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I. INTRODUCTION 

 

Uncertain set was Presented by L.A.Zadeh [10] in 

1965. The idea of fuzzy topology was announced by 

C.L.Chang [3] in 1968. The generalized cld.sets in general 

topology remained initialy by N.Levine [9] in 1970. 

K.Atanassov [2] in 1986 presented the perception of 

intuitionistic fuzzy sets. The notion of vague set theory was 

introduced by W.L.Gau and D.J.Buehrer [7] in 1993. 

D.Coker [6] in 1997 announced intuitionistic fuzzy topo.sps. 
Bipolar- valued fuzzy sets, which was presented by K.M.Lee 

[8] in 2000 is an leeway of fuzzy sets whose membership 

degree range is distended from the interval [0, 1] to [-1,1]. A 

innovative class of generalized bip.vag sets was announced 

by S.Cicily Flora and I.Arockiarani [4] in 2016. The 

persistence of this paper is to present and study the thought 

of inter-val bip.vag Volterra spaces and an inter-val bip.vag 

weakly Volterra spaces. 

 

II. PRELIMINARIES 

 
At this time in this paper the bip.vag topo.sps are meant 

by (Y, B𝑉𝜏∗).  The bipolar vague and interval-valued meant 

by bip.vag and inter-val correspondingly. Also, the bip.vag 

interior, bip.vag closure of a bip.vag set B are represented by 

BVInt(B) and BVCl(B). The complement of a bip.vag set B 

is denoted by Bc and the empty set and whole sets are 

symbolized by 0~” and  1~” separately. 

 

 Definition 2.1:  

[8] Let Y be the universe. Then a bipolar valued fuzzy 
sets, B on Y is demarcated by positive membership function 

𝜇𝐵
+, that is 𝜇𝐵

+: Y→ [0,1], and a negative membership function 

𝜇𝐵
−, that is  𝜇𝐵

−: Y→ [-1,0]. For the own good of simplicity, 

we shall use the representation. 

B = {𝑦, 𝜇𝐵
+(𝑦), 𝜇𝐵

−(y): 𝑦 ∈ 𝑌}. 

 

 Definition 2.2:  

[8] Let B and C be two bipolar valued fuzzy sets then 

their union, intersection and complement are clear as 

follows: 

 

 𝜇𝐵∪𝐶
+ = max {𝜇𝐵

+(𝑦), 𝜇𝐶
+(𝑦)} 

 𝜇𝐵∪𝐶
− = min {𝜇𝐵

−(𝑦), 𝜇𝐶
−(𝑦)} 

 𝜇𝐵∩𝐶
+ = min {𝜇𝐵

+(𝑦), 𝜇𝐶
+(𝑦)} 

 𝜇𝐵∩𝐶
− = max {𝜇𝐵

−(𝑦), 𝜇𝐶
−(𝑦)} 

 𝜇𝐵𝑐
+ (y) = 1-𝜇𝐵

+(𝑦) and 𝜇𝐵𝑐
− (y) = -1-𝜇𝐵

−(𝑦) for all 𝑦 ∈ 𝑌. 

 

 Definition 2.3:  

[7] A vague set B in the universe of discourse W is a 

pair of (𝑡𝐵, 𝑓𝐵)  

 

where  

 

𝑡𝐵: W→[0,1], 𝑓𝐴: 
 

W→[0,1] are the mapping such that 𝑡𝐵 + 𝑓𝐵  ≤ 1 for all 𝑤 ∈
𝑊. The function 𝑡𝐵 and 𝑓𝐵  are called true membership 

function and false membership function respectively. The 

interval [𝑡𝐵, 1 − 𝑓𝐵] is called the vague value of w in B, and 

denoted by 𝜈𝐵(𝑤), that is. 

 

𝜈𝐵 (𝑤) = [𝑡𝐵(𝑤), 1 − 𝑓(𝑤)]. 
 

 Definition 2.4:  

[7] Let B be a non-empty set and the vague set B and C 

in the form B = {𝑦, 𝑡𝐵(𝑦), 1 − 𝑓𝐵 (𝑦): y ∈ Y }, C = 
{𝑦, 𝑡𝐶(𝑦), 1 − 𝑓𝐶(𝑦): y ∈ Y }. Then 
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 B ⊆ C if and only if  𝑡𝐵(𝑦)  ≤   𝑡𝐶(𝑦) and 1 − 𝑓𝐵(𝑦) ≤
  1 − 𝑓𝐶(𝑦)  

 B ∪ C = {max( 𝑡𝐵(𝑦), 𝑡𝐶(𝑦)) , max ( 1 − 𝑓𝐵 (𝑦), 1 −

𝑓𝐶(𝑦))/y ∈ Y }. 

