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demonstrated that if the noise driving force parameter of the stochastically perturbed equation is finite, then the new 
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exponential sense. This phenomenon does not occur in the deterministic multi-pantograph ordinary delay differential 

equation where noise is absent. 
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I. INTRODUCTION 
 

Differential equations are used to sustain a relationship 

between functions and their derivatives. Where physical 

processes do not depend on the current state only, they are 

easily represented by means of delay differential equations 

(DDEs). The significance of these equations lies in their 

ability to describe processes with aftereffects (Unser (2020), 

Alferov (2018)). 

  

A delay differential equation is a differential equation 

with deviating argument, this means, it is an equation that 
contains some functions and some of its derivatives are 

deviating argument values (Kolmanovskii & Myshkis, 1992). 

Situations in life are not usually free of disturbances which 

may be intrinsic or external. Most dynamic systems in real 

life are modeled by deterministic differential equations 

whenever they are not subject to randomness, but rather to 

changes occurring in their current state or parameters due to 

deterministic forces. Whenever such changes exist, the 

systems are said to be chaotic. Where real life situations are 

subject to internal or external disturbances, they are better 

modeled mathematically by means of stochastic delay 

differential equations (SDDEs). 
 

The stability of dynamical systems becomes a research 

focus when these systems are subjected to performance 

criteria with the goal of accomplishing certain objectives. 
(Oguztoreli, 1979). Lyapunov introduced the concept of 

stability into the study of dynamic system in 1892 and 

explained the concept as insensitivity of a system to little 

changes in its initial state or parameters. 

 

Different types of stability exist which form a better 

understanding of the concept viz: mean square stability, 

stochastic stability, moment stability, almost sure exponential 

stability, stability in probability, asymptotic stability etc. 

Stamova & Stamov, (2013) used Razumikhin methods and 

Lyapunov functions to establish the stability of the zero 
solution of differential equations with maximum. Xiao & 

Zhu, (2021) investigated the stability of unstable subsystems 

in switched stochastic delay differential systems. Li et al., 

(2021) examined the global Brownian motion-driven 

stabilization of multi-weight stochastic complex networks 

with time delay. Zhu & Huang, (2021) proved the stability of 

the general Brownian motion-driven class of stochastic delay 

nonlinear systems. Ngoc, (2021) created the new standards 

for the neutral stochastic functional differential equations' 

mean square exponential stability. Shen et al., (2021), using 

a general Levy process with non-Lipschitz coefficients, 

established sufficient condition for the mean square 
exponential instability of stochastic differential equations. 

They then designed a discrete-time feedback control in the 

drift part and achieved both mean square exponential stability 
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and quasi-certain exponential stability for the controlled 
systems. Mao & Mao, (2017) examined if solutions to neutral 

stochastic functional differential equations with Lévy noise 

or jumps exist and are unique. Chen et al., (2016) examined 

the neutral stochastic delay differential equations' exponential 

stability with time-varying delay. Liu, (2017) developed a 

semi group scheme for the drift part of the systems under 

consideration and with path-wise stability using a 

perturbation approach instead of moment stability, thereby 

establishing a theory regarding the property of almost sure 

path-wise exponential stability for a class of stochastic 

neutral functional simultaneous equations. Wei, (2019) used 

the Borel-Cantelli lemma, Burkholder-Davis-Gundy 
inequality, Holder inequality, Gronwall inequality, and the 

generalized Itô formula for Lévy stochastic integral to study 

the almost sure exponential stabilization of linear and 
nonlinear stochastic systems by stochastic feedback control 

with Lévy noise from discrete time systems. 

 

From the above reviewed literatures, it can be seen that 

studies on the role of Lévy noise in the almost sure 

exponential stochastic stabilization of dynamical systems is 

scantly researched. The uniqueness of Lévy noise as contrast 

to Itô-noise lies in its ability to model fluctuations in a system 

by the presence of the Large Jumps and Compensated small 

Jumps, as will be described in this work.  Motivated by some 

of the works of the authors mentioned above, we focus our 

attention on the study of stability behavior of deterministic 
multi-pantograph ordinary delay differential equations: 

 

𝑥|(𝑡) = 𝑓 (𝑡, 𝑥(𝑡), 𝑥(𝑡 − 𝑟𝑖)𝑥(𝑞(𝑡), )𝑥(𝑞2(𝑡)), 𝑥(𝑞3(𝑡)), . . . , 𝑥(𝑞𝑚(𝑡))) ,

𝑡 ≥ 0, 𝑥(0) = 𝜆                                                                                       (1.1) 
 

Where  0 <  𝑞𝑖  < 1, 𝑖 = 1, 2, … ,𝑚 are the pantograph 

functions, 𝑟𝑖 , 𝑖 = 1, 2, … ,𝑚 are constant deviating arguments 

and 𝑓 is a continuous function so that Eq. (1.1) is generally 

unstable (Mao (1997)). Eq. (1.1) is a functional differential 

equation that was first used for current collection in an 

electric locomotive system. (Ahmad and Mukhtar (2015)).    

 

Pantograph differential equations are variant delay 

differential equations which have been widely studied since 

the 1850s. According to Rubab and Ahmad (2016), the 

pantograph is a device located on the electric locomotive. The 

first electric locomotive was made in 1851 and became 

commissioned in 1895. Taylor and Ockendon (1971) studied 
how electric current is collected by the pantograph of an 

electric locomotive and then developed a mathematical model 

of pantograph. Functional differential equations with 

proportional delays are usually referred to as pantograph 

equations. 
 

The importance of pantograph differential equations 

emanates from the key role they play in understanding the 

asymptotic behavior and stability properties of complex 

systems such as electric locomotive, electrodynamics, 

astrophysics, nonlinear dynamic systems, electronic systems, 

population dynamics, probability theory on algebraic 

structures and quantum mechanics (Florescu (2014), Fristedt 

and Gray (2013) and Sezer et al. (2008). They are also 

applicable in computer science for image processing, signal 

processing, Simulations, sensor data, Neural network, see 

Unser (2020), Jordan and Turkington (2001). 

