards the goal position and repulsive forces arising from 

obstacles and other agents. 

 

    (3) 

 

 

 
Fig 3 Visualization of the Social Force Model [37]. 
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The Social Force Model presents an easily 

implementable concept that works effectively for numerous 

applications. It also offers intuitive extensibility by 

introducing new forces to accommodate added agent 
behaviors.  

 

 Multi agent modelling 

 The MAM (Multi-Agent Model) system [38] is built 

upon the intricate interplay between agents and their 

surrounding environment. Environments can take the form of 

continuous, discrete, or virtual spaces, while agents can be 

categorized as cognitive, active, or passive. This dynamic 

interaction produces a range of influential forces, including 

repulsion, resistance, randomness, and gradients. These 

forces affect pedestrian movement within the environment. 
Gaining insights into these local interactions is crucial for the 

development of correct prediction models, such as MAM, 

which aim to effectively simulate crowd dynamics. 

Furthermore, crowd motion dynamics emerge from the 

interconnectedness between pedestrians and their 

environment. It is worth noting that in dense pedestrian 

flows, spontaneous unidirectional lanes are common. 

However, as density increases, the smooth flow may 

deteriorate, resulting in phenomena like stop-and-go 

movements and crowd turbulence waves. 

 

The extensive application of the MAM technique [38] 
in various scenarios highlights its position as a preferred 

methodological approach for analyzing and predicting 

heterogeneous human behaviors. Offering distinct advantages 

over computer technology, MAM provides a robust platform 

for simulating autonomous interactions between multiple 

intelligent agents. It surpasses agent-based modelling (ABM) 

in terms of its ability to conduct more sophisticated and 

detailed studies, solidifying its position as an advanced 

framework in the field. 

 

 Data-Driven Methods 
Rooted in input data, typically including trajectories 

derived from real human crowds, data-driven methods in 

crowd simulation aim to emulate this input data more 

abstractly. By avoiding the explicit definition of behavioral 

rules, these approaches can generate specific and nuanced 

behaviors that are challenging to capture using simple rules. 

One of the advantages of data-driven crowd simulation is the 

inherent adaptability of the models. They automatically 

adjust their behavior in response to changes in the input data 

without explicit knowledge of specific behavioral 

differences. This adaptability adds another layer of flexibility 
and realism to the simulation process. 

 

Research in this field predates 2010, although early 

models could not guarantee collision avoidance among 

agents. However, advancements made in the 2010s, partially 

attributed to deep learning progress, have been dedicated to 

mitigating these issues. Crowd motion databases without 

sufficient adaptation are a common challenge in many 

methods. However, a recent approach aims to address this 

problem by leveraging the generalization capabilities of deep 

learning (DL) [39]. This approach involves acquiring an 

abstract model of agent behavior through DL, which can be 
applied to novel scenarios. By utilizing this learned 

behavioral model, the need for runtime database searching is 

eliminated, as the agent's actions are determined based on the 

acquired knowledge. 

 

Data-driven DL technique, Recurrent Neural Networks 
(RNNs), has proven highly beneficial for local navigation 

tasks. These networks can learn and predict future states 

based on recent observations. In our specific case, RNNs are 

employed to estimate agents' next positions by considering 

both their neighbors and past motion. While RNN-based 

models are commonly used in computer vision applications 

such as tracking or human trajectory prediction (HTP), they 

can also be effectively employed in crowd simulation 

scenarios. Once trained, an RNN can serve as a reliable 

agent-navigation model, enabling efficient and real-time 

navigation for multiple agents within the simulation. 
 

The Generative Adversarial Network (GAN) is 

recognized for its remarkable capability to generate diverse 

outcomes, effectively standing for a probability distribution 

of possible results. Typically, a GAN includes two crucial 

components: a generator, responsible for producing new data 

based on input data, and a discriminator, which differentiates 

between real and fake data. Both components heavily rely on 

neural networks, particularly Long-Short-Term Memory 

(LSTM) networks in the context. During the training phase, 

the generator and discriminator engage in a competitive 

process, each striving to outperform the other. This 
adversarial setup aims to improve the generator's ability to 

generate outputs that closely resemble real data. In 

comparison to approaches that solely rely on LSTMs, 

employing GANs offers the advantage of generating a wider 

range of trajectories using the same input data. However, it's 

critical to note that training GANs can be a time-consuming 

and challenging task, requiring careful control and 

management. 