 B ∩ C = {min( 𝑡𝐵(𝑦), 𝑡𝐶(𝑦)) , min ( 1 − 𝑓𝐵(𝑦), 1 −

𝑓𝐶(𝑦))/y ∈ Y }. 

 Bc = {𝑦, 𝑓𝐵(𝑦), 1 − 𝑡𝐵(𝑦): y ∈ Y }. 

 

 Definition 2.5:  

[1] Let Y be the universe of discourse. A bipolar-valued 

vague set B in Y is an object having the form B = 
{y, [𝑡𝐵

+(𝑦), 1 − 𝑓𝐵
+(𝑦)], [−1 − 𝑓𝐵

−(𝑦), 𝑡𝐵
−(𝑦)] ∶ y ∈ Y } 

where [𝑡𝐵
+, 1 − 𝑓𝐵

+] : Y→[0,1] and [−1 − 𝑓𝐵
−, 𝑡𝐵

−] : Y→[-1,0] 

are the mapping such that  𝑡𝐵
+(𝑦) + 𝑓𝐵

+(𝑦) ≤ 1 and -1≤
𝑡𝐵

−+ 𝑓𝐵
−. The positive membership degree [𝑡𝐵

+(𝑦), 1 −
𝑓𝐵

+(𝑦)] denotes the satisfaction region of an element x to the 

property corresponding to a bipolar-valued set B and the 

negative membership degree [−1 − 𝑓𝐵
−(𝑦), 𝑡𝐵

−(𝑦)] denotes 

the satisfaction region of x to some implicit counter property 

of A. For a sake of simplicity, we shall use the notion of 

bip.vag set 𝜈𝐵
+ = [𝑡𝐵

+, 1 − 𝑓𝐵
+] and 𝜈𝐵

− = [−1 − 𝑓𝐵
−, 𝑡𝐵

−]. 
 

 Definition 2.6:  

[5] A bip.vag set B = [𝜈𝐵
+, 𝜈𝐵

−] of a set W with 𝜈𝐵
+= 0 

implies that 𝑡𝐵
+ = 0,   1 − 𝑓𝐵

+= 0 and 𝜈𝐵
−= 0 implies that 𝑡𝐵

− = 

0, −1 − 𝑓𝐵
− = 0 for all x ∈ U is called zero bip.vag set and it 

is denoted by 0. 

 

 Definition 2.7:  

[5] A bip.vag set B = [𝜈𝐵
+, 𝜈𝐵

−] of a set W with 𝜈𝐵
+ = 1 

implies that 𝑡𝐵
+ = 1, 1 − 𝑓𝐵

+= 1 and 𝜈𝐵
−= -1 implies that 𝑡𝐵

− = 

-1, −1 − 𝑓𝐵
− = -1 for all y ∈ W is called unit bip.vag set and 

it is denoted by 1. 

 

 Definition 2.8:  

[4]  Let B = y, [𝑡𝐵
+, 1 − 𝑓𝐵

+], [−1 − 𝑓𝐵
− , 𝑡𝐵

−] and C = 

x, [𝑡𝐶
+, 1 − 𝑓𝐶

+], [−1 − 𝑓𝐶
−, 𝑡𝐶

−] be two bip.vag sets then 

their union, intersection and complement are defined as 

follows: 

 

 B ∪ C = {y, [𝑡𝐵∪𝐶
+ (𝑦), 1 − 𝑓𝐵∪𝐶

+ (𝑦)], [−1 −
𝑓𝐵∪𝐶

− (𝑦), 𝑡𝐵∪𝐶
− (𝑦)]/y ∈ Y } where 𝑡𝐵∪𝐶

+ (𝑦) = max 

{𝑡𝐵
+(𝑦), 𝑡𝐶

+(𝑦)}, 𝑡𝐵∪𝐶
− (𝑦) = min {𝑡𝐵

−(𝑦), 𝑡𝑐
−(𝑦)} and 1 −

𝑓𝐵∪𝐶
+ (𝑦) = max {1 − 𝑓𝐵

+(𝑦), 1 − 𝑓𝐶
+(𝑦)} −1 − 𝑓𝐵∪𝐶

− (𝑦) = 

min {−1 − 𝑓𝐵
−(𝑦), −1 − 𝑓𝐶

−(𝑦)}. 
 B ∩ C = {y, [𝑡𝐵∩𝐶

+ (𝑦), 1 − 𝑓𝐵∩𝐶
+ (𝑦)], [−1 −

𝑓𝐵∩𝐶
− (𝑦), 𝑡𝐵∩𝐶

− (𝑦)]/y ∈ Y } where 𝑡𝐵∩𝐶
+ (𝑦) = min 

{𝑡𝐵
+(𝑦), 𝑡𝐶

+(𝑦)}, 𝑡𝐵∩𝐶
− (𝑦) = max {𝑡𝐵

−(𝑦), 𝑡𝐶
−(𝑦)} and         

1 − 𝑓𝐵∩𝐶
+ (𝑦) = min {1 − 𝑓𝐵

+(𝑦), 1 − 𝑓𝐶
+(𝑦)},        −1 −

𝑓𝐵∪𝐶
− (𝑦) = max {−1 − 𝑓𝐵

−(𝑦), −1 − 𝑓𝐶
−(𝑦)}. 