  

 

 The Present Article Studies the Deterministic Multi-Pantograph Ordinary Delay Differential Equation of the form: 

 

𝑥|(𝑡) = 𝜆𝑥(𝑡) +∑𝜇𝑖𝑓(𝑡, 𝑥(𝑡), 𝑥(𝑡 − 𝑟𝑖), 𝑥(𝑞𝑖𝑡)), 𝑡 ∈ [0, 𝑇]

𝑘

𝑖=1

𝑥(𝑡) = 𝜑(𝑡), 𝑡 ∈ [−Γ, 0]                                                                

}           (1.2) 

 

 

Where, 𝑓(. ) = 𝑥𝛼 , for 𝑥 > 0 is an analytic function, 

𝑟𝑖 > 0  are fixed delays, 𝜆, 𝜇𝑖 ∈ ℝ
+, 𝑞𝑖 < 𝑞𝑖−1 < 𝑞𝑖−2 <

1, 𝑖 = 1, 2,… ,𝑚   𝑡 > 0 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑝𝑎𝑛𝑡𝑜𝑔𝑟𝑎𝑝ℎ 𝑡𝑒𝑟𝑚𝑠 , 𝜑 ∈
𝐶([−Γ, 0],ℝ𝑑) is the initial function and Γ =  {ri}0≤i≤1

max . The 

equation is nonlinear and contains a multi-pantograph term as 

well as several constant time lags and as such, the solution is 
generally unstable Mao (1997), Hahn (1967). 

 

By solution of Eq. (1.2), we refer to a continuous 

function 𝑥 ∈ 𝐶([𝑡̅ − Γ,∞), ℝ) for some 𝑡̅ which satisfies Eq. 

(1.2) together with its initial function for 𝑡 ≥  𝑡̅.  Assume that 

for every initial datum 𝑥(𝑡0) = 𝜑(𝑡0)  ∈  ℝ
𝑑 , there exists a 

global solution 𝑥(𝑡, 𝑡0, 𝑥0). Assume also that 𝑓(𝑡, 𝑥(𝑡0 − 𝑟𝑖),

𝑥(𝑞𝑖𝑡)) = 0, ∀ 𝑡 ≥ 𝑡0 so that the solution 𝑥(𝑡, 𝑡0, 𝑥0) ≡ 0 

corresponding to the initial datum 𝑥(𝑡0) = 𝜑(𝑡0). This 

solution is called the trivial solution or equilibrium position 

of Eq. (1.2). 

 

The trivial solution 𝑥(𝑡, 𝑡0, 𝑥0) of Eq.(1.2) is stable if 

for every 𝜀 > 0, there exists  𝛿 =  𝛿(𝑡0, 𝜀)  >
0 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 |𝑥(𝑡, 𝑡0, 𝑥0)|  < 𝜀, ∀ 𝑡 ≥  𝑡0 𝑎𝑛𝑑 |𝑥0|  < 𝛿.  
 

A multi-pantograph delays differential equation with 

several deviating argument is a type of pantograph 

differential equation that incorporates proportional delays 

and multiple pantograph terms. They are particularly useful 

for modeling complex systems with multiple dependencies at 
different time scales like Population dynamics with time 

dependent reproduction rates, control systems with multiple 

feedback delays, and also mechanical systems with 

proportional interactions (Valdimirov et al., 2021; Kovalev 
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and Viktorov, 2020; Klinshov and Zlobin, 2023). It is an 
extension of the standard pantograph equation as in Eq.(1.2) 

above. 

 

A stochastic differential equation (SDEs) is an equation 

in which one or more of the terms is a stochastic process, 

resulting in a solution which is also a stochastic process. That 

is SDEs contain a variable which represents random white 

noise calculated as the derivative of Brownian motion. 

Uncertain stock prices in finance are just one example of the 

many phenomena that have been modelled using stochastic 

differential equations (Merton, 1976). Atonuje et al., (2024) 

examined how a multiplicative Ito-type Brownian noise can 
stochastically stabilize the evolution of a Volterra functional–

describing optimum control dynamical system, which is 

characterized by an unstable nonlinear classical delay 

differential equation. In order to create a stochastic optimum 

control system, the authors introduced a multiplicative 

Brownian noise into the equation. The system became almost 

surely exponentially self-stabilized under specific conditions 

and with a tiny enough time delay when the noise scaling 

parameter in the stochastic optimum control delay differential 

equation is replaced with a finite integral expression. 

 
However, there are other types of random behavior that 

are possible, such as jump processes which are seen in the 

Lévy noise. 

 

The Lévy process is a type of stochastic process widely 

used in probability theory and mathematical finance 

(Atonuje, 2017). It is named after the French mathematician 
Paul Lévy. In essence, it is a continuous-time random process 

that exhibits independent and stationary increments. 

 

 A Lévy Process 𝑋 = 𝑋(𝑡): 𝑡 ≥ 0 Stochastic Process Such 

that: 

 

 𝑋0 = 0 almost surely, with positive probability. 

Typically, the Lévy process begins at zero. 

 

 𝑋 has stationary increment i.e (𝑋ₜ–𝑋ₜ 𝑓𝑜𝑟  𝑠 <  𝑡 ≡

(𝑋(𝑡−𝑠)). The distribution of the process’s increments 

depends only on the length of the time interval, not on the 

starting point 

 

 𝑋𝑡2 − 𝑋𝑡1 , 𝑋𝑡3 −𝑋𝑡2 , … , 𝑋𝑡𝑛 −𝑋𝑡𝑛−1are independently 

mutually increasing for each 0 ≤  𝑡1 <  𝑡2 < · · · <  𝑡𝑛 <
 ∞. 

 

 {𝑋(𝑡)}𝑡≥0 is continuous in probability, i.e., given any 𝜀 >
0,  

 

𝑃(|𝑋(𝑡 + 𝑠) –𝑋(𝑡)| > 𝜀) = 0 
 

 Eq. (1.2) is now Perturbed by Lévy Noise into a Stochastic 

Multi-Pantograph Ordinary Delay Differential Equation 

(SMPODDE) of the form: 

 

{
 
 
 

 
 
 𝑑𝑥(𝑡) = (𝜆𝑥(𝑡) +∑𝜇𝑖𝑓(𝑡, 𝑥(𝑡), 𝑥(𝑡 − 𝑟𝑖), 𝑥(𝑞𝑖𝑡))

𝑛

𝑖=1

)𝑑𝑡 +

𝜎 ([∑𝐺𝑘𝑥(𝑡)𝑑𝐵𝑘(𝑡)

𝑚

𝑘=1

] + ∫ 𝐷(𝑦)

|𝑦|< ∆

𝑥(𝑡)𝑁(𝑑𝑡, 𝑑𝑦) + ∫ 𝐸(𝑦)

|𝑦|≥ ∆

𝑥(𝑡)𝑁(𝑑𝑡, 𝑑𝑦))

𝑥(𝑡) = 𝜑(𝑡), 𝑡 ∈ [−Γ, 0]                                                                              (1.3)      

 

 

For all 𝑡 ≥ 𝑡0, where 𝐺𝑘  ∈  𝑀𝑑(ℝ) 𝑓𝑜𝑟 1 ≤ 𝑘 ≤ 𝑚, D 

and E are suitable functions. 𝐷:ℝ𝑚  →  𝑀𝑑(ℝ), 𝐸:ℝ
𝑚  →

 𝑀𝑑(ℝ).  𝜎 is the noise driving force parameter which 

measures the intensity of the fast-fluctuating Lévy noise. The 

positive number ∆ plays the role of separating small jumps 

(which are compensated) from large jumps (which are not 

compensated). N(.) is the Poisson process with compensation 

𝑁 and 𝐵𝑘(𝑡) = (𝐵1(𝑡), 𝐵2(𝑡),… , 𝐵𝑚(𝑡) )
𝑇 , 𝑡 ≥ 0 is an m-

dimensional Brownian motion defined on a complete 

probability triple (Ω, 𝐹, 𝑃), with filtration {𝐹𝑡}𝑡≥0 which is 

right continuous and each 𝐹𝑡 contains all P-null sets in F with 

expectation 𝐸(𝑥) =  ∫ 𝑥𝑑𝑃
Ω

  , where 𝐸 denotes expectation. 