 

Reinforcement learning (RL) is a method that involves 

system learning through iterative trial and error to 
accomplish a specific objective [40]. It includes a state 

description, which stands for the agent's current situation. In 

addition, RL includes a reward function that offers incentives 

or penalties based on actions leading to state changes. By 

studying the accumulation of rewards, the system learns the 

most favorable short-term actions for achieving long-term 

goals. RL is often applied to tasks with clearly defined goals, 

such as reaching a target position or winning a game, where 

reference data may be unavailable. 

 

Leveraging deep neural networks (DNNs), deep 
reinforcement learning simplifies modelling. With this 

approach, the state description can be represented by raw 

data, such as neighboring entities' relative positions and 

velocities. This is instead of a custom summary. Although a 

manually defined reward function is still necessary, the 

trained DNN can assess the desirability of potential actions in 

a given state. This streamlines the decision-making process. 

By utilizing DNNs, deep reinforcement learning enhances the 

efficiency and effectiveness of evaluating actions based on 

raw data inputs. 

 

 Vision-Based Modelling 
 Vision-based navigation algorithms replicate humans' 

navigation based on visual input rather than relying on 
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complete knowledge of agents' positions and speeds. These 

algorithms specifically focus on using visual perception to 

guide locomotion, simulating human-like navigation 

behavior in their approach. 
 

A research study [41] introduced a synthetic crowd-

controlling model based on vision and aims to improve 

perception-action loop simulation. This model is a variation 

of existing velocity-based models and offers enhanced 

capabilities. It achieves individual movement calculations by 

assessing the bearing angle (𝛼) and time-to-collision (𝑡𝑡𝑖) for 

each pixel. The proposed approach includes adjusting 

rotational movement based on the derivative of the bearing 
angle and ensuring collision avoidance through the 

computation of time-to-interaction. These concepts are 

visually depicted in Fig 4. In this model, the virtual camera 

captures environmental information, and each pixel of the 

resulting image has valuable velocity control data. By 

incorporating such details, this vision-based model enables 

more precise and realistic crowd control simulations.  

 

 
Fig 4 Synthetic Vision [41]. 

 

The visually driven steering approach, which falls 
under the vision-based category of methods, was pioneered 

by Warren et al. [42], a group of psychologists and 

researchers. This approach, established before 2010, 

focuses on modelling behaviour that closely resembles how 

individuals perceive their environment visually. Instead of 

relying on precise world coordinates, it considers variables 

such as object movement within their field of view. Warren 

et al.'s groundbreaking work also introduced collision 

prediction techniques based on the bearing angle, 

integrating empirical experiments with modelling to 

enhance understanding in this field. 
  

The second category of approaches, known as retina-

based steering, takes visually driven steering to the next 

level by introducing the concept of a virtual retina. Inspired 

by the human eye, agents in this category are equipped with 

a synthetic vision that closely resembles human visual 

perception. Instead of using simplified representations, 

these methods render a graphical representation of the 

agent's field of view onto a virtual retina. Within retina-

based steering, agents behave based on the pixel 

information present in their virtual retina. Interactions with 
other agents or objects are abstracted into interactions with 

a matrix of pixels, allowing for a more detailed and 

nuanced representation. The specific rendering techniques 

employed and the utilization of this information for agent 

steering can vary among different methods within this 

category. While retina-based algorithms require more 

computational resources than velocity-based or force-based 

algorithms, they aim to provide a more accurate 

representation of human perception. These methods are 

typically designed for low to medium crowd densities to 
ensure manageable performance. They find practical 

applications in navigation for robots equipped with 

cameras. 

 

 Geometrically Based Algorithms 

Algorithms based on geometric concepts are widely 

used in crowd simulations as microscopic modelling 

techniques. With mathematical models, they can simulate 

individuals' motion in a crowd utilizing geometric 

principles. Algorithms like these represent the environment 

with geometric shapes such as circles, rectangles, and 
polygons [43]. Spatial boundaries are established by these 

shapes and obstacles and landmarks can be identified by 

them. In the crowd, individuals are displayed as point 

particles or shapes like circles and ellipses. The 

mathematical model governs motion by integrating 

variables such as position, velocity, and interaction.  

  

In geometrically based algorithms, mathematical 

models describe the forces that attract and repel individuals 

and objects. Microscopically, they enable a deeper 

understanding of agent dynamics and behaviour, including 
emergency decision-making. An example would be a 

hyperbolic-elliptic equation that models individual and 

collective movements in crowds with finite evacuation 

periods. 