 Bc = {y, [𝑓
𝐵
+(𝑦), 1 − 𝑡𝐵

+(𝑦)], [−1 − 𝑡𝐵
−(y), 𝑓

𝐵
−(y)]/

 y ∈ Y}. 

 

 Definition 2.9:  

[4] Let B and C be two bip.vag sets defined over a 

universe of discourse Y. We say that B ⊆ C if and only if 

𝑡𝐵
+(𝑦) ≤ 𝑡𝐶

+(𝑦), 1 − 𝑓𝐵
+(𝑦) ≤ 1 − 𝑓𝐶

+(𝑦) and 𝑡𝐵
−(𝑦) ≥ 

𝑡𝐶
−(𝑦),   −1 − 𝑓𝐵

−(𝑦) ≥ 1 − 𝑓𝐶
−(𝑦) for all y ∈ Y. 

 

 Definition 2.10:  
[4] A bip.vag topology (BVT) on a non-empty set Y is 

a family B𝑉𝜏∗ of bip.vag set in Y satisfying the following 

axioms: 

 

 0~”,1~” ∈ B𝑉𝜏∗ 

 𝑇1 ∩ 𝑇2 ∈ B𝑉𝜏∗, for any 𝑇1 , 𝑇2 ∈ B𝑉𝜏∗ 

 ∪ 𝑇𝑖 ∈ B𝑉𝜏∗, for any arbitrary family {𝑇: 𝑇𝑖 ∈ B𝑉𝜏∗, i ∈
I}. 

 

In this case the pair (Y, B𝑉𝜏∗) is called a bip.vag 

topological space and any bip.vag set (BVS) in B𝑉𝜏∗ is 

known as bip.vag open set in Y. The complement Bc of a 

bip.vag open set (BVOS) B in a bip.vag topological space 

(X, B𝑉𝜏∗) is called a bip.vag closed set (BVCS) in Y. 

 

 Definition 2.11:  

[4] Let (Y, B𝑉𝜏∗) be a bip.vag topological space    B = 

y, [𝑡𝐵
+, 1 − 𝑓𝐵

+], [−1 − 𝑓𝐵
−, 𝑡𝐵

−] be a bip.vag set in Y. Then 

the bip.vag interior and bip.vag closure of B are defined by, 

BVInt(B) = ∪ {T: T is a bip.vag open set in Y and T ⊆ B}, 

BVCl(B) = ∩ {J: J is a bip.vag closed set in Y and B⊆ J}. 

Note that BVCl(B) is a bip.vag closed set and BVInt(B) is a 

bip.vag open set in X. Further, 

 

 B is a bip.vag closed set in Y if and only if BVCl(B) = B, 

 B is a bip.vag open set in Y if and only if BVInt(B) = B. 

 

 Definition 2.12:  

[4] Let (Y, B𝑉𝜏∗) be a bip.vag topological space. A 

bip.vag set B in (Y, B𝑉𝜏∗) is said to be a generalized bip.vag 

closed set if BVCl(B) ⊆ T whenever B⊆ T and T is bip.vag 

open. The complement of a generalized bip.vag closed set is 

generalized bip.vag open set. 

 
 Definition 2.13:  

[4] Let (Y, B𝑉𝜏∗) be a bip.vag topological space and B 

be a bip.vag set in Y. Then the generalized bip.vag closure 

and generalized bip.vag interior of B are defined by, 

GBVCl(B) = ∩ {T: T is a generalized bip.vag closed set in Y 

and B⊆ T}, GBInt(B) = ∪ {T: T is a generalized bip.vag open 

set in Y and AB ⊇ T}. 