 

 Eq (1.3) Can be Written in the Integral form as  
 

𝑥𝑛(𝑡) = 𝜆𝑥(0) ∫𝜇𝑓𝑛(𝑠, 𝑥𝑛(𝑠)), 𝑥𝑛(𝑠 − 𝑟𝑖), 𝑥(𝑞𝑖(𝑠)

𝑡

𝑡0

𝑑𝑠 +  

 

 𝜎 [∫𝐺𝑘𝑥𝑛(𝑠)𝑑𝐵𝑠 

𝑡

𝑡0

+ ∫ ∫ 𝐷𝑛(𝑦, 𝑥𝑛(𝑠))𝑁(𝑑𝑠, 𝑑𝑦) + ∫ ∫ 𝐸𝑛(𝑦, 𝑥𝑛(𝑠))𝑁(𝑑𝑠, 𝑑𝑦)

|𝑦|≥ ∆

𝑡

𝑡0|𝑦|<∆

𝑡

𝑡0

] 

 

Recall that every Levy process is the sum of a Brownian 
motion with drift and another independent random variable. 

In the above case the other random process is Poisson. This 

stochastic sum is called the Lévy-Ito decomposition and is 
referred to as a stochastic sum of independent Poisson 

random variable.   
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 In the Present Article, we Focus our Attention on 
Providing an Answer to the Following Questions:  

 if under certain conditions, a deterministic multi-

pantograph delay differential equation which is generally 

unstable, is stochastically perturbed by Levy noise, can 

the presence of a sufficiently strong noise driving force 

parameter, stochastically stabilize the system in an almost 

sure (a.s.) exponential sense?  

 

 Under these same conditions, can the comparable 

deterministic system where noise is absent be stabilized or 

would it remain unstable? 
 

This research is thus focused on proposing to establish 

the contribution of Levy noise to the almost sure exponential 

stochastic self-stabilization in a specific type of deterministic 

pantograph delay differential equation described in (1.2) 

above. The approach used was first suggested in Mao (1997) 

and it utilizes the concept of Lyapunov sample exponent 

function.   

 

II. METHODOLOGY AND PRELIMINARIES 

  

 The Following Assumptions are Imposed on the Functions 

𝑓, 𝐷, 𝐸 𝑎𝑛𝑑 𝜑:     
 

  𝑓:ℝ × ℝ → ℝ, 𝐷:ℝ × ℝ → ℝ, 𝐸:ℝ × ℝ →
ℝ 𝑎𝑛𝑑 𝜑: [−Γ, 0] →  ℝ  are such that f, D and E are 

continuous functions and fulfill the uniform Lipchitz 

condition. More specifically, there exist some positive 

constants 𝐾1, 𝐾2, 𝐾3,𝐾4 𝐾5and 𝐾6  such that 

∀ 𝑎1, 𝑎2, 𝑏1, 𝑏2, ∈  ℝ  
 
|𝑓(𝑎1, 𝑏1) − 𝑓(𝑎2, 𝑏2)| ≤  𝐾1 |𝑎1 − 𝑎2| + 𝐾2  |𝑏1 − 𝑏2| 

 
|𝐷(𝑎1, 𝑏1) − 𝐷(𝑎2, 𝑏2)| ≤  𝐾3 |𝑎1 − 𝑎2| + 𝐾4  |𝑏1 − 𝑏2| 

 
|𝐸(𝑎1, 𝑏1) − 𝐸(𝑎2, 𝑏2)| ≤  𝐾5 |𝑎1 − 𝑎2| + 𝐾6  |𝑏1 − 𝑏2| 

 

 𝑓, 𝐷 𝑎𝑛𝑑 𝐸 fulfill the Linear growth bound condition. 

More specifically, there exist positive constants 

𝐿1, 𝐿2 𝑎𝑛𝑑 𝐿3 such that for all  𝑎, 𝑎1, 𝑏, 𝑏1, 𝑐, 𝑐1  ∈  ℝ 

such that 

 
|𝑓(𝑎, 𝑎1)|

2  ≤  𝐿1(1 + |𝑎 |
2 + |𝑎1|

2) 
 

|𝐷(𝑏, 𝑏1)|
2  ≤  𝐿2(1 + |𝑏 |

2 + |𝑏1|
2) 

 
|𝐸(𝑐, 𝑐1)|

2  ≤  𝐿3(1 + |𝑐 |
2 + |𝑐1|

2) 
 

 The initial function 𝜑 is Holder-continuous with 

exponent 𝛽. More specifically, there exists a positive 

constant 𝐾6 such that ∀ 𝑡, 𝑠 ∈  [−Γ, 0] , 𝜀(|𝜑(𝑡) −
𝜑(𝑠)|𝑝)  ≤  𝐾6 |𝑡 − 𝑠|

𝑝𝛽 , 𝑝 = 1, 2.                      
 

The conditions (𝑖) and (𝑖𝑖) ensures the existence of 

solutions of Eq. (1.3). For detailed understanding of the 

concept of expectation, existence and uniqueness of solutions 

of differential equations, the reader is referred to Arnold 

(1974). 

 

By solution of the SMPODDE (1.3), one refers to an 

ℝ− 𝑣𝑎𝑙𝑢𝑒 𝑥(𝑡): [−Γ, 0] × Ω → ℝ, called a strong solution 

of Eq. (3) if it is a measurable sample – continuous process 

such that 𝑥|[0, 𝑇] is {𝐹𝑡}0≤𝑡≤𝑇 − 𝑎𝑑𝑎𝑝𝑡𝑒𝑑, 𝑓, 𝐷 𝑎𝑛𝑑 𝐸 are 

continuous functions and 𝑥(𝑡) satisfies Eq. (3) almost surely 

as well as the initial condition 𝑥(𝑡) =  𝜑(𝑡), 𝑡𝜖 [– Γ, 0]. 𝑥(𝑡) 
is said to be unique if there exists any other solution 𝑥 ̅(𝑡) is 
indistinguishable from 𝑥(𝑡). that is, 𝑃(𝑥(𝑡) =
𝑥 ̅(𝑡), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ [−Γ,0] ) = 1.  
 