 

 Lattice gas modelling 

A lattice gas model is used to simulate crowds 

microscopically. Using a grid-like lattice structure, it 

simulates individual movement within crowds. Simulation 
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space is represented by discrete grid points corresponding 

to specific locations within the environment. Individuals in 

this approach are described as particles that move between 

lattice points to navigate through simulated space [44]. The 
particle's movement is determined by a set of rules that take 

neighbouring lattice points and their state into account. It 

uses transition probability to determine particle movement 

direction. Particle position and neighbouring lattice points 

play a role in this. To calculate this probability, weights are 

assigned to each possible move a particle might make. 

Researchers can examine crowd behaviour in greater detail 

and realism with the lattice gas model by simulating 

individual-level movement within a crowd. This 

methodology can be used to study pedestrian flow, 

congestion, evacuation scenarios, and public behaviour. It 
serves as a valuable tool for investigating individual 

behaviour in a crowd. 

 

 Bayesian Modelling 

Bayesian models are used in crowd simulation to 

represent and predict individual agent behaviour 

microscopically. Using probability distributions, it 

represents uncertainty and variability in agent behaviour. 

This model integrates prior knowledge with observed data 

using Bayesian methods [45]. Human behaviour patterns, 

social norms, and other relevant factors constitute prior 

knowledge. Bayesian inference refines and updates 
predictions using prior knowledge and observed data during 

the simulation. Due to this, the model generates 

probabilistic predictions and adapts its estimates based on 

those predictions. Simulations are more realistic and 

diverse because Bayesian inference captures inherent 

uncertainty in agent behaviour. Continuously updating 

estimates with updated information facilitates dynamic and 

adaptable predictions. Furthermore, Bayesian models are 

useful for simulating crowd management, evacuation 

planning, and urban design in real-world situations, as they 

produce precise and nuanced simulations. 
 

 Psychological and Behavioural Modelling 

  

 Psychological models: It captures the cognitive 

processes and decision-making mechanisms of agents in 

a crowd simulation. Various psychological factors are 

considered, such as learning, attention, perception, and 

memory. Cognitive psychology theories may be 

incorporated into these models to simulate realistic 

thinking and behaviour. Possibly, they could model how 

agents perceive and interpret their environments. Its 
decisions may also be based on beliefs, goals, and 

lessons learned from the past. This model generates 

behaviour aligned with human cognitive processes by 

incorporating psychological factors. 

 Emotional appeal models: These describe how emotions 

influence an agent's behaviour. In these models, 

emotions are central to decision-making, motivation, 

and social interaction. Within a crowd simulation, they 

aim to emulate emotions such as anger, fear, happiness, 

and empathy. An agent's emotional state can 

significantly affect its reactions, actions, and social 

behaviour. When experiencing fear, an agent may 
change its movement pattern, seek safety, or behave 

more cautiously. A model incorporating emotional 

appeal impacts individual and collective behaviour in a 

more nuanced and realistic manner 

 Behavioural-based models: Individual agents' behaviour 

is influenced by a variety of behavioural factors in 
behaviour-based models. A variety of disciplines are 

often drawn upon, including sociology, psychology, 

anthropology, and economics. Models such as these 

capture social norms, cultural influences, personality 

traits, and group dynamics among many other relevant 

aspects of behaviour. For example, they might simulate 

how social conformity, national identity, or leadership 

influence an agent's behaviour. The behavioural-based 

model attempts to capture the rich complexity of human 

behaviour through the interaction of various factors. 

 
While there may be overlaps and interconnections 

between these models, they differ in terms of their primary 

focus and the specific aspects of individual behaviour they 

emphasize [46]. In psychological models, a variety of 

psychological factors are considered, while emotional 

appeal models emphasize emotions, and behavioural-based 

models take a comprehensive approach by considering 

various behavioural influences. 

 

 Macroscopic crowd Simulation modelling 
As evidenced by previous research, crowd dynamics 

at a macroscopic level are forged by interactions between 

individuals at a microscopic level. Flow, density, and 

velocity are all incorporated into these models to accurately 

predict large-scale crowd dynamics. Since they replicate 

observed self-organizing phenomena, they are useful for 

applications such as simulation, real-time estimation, and 

crowd management. Traffic theory uses the term 

"macroscopic" to describe abstract models that study 

density and flow rather than simulating traffic. 
 

Macroscopic models simulate crowd motion using 

vector fields, describing velocity distributions based on 

mass conservation. Lagrangian and Eulerian approaches are 

employed for dense crowds with minimal individual 

variation. These models utilize partial differential 

equations, drawing from fluid dynamics to describe crowd 

density changes over time. Applications include simulating 

stadiums, shopping malls, and subways with large crowds. 

However, numerical methods face limitations, particularly 

in accurately determining traffic states and handling 

complex geometries, requiring re-mesh techniques and grid 
generation that can introduce complexity and information 

loss. Various macroscopic models, including continuum 

models, aggregate dynamics, potential field-based models, 

Lagrangian models, game theory, and bi-directional (BM) 

macroscopic models, have been developed to study crowd 

motion. 

 

 Macroscopic pedestrian flow model 

The macroscopic model examines the movement of 

many pedestrians within a two-dimensional continuous 

walking facility. It focuses on satisfying the mass 
conservation equation, which ensures a consistent 

pedestrian flow throughout the space. In this model, the 

equation is expressed in Lagrangian form, utilising a 

coordinate system that moves with individual pedestrians. 
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This differs from the Eulerian approach, which uses a fixed 

coordinate system in space. 

 

 The key Equations in this Model are: 
 

 Density Equation:           (4)  

 

 This Equation (4) helps us understand how the density 

of pedestrian changes over time. The equation relates 

time (t) to the pedestrian density (ρ) at any given point 

in the facility. It considers the position vector ( ) and 

velocity vector ( ) of the pedestrians, allowing for the 
analysis of their movement. Then Dt represents the 

change in time, and D/Dt represents the derivative 

concerning the moving coordinate system. 

 

 Acceleration Equation:       (5)  

 

 This Equation (5) helps us understand how their 

velocity changes over time. This equation determines 

the acceleration of the pedestrian flow, considering both 

internal factors such as Pressure (P) and external forces 

(  such as interactions with wall boundaries. 

 

To guide pedestrians towards their destination, the 

navigation term (  adjusts the velocity of each pedestrian 
based on their desired equilibrium velocity. The 

equilibrium velocity depends on the local density (ρ) and 

the relative position of the point ( ) to the destination. 

Pressure (P) is defined as the psychological discomfort 

caused by proximity to other pedestrians. It increases with 

density, steering pedestrians towards less crowded areas. 

The pressure term complements the navigation term by 

considering local path choices. The additional term (   in 

the equation introduces behavioural assumptions specific to 

certain applications. Different assumptions result in 
different models of pedestrian flow. It's important to note 

that the speed of pedestrian flows is limited by the physical 

capabilities of individuals. 

 

Overall, the equation combines navigation, pressure, 

and additional factors to model pedestrian behaviour and 

ensure numerical stability. By utilizing these equations, the 

macroscopic model provides insights into the collective 

behaviour of pedestrians in the walking facility, without 

focusing on individual pedestrian movements. 

 

  Macroscopic Model Types 
After exploring the fundamental concepts of 

macroscopic crowd simulation modelling, it's important to 

understand how different models from various research 

papers approach the field. While all these models share 

basic pedestrian flow principles, their approaches vary 

significantly.  

 

 Continuum Modelling 

The notion of continuum theory, proposed by Hughes, 

provides a systematic framework for characterizing 

pedestrian flow dynamics. By assuming certain properties 
of pedestrians, it becomes possible to solve flow equations 

that can be applied to model the behaviors of individuals 

within a crowd. 

 

Expanding upon Hughes' theory, Treuille et al. 
introduced a real-time, large-scale crowd simulation 

method known as "Continuum Crowds" [12]. This 

pioneering approach is the first instance of a macroscopic 

model developed specifically for simulating large-scale 

crowd scenarios. 

 

The application of continuum crowds leads to the 

derivation of dynamic potential fields, including speed 

fields, density fields, and discomfort fields [12]. These 

fields offer valuable insights into crowd behavior. 

Moreover, the overall unit cost function for a group of 
individuals is computed using Equation (6): 

 

        (6) 

 

In Equation (6), each term in the numerator 
corresponds to an integral that considers factors such as 

individual distance length, time of travel, and crowd 

density. The weights 𝛼, 𝛽, and 𝛾 determine the relative 

importance of these terms in the calculation. This cost 

function plays a critical role in characterizing crowd 

behavior and interactions. 

 

The algorithm flow, as shown in Fig 5.a, utilizes the 

Eikonal equation [12] to calculate the optimal path 

planning, represented by Equation (7): 

 

‖𝜙(𝒙)‖ = 𝐶    (7) 

The cost function 𝐶 is measured by the direction of 

the gradient, where individuals move in the opposite path 

of this gradient. This approach generates interesting 

moving patterns such as vortex formation and lane 

formation. Additionally, it is capable of simulating large-

scale army retreating, as showed in Fig 5.b. 
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Fig 5 The Complete Sequence of the Continuum Crowd’s Algorithm [12]. 