Eq. (1.3) can be stabilized in an almost sure (a.s.) 

exponential sense by Lévy noise provided that the noise 

driving force parameter 𝜎 is sufficiently large, i.e., 𝜎 < ∞.  In 

this section, a carefully chosen integral expression is used to 

replace 𝜎. that is, 𝜎 = ∫ |𝜂(𝑠)𝑥(𝑠)|𝑝𝑑𝑠
𝑡

0
, 𝑝 ∈ ℝ+ to obtain 

Eq. (1.4) below, where 𝜂(𝑠) is a continuous ℝ𝑚×𝑑 − 𝑣𝑎𝑙𝑢𝑒𝑑 

function with the property ‖𝜂(𝑠)‖ ≤ 𝑄𝑒𝛿𝑡 , ∀𝑡 ≥ 0. 𝜂(𝑠) acts 

to restrain the solution 𝑥(𝑡) so that it must not vanish into 

infinity at t. 𝜂(𝑡) in this capacity is called a convergence rate 

function.  

 

{
 
 
 

 
 
 𝑑𝑋(𝑡) = (𝜆𝑋(𝑡) +∑𝜇𝑖𝑓(𝑡, 𝑋(𝑡), 𝑋(𝑡 − 𝑟𝑖), 𝑋(𝑞𝑖𝑡))

𝑛

𝑖=1

)𝑑𝑡 +

(∫|𝜂(𝑠)𝑥(𝑠)|𝑝𝑑𝑠

𝑡

0

)([∑𝐺𝑘𝑋(𝑡)𝑑𝐵𝑘(𝑡)

𝑚

𝑘=1

] + ∫ 𝐷(𝑦)

|𝑦|< ∆

𝑥(𝑡)𝑁(𝑑𝑡, 𝑑𝑦)+ ∫ 𝐸(𝑦)

|𝑦|≥ ∆

𝑥(𝑡)𝑁(𝑑𝑡, 𝑑𝑦))

𝑋(𝑡) = 𝜑(𝑡), 𝑡 ∈ [−Γ, 0]                                                                                     (1.4)      

 

 

That is, the noise driving force parameter 𝜎 in Eq. (1.3) 

is carefully replaced by    ∫ |𝜂(𝑠)𝑥(𝑡, 𝑤)|𝑝𝑑𝑠
𝑡

0
, where 𝜂(𝑠) is 

the convergence rate function.   

 

For Eq. (1.4) to be almost surely exponentially self-

stabilized, we impose the condition that for some 𝑤 ∈  Ω, 𝜎 =

 ∫ |𝜂(𝑠)𝑥(𝑡, 𝑤)|𝑝𝑑𝑠
𝑡

0
< ∞. This means that the noise driving 

force parameter must be finite.  The main focus of this work 

is to carefully choose a noise driving force parameter 𝜎 < ∞ 

and derive results which ensure an 𝑎. 𝑠. exponential stability 
of Eq. (1.3). 

 

The noise driving force parameter ensures that the noise 

intensity is sufficiently large enough at which point the 

SMPODDE is said to be stabilized (Mao,1997). This is only 

possible due to the presence of Lévy noise. The comparable 

deterministic Eq. (1.2), where Lévy noise is absent remains 

unstable in general. Almost sure exponential Stability is here 

induced by the presence of Lévy noise. 
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 Definition 1(The Trivial Solution of SMPODDE) 

Assume that {𝑋(𝑡)}𝑡≥0 is the solution of equation (1.3). 

Suppose that 𝑓(0,0,0, 𝑡)  ≡  0, 𝑔(0,0,0)  ≡  0 ∀ 𝑡 > 0. It 

follows that equation (1.3) has the solution 𝑋(𝑡)  ≡  0 

corresponding to the initial datum 𝑋(𝑡0)  ≡  0 is called the 

trivial or zero solution of equation (1.3). 

 

 Definition 2(Almost Sure Exponential Stability of 

SMPODDE) 

The trivial solution 𝑥(𝑡;  𝑡0,𝑥0) of equation (1.3) is said 

to almost surely (a. s.) exponentially stable if 
𝐿𝑖𝑚𝑖𝑡𝑆𝑢𝑝
𝑡 → ∞

1

𝑡
𝑙𝑜𝑔|𝑥(𝑡;  𝑡0, 𝑥0)| < 0, 𝑎. 𝑠. 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥0  ∈  ℝ

𝑑 .  

 

where, 
𝐿𝑖𝑚𝑖𝑡𝑆𝑢𝑝
𝑡 → ∞

1

𝑡
𝑙𝑜𝑔|𝑥(𝑡; 𝑡0, 𝑥0)| is called ‘the 

Lyapunov sample exponent function.  

 

The following Assumptions, Lemmas and Theorems, 
are based on the Ito formula called exponential martingale 

inequality. It is useful to the proof of the main result.  

 

III. THE MAIN RESULTS 

 

 From Conditions i and ii Above, Which Show that 

Functions are Locally Lipschitz Continuous, we Impose 

the Following Conditions: 

 

 Assumption 

 

 Hypothesis (H1):  

Let 𝑀 be a symmetric –definite 𝑑 × 𝑑 −𝑚𝑎𝑡𝑟𝑖𝑥. 

Assume the there exist some positive constants  

𝐾, 𝜃,𝜔 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 2𝜔 > 𝜃,  then 

 

 

 

|𝑥𝑇𝑀𝑓((𝑡, 𝑥(𝑡), 𝑥(𝑡 − 𝑟𝑖), 𝑥(𝑞𝑖𝑡)))|  ≤ 𝐾|𝑥|
2 

 

𝑡𝑟𝑎𝑐𝑒(𝐺𝑘
𝑇(𝑥, 𝑡)𝑀𝐺𝑘(𝑥, 𝑡))𝑡𝑟𝑎𝑐𝑒(𝐷

𝑇(𝑥, 𝑡)𝑀𝐷(𝑥, 𝑡))𝑡𝑟𝑎𝑐𝑒(𝐸𝑇(𝑥, 𝑡)𝑀𝐸(𝑥, 𝑡)) ≤ 𝜃𝑥𝑇  𝑀𝑥 

 

|(𝑥𝑇𝑀𝐺𝑘(𝑥, 𝑡))(𝑥
𝑇𝑀𝐷(𝑥, 𝑡))(𝑥𝑇𝐸(𝑥, 𝑡))|

2
 ≥ 𝜔|𝑥𝑇  𝑀𝑥|2 , 

 

∀ 𝑡 ≥ 0 𝑎𝑛𝑑 𝑥 ∈  ℝ𝑑 . 
 