 

 Aggregate dynamics 

 The concept of the aggregate dynamic model draws 

inspiration from fluid dynamics. By employing a dual 

representation [68], the crowd compressibility is assessed 

using both discrete agent-based modelling and a unified 

continuous system. This novel approach, known as "UIC," 

enables the simulation of large crowds comprising hundreds 

of thousands of individuals in real-time, as depicted in Fig 
6.a. 

  

Within the aggregate dynamic system, the UIC 

projection embodies a constrained continuum model. This 

model sets up a relationship between the agent’s velocity 

field and density field [47], as specified by Equation (8): 

 

     (8) 

 

To uphold the UIC constraints, a correction of  and 𝜌 

is necessary [47], as detailed in Equation (9): 

 

       (9) 

 

At the start of the simulation, each agent is assigned a 

preferred velocity, resulting in varying velocity and density 

fields. By decoupling local collision avoidance, the UIC 

projection enables the generation of high-scale crowd 

simulations at near-interactive rates on desktop computers, as 

illustrated in Fig 6.b. Future work involves exploring how 

UIC projection could enhance simulations involving diverse 

types of interactions, such as simulation or crowd control 

robots. 

 

 
Fig 6 The Complete Sequence of the Aggregate Dynamics [47]. 
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 Potential Field-Based Modelling 

 Potential-based models are widely utilized for 

simulating large-scale crowds. These models involve 

partitioning the environment into grids and constructing 
dynamic fields. One specific approach proposed in [48] is 

called "Flow Tiles,” which focuses on generating divergence-

free velocity fields and enhancing flow-like crowd 

simulations. Nevertheless, it should be acknowledged that the 

process of assembling a limited number of template flow tiles 

may not be interactive. 

  

A groundbreaking method called the interactive 

navigation field approach was devised to guide agents by 

integrating user-defined guidance fields [49]. These fields, 

including sketched paths and video footage, can be 
seamlessly incorporated into the navigation system, as 

illustrated in Fig 7, ensuring collision-free movement. The 

interactive nature of this method enables users to edit and 

customize the navigation field at both global and individual 

levels. This allows for the simulation of complex behaviors 
like vortices, lane formations, and group dynamics.To ensure 

the effectiveness of this method, it is crucial to satisfy 

Equation (10), which expresses the condition: 

 

‖𝑠𝐚 − 𝐺(𝑋)‖ = 1      (10) 

 

By meeting this criterion, the method successfully 

generates realistic trajectories and individual animations, 

providing a compelling and immersive crowd simulation 

experience. 

 

 
Fig 7 Guidance Field and the Results of Simulation [49]. 

 

 Lagrangian Modelling 

A numerical method called the Lagrangian 

Discretization solves partial differential equations (PDEs). In 

this process, PDEs are partitioned into smaller entities or 

particles and their movements are tracked over time. 

Specifically, these rules are figured out by the properties of 
the equation [50]. By discretizing the equation and seeing 

particle trajectory, an approximate solution can be obtained. 

For crowd simulation, Lagrangian Discretisation can be used 

to solve crowd movement equations numerically. The 

equations are broken down into smaller particles. With rules 

derived from the equation properties, their trajectory is 

tracked over time. By using this method, one can generate an 

approximate solution to simulations involving large crowds 

of individuals moving together. 

 

 Game Theory 
 Game theory, a branch of mathematics focused on 

strategic decision-making, plays a crucial role in crowd 

simulation. A valuable framework for understanding how 

individuals interact with each other during an evacuation 

process is provided by this model. In scenarios involving 

inter-pedestrian conflicts, like obstacle removal or yielder 

games, game theory can be used to investigate cooperative or 

defection behavior [51]. 

  

Crowd simulations can be used to analyze and predict 

large groups' behavior under different conditions by using 
game theory. By using such a macrocosmic approach, we can 

examine the impact of factors such as the time at which 

obstacles are removed, how many obstacles are present, and 

their placement on the overall efficiency and safety of an 

evacuation. It helps refine crowd management strategies by 

providing insights into crowd behavior dynamics. 