This hypothesis guarantees that for all sufficiently large 𝜎, the trivial solution of Eq. (1.3) ia almost surely exponentially stable. 

Eq. (1.3) is regarded as the stochastically stabilized system of the deterministic multi-pantograph delay differential equation in (1.2), 

which is generally unstable. In other words, Eq. (1.2) is stabilized by Lévy noise provided that the noise intensity is Large enough. 

The trivial solution of Eq. (1.3) stabilizes itself in an almost sure exponential sense, if 𝜎 is replaced by a carefully chosen finite 

expression.  

 

 Lemma 

Suppose that assumption (H1) hold. Then the solution of equation (1.4) satisfies the property that 
 

𝑝{𝑥(𝑡, 𝑥0)  ≠  0 ∀ 𝑡 ≥  0}  =  1 

 
provided that 𝑥0 ≠ 0. 

 

 Proof: 

Suppose the assertion is not true. Then ∃ some 𝑥0 ≠ 0 ∋ 𝑃(𝜇 < ∞) > 0, where 𝜇 represents the time of first reaching state 

zero, i.e 

 

𝜇 = inf{𝑡 ≥ 0: 𝑥(𝑡) = 0}. 
 

We now find some 𝑡̅ > 0 and 𝜙 > 0 large enough to ensure that 𝑃(𝐷) > 0, where 

 

𝐷 = {𝜕: 𝜇 ≤ 𝑡̅ 𝑎𝑛𝑑 |𝑥(𝑡)| ≤  𝜙 − 1 ∀ 0 ≤ 𝑡 ≤ 𝜇} 
 

For each 0< 𝛽 < |𝑥0|,  define 

 

𝜇𝛽 = inf{𝑡 ≥ 0: 𝑥(𝑡) ≤ 𝛽 𝑜𝑟 |𝑥(𝑡)| ≥ 𝜙}. 

 

Therefore by Itôs Formula, for 0 ≤ 𝑡 ≤ 𝑡̅, 
 

𝐸 [|𝑥𝑇(𝑡 Λ 𝜇𝛽)𝑀𝑥(𝑡 Λ 𝜇𝛽)|
−1
] ≤  |𝑥0

𝑇𝑀𝑥0|
−1 + 2𝐸 ∫ |𝑥𝑇(𝑠)𝑀𝑥(𝑠)|−2|𝑥𝑇(𝑠)𝑀𝑓(𝑥(𝑠), 𝑠|𝑑𝑠

𝑡 Λ 𝜇𝛽

0
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+4𝐸 ∫ |𝑥𝑇(𝑠)𝑀𝑥(𝑠)|−3|𝑥𝑇(𝑠)𝑀[(𝐺𝑘(𝑥(𝑠), 𝑠), 𝐷(𝑥(𝑠), 𝑠), 𝐸(𝑥(𝑠), 𝑠)]|
2(∫|𝑟(𝑢)𝑥(𝑢)|𝑝

𝑠

0

𝑑𝑢)

2

𝑑𝑠

𝑡 Λ 𝜇𝛽

0

 

 

By  (H1) it becomes evident that 

 

𝐸 [|𝑥𝑇(𝑡 Λ 𝜇𝛽)𝑀𝑥(𝑡 Λ 𝜇𝛽)|
−1
] ≤  |𝑥0

𝑇𝑀𝑥0|
−1 + 𝛼𝐸 ∫ |𝑥𝑇(𝑠)𝑀𝑥(𝑠)|−1𝑑𝑠                     

𝑡 Λ 𝜇𝛽

0

 

 

≤ |𝑥0
𝑇𝑀𝑥0|

−1 + 𝛼 ∫ 𝐸 [|𝑥𝑇(𝑠 Λ 𝜇𝛽)𝑀𝑥(𝑠 Λ 𝜇𝛽)|
−1
]𝑑𝑠  

𝑡 Λ 𝜇𝛽

0

 

 

Where 𝛼 represents a constant dependent on 𝐾,𝑤, 𝜃, 𝑡̅, 𝜇, 𝜙,𝑀 𝑏𝑢𝑡 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 of 𝛽. 

 

Applying gronwalls inequality we have,  

 

𝐸 [|𝑥𝑇( 𝑡̅ Λ 𝜇𝛽)𝑀𝑥( 𝑡̅ Λ 𝜇𝛽)|
−1
] ≤  |𝑥0

𝑇𝑀𝑥0|
−1𝑒𝛼 𝑡̅ 

 

Note that 𝜕 ∈ 𝐷, and 𝜇𝛽 ∈ 𝑡̅ and |𝑥(𝜇𝛽)| =  𝛽, it then quickly follows that 

 

( 𝛽2‖𝑀‖)−1𝑃(𝐷) ≤ |𝑥0
𝑇𝑀𝑥0|

−1𝑒𝛼 𝑡̅ 
 

As 𝛽 → 0, we see that 𝑃(𝐷) = 0, which contradicts the definition of D.  
 

The proof is hence complete. 

 

We can now establish the main results by making a clearer hypothesis which will form the condition on the convergence rate 

function 𝜂(𝑡). 
 

 Assumption 

 

 Hypothesis (H2):  

There exists a pair of constants 𝑄 > 0 𝑎𝑛𝑑 𝛿 ≥ 0 such that  
 

||𝜂(𝑡)|| ≤ 𝑄𝑒𝛿𝑡𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ≥ 0 

 

We point out that the local Lipschitz continuity of the coefficients 𝑓, 𝐷, 𝐸 as speculated in conditions i and ii above as well as 

the standing hypothesis (H1) guarantee the existence and uniqueness of the solution 𝑥(𝑡;  𝑡0, 𝑥0) of Eq (1.4). (Detailed proof can be 

found in Mao, 1996). 

 

It is also clear that Eq.(1.4) admits a trivial solution 𝑥(𝑡; 0) = 0 for hypothesis (H2) implies that 𝐹(0, 0, . . . ,0)  =
 0, 𝐷(0, 0, . . . ,0)  =  0 𝑎𝑛𝑑 𝐸(0, 0, . . . ,0,0)  =  0.  

 

To now prove the Main result, we establish our Theorem. 