 

 Bi-Directional (BM) Macroscopic Modelling 

The Bi-directional Macroscopic (BM) model offers a 

macroscopic approach to crowd simulation, considering 

crowds as a collective entity rather than focusing on 
individual elements. Based on fundamental flow diagrams, 

the BM model accurately predicts crowd movement and 

captures experimental data by relating pedestrian fluxes to 

densities [52]. As a result of this model, improved prediction 

models and real-time optimization strategies for managing 
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large groups of people can be developed. In addition to 

providing insights into crowd behavior, it enhances crowd 

management techniques. 

 

C. Mesoscopic crowd simulation modelling 
Mesoscopic simulation models bridge microscopic and 

macroscopic approaches, representing pedestrian movement 

within crowds more realistically. As opposed to microscopic 
models, which focus on individual pedestrians, and 

macroscopic models, which analyse aggregate crowd 

behaviour, mesoscopic models combine both perspectives. 

Simulating large-scale and dense crowd scenarios in 

mesoscopic models is done by treating the crowd as one 

continuous entity. The crowd's movement is determined by 

potential fields or fluid dynamics. In the case of crowd path 

planning and collision avoidance, a global problem solver is 

used, without focusing on individual-level interactions 

between virtual agents and their environments. 
  

Various mesoscopic models have been developed in 
crowd motion. These models include dynamic group 

behaviour, interactive crowd formation, social psychological 

crowds, and hybrid models that integrate both microscopic 

and macroscopic behaviours. Through consideration of both 

individual characteristics and collective behaviours such as 

density and flow rate, these models aim to capture crowd 

dynamics complexity. 

 Mesoscopic pedestrian flow model types 

 

 Dynamic Group Behaviour 

Group dynamics refers to the study of collective 
behaviours and psychological processes within social groups, 

as well as interactions between different groups. It aims to 

identify the general principles underlying group phenomena 

through dynamic analysis. The term "group dynamics" was 

coined by Lewin [53], who used it to describe interactions 

and dynamics between individuals and groups. In this 

context, a social group can be defined as a cohesive unit 

composed of two or more individuals who interact and 

exchange information with one another. It is important to 

note that a social group is not merely a collection of 

individuals but also exhibits social cohesion, such as people 
walking together or forming lines. Group dynamics can be 

observed in various contexts, such as friends, families, or 

colleagues walking together. These collective behaviours 

contribute to the human crowd's distinctive characteristics. 

 

 An analysis of and evaluation of small groups' local 

behaviours was conducted by the authors [54], focused on 

investigating the relationships within and between groups, 

considering three distinct walking patterns: line-like, v-like 

and river-like formations, as given in Fig 8. 

 

 
Fig 8 Distinct Walking Patterns in Groups. [54] 

 

In a different investigation [55], a dynamic model for 

group behaviour was proposed, which utilized the concept of 

the least effort principle which minimizes energy expenditure 

for agents navigating through the environment, to promote 
coordinated group navigation and support both intra-group 

and inter-group interactions, as shown in Fig 9. It extends the 

reciprocal collision avoidance approach to enable collision 

avoidance between both groups and agents, resulting in 

collision-free and coherent trajectories. The approach's 

effectiveness is showcased in interactive simulations with 

hundreds of agents, providing realistic trajectory behaviours 

aligned with real-world observations. 

This model established a clear definition of a group by 

considering the transitive closure of individuals' positions 

and velocities, as demonstrated in Equation (11): 

 

(𝑎∼𝑏) ≡ (‖𝐩𝑎 −𝐩𝑏‖<𝜖𝑝 ∧‖𝐯𝑎 −𝐯𝑏‖<𝜖𝑣)      (11) 

 

This Equation (11) ensures that individuals within the 

same group exhibit similar positions and velocities. 
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Fig 9 Agent-Group Interactions. [55] 

 

 Interactive Crowd Formation 

The application of interactive crowd control technology 

extends to various domains, including visual effects and 

computer games. These algorithms find utility in real-time 

strategy (RTS) games like Command & Conquer and 

StarCraft II, as well as in visual effects for simulating 
parades, war scenes, and more. 

  

In 2004, the "CrowdBrush" framework was introduced, 

allowing designers to manipulate crowds in a two-

dimensional screen environment, as depicted in the Fig 

10[56]. By adding, removing, and modifying crowd 

members, as well as generating realistic animations, 

designers can interact with the crowds using a 2D screen and 

map them to corresponding 3D entities. Building upon this, 

the "Motion Patches" approach was developed to capture 

real-world human motion data [57]. Through meticulous 

analysis of geometric attributes and environmental 

regularities, motion patches were annotated with precise 

motion data, forming a directed graph representation, as 

shown in Fig 11. These patches were seamlessly stitched 
together to construct environments, enabling interactive 

control over individual motion. This concept was extended to 

include both dynamic and static objects, resulting in the 

concept of "Crowd Patches" [58]. This advancement has 

opened new possibilities for capturing and simulating crowd 

behaviours in virtual environments. Walking companions 

were considered in [59] to enhance the capabilities of "crowd 

patches". 

 

 
Fig 10 Interactive Crowd Formation using “Crowd Brush”. [56] 
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Fig 11 Motion Patches. [57] 

 

In a study by Jordao et al. [60], a technique called 

"Crowd Sculpting" was proposed, enabling the editing of 

temporal and spatial crowd motion through intuitive gestures 

such as stretching, deforming, segmenting, and merging. 

Another method, "Cage-based Editing" [61] was introduced 

to facilitate the manipulation of large-scale crowd animation 

and complex interactions in real-time, providing users with 

an intuitive editing experience.  

 

 Social Phycological Crowds 

Human behaviour is greatly influenced by personality 

traits and theories of emotion contagion, which are captured 

by different models such as the OCEAN model [62] and the 

PEN model [63]. These models provide valuable insights into 

human personality dimensions, including Openness, 

Conscientiousness, Extraversion, Agreeableness, and 

Neuroticism in the OCEAN model, and Psychoticism, 

Extraversion, and Neuroticism in the PEN model. These 

frameworks have been utilized in crowd simulation research, 

particularly in modelling diverse crowd behaviours like 

Aggressive, Shy, Assertive, Tense, Impulsive, and Active 

[64], as shown in Fig 12. By establishing mapping 

relationships between simulation parameters and personality 
traits, realistic behaviours can be generated without relying 

on specific equations or formulas. Emotion contagion can be 

effectively achieved by quantifying the level of each 

personality component through the utilization of either the 

OCEAN or PEN models. 

 

 
Fig 12 Modelling Heterogeneous Crowd Simulation Based on Personality Traits. [64] 
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Crowd simulation extensively employs various emotion 

contagion models, namely the OCC (Ortony, Clore, Collins), 

PAD (Pleasure Arousal Dominance), ASCRIBE, and 

ESCAPES (Emotional States and Coping Abilities for 
Personalized Evacuation Simulations) models. The OCC 

model [65] effectively classifies emotions into 22 distinct 

categories, enabling comprehensive emotion representation 

across different cultures and individuals. Its widespread 

adoption in crowd simulation is attributed to its 

computationally straightforward nature. The PAD model [66] 

employs three dimensions, namely Pleasure, Activation, and 

Dominance, to capture the nuances of 42 other emotion 

scales. ASCRIBE [67] utilizes a multi-agent approach to 

simulate collective emotions within groups. Conversely, the 

ESCAPES model [68] incorporates agent types, emotional 
responses, information exchange, and interactive behaviours 

to accurately replicate evacuation scenarios, considering 

factors such as forgetfulness, the prevalence of intense 

emotions, collective herding behaviour, delays before 

evacuation, family dynamics, and the influence of authorities. 

 

 

IV. SIMULATION APPROCHES: EVALUATION  

AND URBAN APPLICATIONS DISCUSSION 

 

Using SWOT (Strengths, Weaknesses, Opportunities, 

Threats) analyses, a concise yet comprehensive overview of 
each model type is provided in this section, highlighting the 

capabilities, limitations, potential applications, and associated 

risks associated with each model type. Various fields, 

including urban planning, emergency management, and 

public safety, can benefit from this evaluation as a resource 
for identifying areas of improvement, potential research 

directions, and practical implementation considerations. 

 

There are distinct benefits and challenges associated 

with different approaches to crowd modeling. Microscopic 

models, as demonstrated in Fig 13, are excellent at capturing 

individual behaviors and interactions, offering high-

resolution simulations useful for emergency management and 

urban planning, but they are limited in scalability. How 

macroscopic models are effective in simulating crowd 

movements and optimizing traffic flows is illustrated in Fig 
14, even when including broad cultural and infrastructural 

factors, yet they lack individual-level detail. Mesoscopic 

models, highlighted in Fig 15, serve as a middle ground, 

balancing individual behaviors and group dynamics while 

also taking psychological and social factors into account.  