 

 Theorem 

Let (H1) and (H2) hold. Then the solution of equation (1.4) has the property 
 

∫|𝜂(𝑡)𝑥(𝑡, 𝑥0)|
𝑝𝑑𝑡   < ∞, 𝑎. 𝑠.  ℎ𝑜𝑙𝑑𝑠 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥0  ∈ ℝ

𝑑                    (1.5)

∞

0

 

 

 Proof 

Since hypothesis (H1) guarantees 𝑥(𝑡; 0) ≡ 0, one only needs to show that (1.5) holds for 𝑥0  ≠ 0 
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𝑖. 𝑒 𝜎 =  ∫ |𝜂(𝑡)𝑥(𝑡, 𝑥0)|
𝑝𝑑𝑡   < ∞, 𝑎. 𝑠.  ℎ𝑜𝑙𝑑𝑠 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥0  ≠ 0

∞

0
 . 

 

By the property in Lemma 3.1, i.e.,  𝑃(𝑥(𝑡, 𝑥0)  ≠ 0, ∀ 𝑡 ≥ 0 ) = 1, provided 𝑥0  ≠ 0, 𝑎. 𝑠., the solution 𝑥(𝑡, 𝑥0)  ≠ 0, ∀ 𝑡 ≥
0 almost surely. 

 

Now assume on the contrary that Eq (1.5) is not true, it must be that there exists a given 𝑥0  ≠ 0, 𝑎. 𝑠.  for which 𝑃(Ω∗) > 0,
𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 Ω∗  ⊆  Ω , where 

 

Ω∗ = {w ∈ Ω: ∫|𝜂(𝑡)𝑥(𝑡, 𝑥0)|
𝑝𝑑𝑡 = ∞,   𝑎. 𝑠.  

∞

0

} 

 

Applying Ito’s formula and Hypothesis (H1). It is easily verified that for some given 𝑡 ≥ 0 

 

𝑙𝑜𝑔(𝑥𝑇(𝑡)𝑀𝑥(𝑡))  ≤ 𝑙𝑜𝑔(𝑥0
𝑇  𝑀𝑥0) +

2𝐾𝑡

√𝜆𝑚𝑖𝑛(𝑀)
+ 𝜃∫(∫|𝜂(𝑣)𝑥(𝑣)|𝑝𝑑𝑣

𝑠

0

)

2

𝑑𝑠

𝑡

0

 

 

−2∫ (∫ |𝜂(𝑣)𝑥(𝑣)|𝑝𝑑𝑣
𝑠

0
)
2
[
|𝑥𝑇(𝑠)𝑀𝐺𝑘(𝑥(𝑠),𝑠),𝑠|

2

(𝑥𝑇(𝑠)𝑀𝑥(𝑠))
2

|𝑥𝑇(𝑠)𝑀𝐷(𝑥(𝑠),𝑠),𝑠|
2

(𝑥𝑇(𝑠)𝑀𝑥(𝑠))
2

|𝑥𝑇(𝑠)𝑀𝐸(𝑥(𝑠),𝑠),𝑠|
2

(𝑥𝑇(𝑠)𝑀𝑥(𝑠))
2 ]𝑑𝑠 + 𝑄(𝑡)

𝑡

0
 (1.6  

 

Where, √𝜆𝑚𝑖𝑛(𝑀) is the smallest Eigen value of the matrix M and Q(t) is the expression  

 

𝑄(𝑡) = 2∫(∫|𝜂(𝑣)𝑥(𝑣)|𝑝𝑑𝑣

𝑠

0

)

2𝑡

0

|𝑥𝑇(𝑠)𝑀𝐺𝑘(𝑥(𝑠), 𝑠), 𝑠|
2

(𝑥𝑇(𝑠)𝑀𝑥(𝑠))
2  

|𝑥𝑇(𝑠)𝑀𝐷(𝑥(𝑠), 𝑠), 𝑠|2

(𝑥𝑇(𝑠)𝑀𝑥(𝑠))
2

|𝑥𝑇(𝑠)𝑀𝐸(𝑥(𝑠), 𝑠), 𝑠|2

(𝑥𝑇(𝑠)𝑀𝑥(𝑠))
2 ([∑𝐺𝑘𝑥(𝑡)𝑑𝐵𝑘(𝑡)

𝑚

𝑘=1

]

+ ∫ 𝐷(𝑦)

|𝑦|< ∆

𝑥(𝑡)𝑁(𝑑𝑡, 𝑑𝑦) + ∫ 𝐸(𝑦)

|𝑦|≥ ∆

𝑥(𝑡)𝑁(𝑑𝑡, 𝑑𝑦))𝑑𝑠 

 

is a continuous Martingale vanishing at 𝑡 =  0. Assume 𝑘 =  1, 2,…, it follows from the exponential Martingale inequality that 

   

𝑃 (w: 
𝑆𝑢𝑝

0 ≤ 𝑡 ≤ 𝑘
 [𝑄(𝑡) −

2𝜔 − 𝜃

8𝜔
 〈𝑄(𝑡), 𝑄(𝑡)〉]  >  

8𝜔𝑙𝑜𝑔𝑘

2𝜔 − 𝜃
)  ≤  

1

𝑘2
 

 

Where 

 

〈𝑄(𝑡), 𝑄(𝑡)〉 = 4∫(∫|𝜂(𝑣)𝑥(𝑣)|𝑝𝑑𝑣

𝑠

0

)

2𝑡

0

[
|𝑥𝑇(𝑠)𝑀𝐺𝑘(𝑥(𝑠), 𝑠), 𝑠|

2

(𝑥𝑇(𝑠)𝑀𝑥(𝑠))
2  

|𝑥𝑇(𝑠)𝑀𝐷(𝑥(𝑠), 𝑠), 𝑠|2

(𝑥𝑇(𝑠)𝑀𝑥(𝑠))
2

|𝑥𝑇(𝑠)𝑀𝐸(𝑥(𝑠), 𝑠), 𝑠|2

(𝑥𝑇(𝑠)𝑀𝑥(𝑠))
2 ] 𝑑𝑠 

 

Applying Borel- Cantelli Lemma, one gets that given almost all w ∈  Ω , there exists a random integer 𝑘1(w) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ∀ 𝑘 >
 𝑘1(w),  
 

𝑆𝑢𝑝
0 ≤ 𝑡 ≤ 𝑘

 [𝑄(𝑡) −
2𝜔 − 𝜃

8𝜔
 〈𝑄(𝑡), 𝑄(𝑡)〉]  ≤  

8𝜔𝑙𝑜𝑔𝑘

2𝜔 − 𝜃
 

 

That is, for 0 ≤ 𝑡 ≤ 𝑘, 

 

𝑄(𝑡)  ≤  
8𝜔𝑙𝑜𝑔𝑘

2𝜔 − 𝜃
+ 
2𝜔 − 𝜃

8𝜔
 〈𝑄(𝑡), 𝑄(𝑡)〉 

 