 

Through these diverse applications, the complementary 

nature of different modelling approaches becomes evident, 

and Fig 16 summarizes the taxonomical framework of types 

of crowd simulation models, highlighting their key 

differences in terms of general definition, core mechanisms, 

key elements, structural differences, unique characteristics. 

 

 
Fig 13 SWOT Framework for Microscopic Crowd Simulation Models. 
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Fig 14 SWOT Framework for Macroscopic Crowd Simulation Models. 

 

 
Fig 15 SWOT Framework for Mesoscopic Crowd Simulation Models. 
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Fig 16 Taxonomical Framework of Crowd Simulation Model’s types.

 

This comparative analysis helps in understanding how 

each model contributes uniquely to crowd simulation and 

when each might be most appropriate. There is a distinct 

advantage to each model type: microscopic for detailed 

interactions, macroscopic for large-scale patterns, and 

mesoscopic for flexibility. While each scale of analysis 
offers unique insights into urban planning challenges, their 

integration allows for more comprehensive and effective 

solutions. Planning professionals can select and implement 

right modelling approaches for specific urban development 

challenges by understanding these applications. Future 

research should focus on addressing each model's 

limitations: improving computational efficiency and data 

practices for microscopic models, integrating more granular 

data for macroscopic models, and refining psychological 

factor integration and validation methods for mesoscopic 

models, ultimately enhancing their applicability across 

diverse scenarios. 

V. CHALLENGES AND CONCLUSION 

 

Ultimately, this research study has extensively 

explored the multifaceted domain of crowd simulation, 

providing valuable insights into its evolution and delving 

into various modelling approaches and their classifications 
through a comprehensive analysis. It is consistent with the 

examined studies that microscopic models accurately 

capture individual behaviour and micro phenomena, such 

as leadership, group dynamics, and lane formation. 

Furthermore, macroscopic models have distinct advantages 

when it comes to simulating the movement of crowds 

collectively, especially in densely populated situations. It 

has been recognized that mesoscopic models provide a 

bridge between microscopic and macroscopic approaches, 

effectively incorporating both individual characteristics and 

collective behaviours. 
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No matter what, it is crucial to acknowledge that 

current crowd simulation methods primarily cater to 

specific applications. This indicates the need for a flexible 

and robust framework that accommodates multiple 
scenarios. Consequently, the development of such a crowd 

simulation framework capable of supporting a wide array 

of applications remains a grand challenge in the field. Even 

amid significant advancements, crowd simulation still faces 

several challenges that require attention and further 

research, including the following: 

 

 Incorporating behavioural attributes: Crowd simulation 

models' ability to accurately capture and incorporate 

behavioural attributes, such as individual decision-

making, social interaction, and emotional contagion, is 
crucial. During emergency evacuations, this involves 

modelling and conveying dynamic emergency 

information to rescue workers, as well as modelling on-

site dynamics. When these elements are successfully 

incorporated into simulations, safer evacuation plans 

can be designed. Learning frameworks should be 

integrated with real-world data to enable supervised 

learning of crowd movement trajectories and 

unsupervised learning for adaptive models based on 

essential features. 

 Real-world data collection: Obtaining authentic real-
world panic crowd data for model learning and 

validation poses a significant challenge. Using video 

sequences captured from multiple cameras within a 

scene, researchers can reconstruct the overall motion 

state by integrating fragmented data. It allows 

comprehensive and essential simulation information. 

 Usage of cognitive science: It is essential to incorporate 

psychology and sociology insights into computer 

algorithms for modelling confrontational crowd 

behaviour, such as riots and demonstrations. 

Physiological, emotional, physical, mental, and 

appearance characteristics must be encompassed in 
comprehensive models to accurately portray phenomena 

such as shoving, pushing, and trampling. The absence 

of reliable real-world crowd behaviour data in extreme 

cases, however, hinders realistic simulations. To model 

more autonomous and intelligent crowds, it is necessary 

to combine artificial intelligence with social psychology 

and physical laws. 

 Balancing efficiency with accuracy: Crowd simulation 

models need to be enhanced, especially in real-time or 

cloud-based scenarios, to improve efficiency and 

performance. With technologies like 5G and remote 
rendering, there is an opportunity to improve rendering 

quality, efficiency, and data transfer. Simulation of 

large-scale realistic crowds requires careful 

consideration of computational resource requirements. 

These challenges can be overcome by integrating 

distributed parallel computing and deep learning 

techniques. 

 

In addressing these challenges and exploring new 

directions in these areas, crowd simulation will continue to 

advance, enabling more realistic and effective simulations 
across a wide range of applications in the future. 
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