≤ 
8𝜔𝑙𝑜𝑔𝑘

2𝜔−𝜃
+   

2𝜔−𝜃

8𝜔
∫ (∫ |𝜂(𝑣)𝑥(𝑣)|𝑝𝑑𝑣

𝑠

0
)
2 |𝑥𝑇(𝑠)𝑀𝐺𝑘(𝑥(𝑠),𝑠),𝑠|

2

(𝑥𝑇(𝑠)𝑀𝑥(𝑠))
2

𝑡

0

|𝑥𝑇(𝑠)𝑀𝐷(𝑥(𝑠),𝑠),𝑠|
2

(𝑥𝑇(𝑠)𝑀𝑥(𝑠))
2  

|𝑥𝑇(𝑠)𝑀𝐸(𝑥(𝑠),𝑠),𝑠|
2

(𝑥𝑇(𝑠)𝑀𝑥(𝑠))
2 𝑑𝑠             (1.7) 

 
Substituting (1.7) into (1.6) and applying Hypothesis (H1) one gets 
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𝑙𝑜𝑔(𝑥𝑇(𝑡)𝑀𝑥(𝑡))  ≤ 𝑙𝑜𝑔(𝑥0
𝑇𝑀𝑥0) +

2𝐾𝑡

𝜆𝑚𝑖𝑛(𝑀)
+
8𝜔𝑙𝑜𝑔𝑘

2𝜔 − 𝜃
 

 

−
2𝜔 − 𝜃

2
 ∫(∫|𝜂(𝑣)𝑥(𝑣)|𝑝𝑑𝑣

𝑠

0

)

2

𝑑𝑠                        (1.8)   

𝑡

0

 

 

for all  0 ≤ 𝑡 ≤ 𝑘, 𝑘 ≥  𝑘1 almost surely. By the definition of Ω∗, it is clear that for every w ∈ Ω∗, there exists a random 

integer k2(w) such that: 

 

     ∫|𝜂(𝑠)𝑥(𝑠)|𝑝𝑑𝑠 ≥  

√
4𝑘

𝜆𝑚𝑖𝑛(𝑀) + 4𝛿 + 8

2𝜔 − 𝜃
,     for all 𝑡 ≥  𝑘2                                                      (1.9)

𝑡

0

 

 

It then follows from (1.8) and (1.9) and almost all w ∈ Ω∗ that, if K − 1 ≤ t ≤ k, k ≥ k1  ⋁(k2 + 1), 
 

𝑙𝑜𝑔(𝑥𝑇(𝑡)𝑀(𝑡)) 

 

≤ 𝑙𝑜𝑔(𝑥0
𝑇𝑀𝑥0) +

2𝐾𝑘

𝜆𝑚𝑖𝑛(𝑀)
+
8𝜔𝑙𝑜𝑔𝑘

2𝜔 − 𝜃
−
2𝜔 − 𝜃

2
 ∫(∫|𝜂(𝑣)𝑥(𝑣)|𝑝𝑑𝑣

𝑠

0

)

2

𝑑𝑠

𝑡

0

 

 

≤ 𝑙𝑜𝑔(𝑥0
𝑇𝑀𝑥0) +

2𝐾𝑘

𝜆𝑚𝑖𝑛(𝑀)
+
8𝜔𝑙𝑜𝑔𝑘

2𝜔 − 𝜃
− (

2𝐾

𝜆𝑚𝑖𝑛(𝑀)
+ 2𝛿 + 4) (𝐾 − 1 − 𝑘2) 

 

= 𝑙𝑜𝑔(𝑥0
𝑇𝑀𝑥0) +

2𝐾(𝑘2 + 1)

𝜆𝑚𝑖𝑛(𝑀)
+
8𝜔𝑙𝑜𝑔𝑘

2𝜔 − 𝜃
− 2(𝛿 + 2)(𝑘 − 1 − 𝑘2) 

 

and as such, 

 
1

𝑡
𝑙𝑜𝑔(𝑥𝑇(𝑡)𝑀𝑥(𝑡)) ≤  

1

𝑘 − 1
𝑙𝑜𝑔(𝑥0

𝑇𝑀𝑥0) +
2𝐾(𝑘2 + 1)

𝜆𝑚𝑖𝑛(𝑀)
+
8𝜔𝑙𝑜𝑔𝑘

2𝜔 − 𝜃
− 2(𝛿 + 2)(𝑘 − 1 − 𝑘2)  

 
which then follows that 

 

lim
𝑡→∞

𝑆𝑢𝑝
1

𝑡
𝑙𝑜𝑔(𝑥𝑇(𝑡)𝑀𝑥(𝑡)) ≤ −2(𝛿 + 2) 𝑓𝑜𝑟 𝑎𝑙𝑚𝑜𝑠𝑡 𝑎𝑙𝑙 w ∈ Ω∗                               (1.10) 

 
 

Thus, for almost all sample path w ∈ Ω∗ , there exist a random 𝑘3(w) as such, 

 
1

𝑡
𝑙𝑜𝑔(𝑥𝑇(𝑡)𝑀𝑥(𝑡)) ≤ −2(𝛿 + 2)        𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ≥ 𝑘3 

 

And hence,   
 

|𝑥(𝑡)|  ≤  
𝑒−(𝛿+2)𝑡

√𝜆𝑚𝑖𝑛(𝑀)
, ∀ 𝑡 ≥ 𝑘3 

 

 

. Now applying hypothesis (H2) for almost all w ∈ Ω∗, 𝑡 → ∞ 

 

∫|𝜂(𝑡)𝑥(𝑡)|𝑝𝑑𝑡

∞

0

≤ ∫ 𝑄𝑝𝑒𝑝𝛿𝑡|𝑥(𝑡)|𝑝

𝑘3

0

𝑑𝑡 + ∫
𝑄𝑝𝑒−𝑝𝑡

|𝜆𝑚𝑖𝑛(𝑀)|
𝑝/2

∞

𝑘3

𝑑𝑡 < ∞  
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This is a contradiction by the definition of Ω∗ and hence, the property in equation (1.5) must hold and the proof is complete. 
 

∫ |𝜂(𝑡)𝑥(𝑡, 𝑥0)|
𝑝𝑑𝑡   < ∞, 𝑎. 𝑠.   

∞

0
holds. 

 

 Theorem: (Precise Estimate for the Solution) 

 

Let hypothesis (H1) and (H2) hold, then for every 𝑥0 ∈ ℝ
𝑑 .  

 

∫|𝜂(𝑡)𝑥(𝑡)|𝑝𝑑𝑡 ≤ √
2𝐾

(2𝑤 − 𝜃)𝜆𝑚𝑖𝑛(𝑀) 
                                                             (1.11)

∞

0

 

or 

lim
𝑡→∞

𝑆𝑢𝑝
1

𝑡
𝐿𝑜𝑔(|𝑥(𝑡)|) < 0                                                                                       (1.12) 

 

Holds for almost all w ∈ Ω. 

 
 Proof. 

Fix 𝑥0 ≠ 0, and continue representing 𝑥(𝑡, 𝑥0) 𝑎𝑠 𝑥(𝑡), we define 

 

Ω̃ = {w ∈ Ω: ∫|𝜂(𝑡)𝑥(𝑡)|𝑝𝑑𝑡 >  √
2𝐾

(2𝑤 − 𝜃)𝜆𝑚𝑖𝑛(𝑀) 
   

∞

0

} 

 

We need to show that (1.12) holds for all w ∈ Ω̃. Suppose 𝑗 = 1,2,…, define 

 

Ω̃𝑗 = {w ∈ Ω̃: ∫|𝜂(𝑡)𝑥(𝑡)|𝑝𝑑𝑡 > (1 + 𝑗−1)√
2𝐾

(2𝑤 − 𝜃)𝜆𝑚𝑖𝑛(𝑀) 
   

∞

0

} 

 

We assert that Ω̃ = ⋃ Ω̃𝑗 .
∞
𝑗=1  and hence we just need to demonstrate that for each 𝑗 ≥ 1, Eq(1.12) holds for all w ∈ Ω̃. We fix 

any  𝑗 ≥ 1. And in the same way as (1.8) we can deduce that for each w ∈ Ω − Ω̂ , where Ω̂ is a P-null set, there exist an integer 

𝑘4(𝑤) such that 

 

𝑙𝑜𝑔(𝑥𝑇(𝑡)𝑀𝑥(𝑡))  ≤ 𝑙𝑜𝑔(𝑥0
𝑇𝑀𝑥0) +

2𝐾𝑡

𝜆𝑚𝑖𝑛(𝑀)
+
4𝜔(1 + 𝑗−1)𝑙𝑜𝑔𝑘

2𝜔 − 𝜃
 

 

−
2𝜔 − 𝜃

1 + 𝑗−1
 ∫(∫|𝜂(𝑣)𝑥(𝑣)|𝑝𝑑𝑣

𝑠

0

)

2

𝑑𝑠                 (1.13)   

𝑡

0

 

 

For all 0 ≤ 𝑡 ≤ 𝑘, 𝑘 ≥ 𝑘4. Conversely, for every w ∈ Ω̃, there exists an integer 𝑘5 such that 

 

∫ |𝜂(𝑠)𝑥(𝑠)|𝑝𝑑𝑠 ≤ (1 + 𝑗−1)√
2𝐾

(2𝑤 − 𝜃)𝜆𝑚𝑖𝑛(𝑀) 
    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ≥ 𝑘5                               (1.14)

 

∞

0

 

 

It then follows from (1.13) and (1.14) that for all w ∈ Ω− Ω̂, if 𝑘 − 1 ≤ 𝑡 ≤ 𝑘, 𝑘4⋁(𝑘5 + 1), 
 

𝑙𝑜𝑔(𝑥𝑇(𝑡)𝑀𝑥(𝑡))  ≤ 𝑙𝑜𝑔(𝑥0
𝑇𝑀𝑥0) +

2𝐾(𝑘5 + 1)

𝜆𝑚𝑖𝑛(𝑀)
+
4𝜔(1 + 𝑗−1)𝑙𝑜𝑔𝑘

2𝜔 − 𝜃
−

2𝐾

𝑗𝜆𝑚𝑖𝑛(𝑀)
(𝑘 − 1 − 𝑘5) 

 

Which implies that  

 

lim
𝑡→∞

𝑆𝑢𝑝
1

𝑡
𝑙𝑜𝑔(𝑥𝑇(𝑡)𝑀𝑥(𝑡)) ≤  −

2𝐾

𝑗𝜆𝑚𝑖𝑛(𝑀)
 ∀ w ∈ Ω̃ − Ω̂. 

 

And consequently  
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lim
𝑡→∞

𝑆𝑢𝑝
1

𝑡
log (|𝑥(𝑡)|) ≤  −

𝐾

𝑗𝜆𝑚𝑖𝑛(𝑀)
 < 0  ∀  w ∈ Ω̃ − Ω̂. 

 

This Justifies the condition used to verify the property (1.5) in Theorem 5.1, that if 

 

∫|𝜂(𝑡)𝑥(𝑡)|𝑝𝑑𝑡 >  √
2𝐾

(2𝑤 − 𝜃)𝜆𝑚𝑖𝑛(𝑀) 
   

∞

0

 

 

Then the solution 𝑥(𝑡; 𝑥0) tends to zero exponentially, and under Hypothesis (H1) and (H2) 1.4 is almost surely exponentially 

stable provided that the noise driving force parameter satisfies 

 

𝜎 > √
2𝐾

(2𝑤 − 𝜃)𝜆𝑚𝑖𝑛(𝑀) 
 . 

 

 

IV. CONCLUSION 
 

In this study, we established the almost sure exponential 

stability of the nonlinear stochastic multi-pantograph 

ordinary delay differential equations (MPO𝐷𝐷𝐸s) with 

constant delay or time lag. Our findings reveal that, it is 
possible to stabilize an unstable dynamical systems in the 

presence of sufficiently Large Lévy noise, measured with the 

noise driving force parameter 𝜎. The noise driving force 

parameter was carefully chosen and hypothesis established to  

satisfy the finite  convergence rate condition 

∫ |𝜂(𝑡)𝑥(𝑡, 𝑥0)|
𝑝𝑑𝑡   < ∞, 𝑎. 𝑠.,   

∞

0
which form the 

Lyapunov sample exponent. The sampled Lyapunov 

exponent must always be finite for the resulting stochastic 

system to be stabilized by Lévy noise. If the noise term is 

sufficiently large enough, the diffusion function is absent, the 

deterministic system will continue to be unstable. In 

particular, the new theorem enables us to stabilize the 
unstable deterministic system in an almost sure exponential 

sense. The method of Lyapunov sample exponents together 

with stochastic perturbation were used to achieve stability 

result. The crucial condition which ensures the 𝑎. 𝑠. 
exponential stability of the trivial solution of the resulting 

(SMPODDE) is ∫ |𝜂(𝑡)𝑥(𝑡, 𝑥0)|
𝑝𝑑𝑡   < ∞, 𝑎. 𝑠.   

∞

0
In the 

comparable deterministic pantograph differential 

(MPODDE) where Levy noise is absent, one sees that for 

some w ∈ Ω, ∫ |𝑥(𝑡,𝑤)|𝑑𝑡 = ∞
∞

0
 and at that point, the trivial 

solution of the deterministic can never be stable. 
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