 

III. INTER-VAL BIP. VAG VOLTERRA SPACES 

 

 Definition 3.1:  

An inter-val bip.vag sets 𝐵𝐵�̃�over a universe of 

discourse Y is defined as an object of the form 𝐵𝐵�̃� = 

{𝑦𝑖 , [[𝑡
𝐵𝐵�̃�
+ (𝑥𝑖), 1 − 𝑓

𝐵𝐵�̃�
+ (𝑦𝑖)] , [−1 −

𝑓
𝐵𝐵�̃�
− (𝑦𝑖), 𝑡

𝐵𝐵�̃�
− (𝑦𝑖)]]  ∶ 𝑦𝑖  ∈ Y } where  [𝑡

𝐵𝐵�̃�
+ , 1 − 𝑓

𝐵𝐵�̃�
+ ] : 

Y→D[0,1] and [−1 − 𝑓
𝐵𝐵�̃�
− , 𝑡

𝐵𝐵�̃�
− ] : Y→D[-1,0] are the 

mapping such that 𝑡
𝐵𝐵�̃�
+  + 𝑓

𝐵𝐵�̃�
+ ≤ 1 and -1≤ 𝑡

𝐵𝐵�̃�
− + 𝑓

𝐵𝐵�̃�
− . The 

positive membership degree [𝑡
𝐵𝐵�̃�
+ (𝑦𝑖), 1 − 𝑓

𝐵𝐵�̃�
+ (𝑦𝑖)] 

denotes the satisfaction region of an element 𝑦𝑖 to the 

property corresponding to an inter-val bipolar-valued set 𝐵𝐵�̃� 

and the negative membership degree [−1 −
𝑓

𝐵𝐵�̃�
− (𝑦𝑖), 𝑡

𝐵𝐵�̃�
− (𝑦𝑖)] denotes the satisfaction region of 𝑦𝑖 to 
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some implicit counter property of 𝐵𝐵�̃�. For a sake of 

simplicity, we shall use the notion of inter-val bip.vag set    

𝜈
𝐵𝐵�̃�
+  = [𝑡

𝐵𝐵�̃�
+ , 1 − 𝑓

𝐵𝐵�̃�
+ ] and 𝜈

𝐵𝐵�̃�
−  = [−1 − 𝑓

𝐵𝐵�̃�
− , 𝑡

𝐵𝐵�̃�
− ]. 

 

 Definition 3.2:  
An inter-val bip.vag topology (IBVT) on Y is a family 

IB𝑉𝜏∗ of interval- valued bip.vag sets (IBVS) in Y satisfying 

the following axioms: 

 

 0~”,1~” ∈ IB𝑉𝜏∗ 

 𝑇1 ∩ 𝑇2  for any 𝑇1 , 𝑇2 ∈ IB𝑉𝜏∗ 

 ∪ 𝑇𝑖 ∈ IB𝑉𝜏∗, for any family {𝑇𝑖/i ∈ J}⊆ IB𝑉𝜏∗ 

 

In this case the pair (Y, IB𝑉𝜏∗) is called an inter-val 

bip.vag topological space (IBVTS) and any inter-val bip.vag 

set (IBVS) in IB𝑉𝜏∗ is known as an inter-val bip.vag open set 

(IBVOS) in Y. The complement of an inter-val bip.vag open 

set Ac in an inter-val bip.vag topological space (Y, IB𝑉𝜏∗) is 

called an inter-val bip.vag closed set (IBVCS) in Y. 

 

 Definition 3.3:  

Let Y = {a, b}, B = y, [[0.3, 0.4][0.5, 0.6],[-0.5,-0.6] [-

0.3,-0.4]],[[0.4,0.5][0.7,0.8] ,[-0.7,-0.8][-0.4,-0.5]] and C = 

y, [[0.4, 0.5][0.6, 0.7] ,[-0.6,-0.7][-0.4,-0.5]], [[0.5, 0.6] [0.7, 

0.8],            [-0.7,-0.8][-0.5,-0.6]]. Then the family 𝜏 ∗ = 

{0~”, A, B, 1~”}of an inter-val bip.vag sets in Y is an inter-

val bip.vag topology on Y. 

 

 Definition 3.4:  

Let B = y, [[𝑡𝐵
+𝐿(𝑦), 𝑡𝐵

+𝑈(𝑦)][1 − 𝑓𝐵
+𝐿(𝑦), 1 −

𝑓𝐵
+𝑈(𝑦)], [−1 − 𝑓𝐵

−𝐿(𝑦), −1 − 𝑓𝐵
−𝑈(𝑦)][𝑡𝐵

−𝐿(y), 𝑡𝐵
−𝑈(y)]] 

and  B = y, [[𝑡𝐶
+𝐿(𝑦), 𝑡𝐶

+𝑈(𝑦)][1 − 𝑓𝐶
+𝐿(𝑦), 1 −

𝑓𝐶
+𝑈(𝑦)], [−1 − 𝑓𝐶

−𝐿(𝑦), −1 − 𝑓𝐶
−𝑈(𝑦)][𝑡𝐶

−𝐿(y), 𝑡𝐶
−𝑈(y)]] 

be two inter-val bip.vag sets then their union, intersection 

and complement are defined as follows: 

 

 B ∪ C = {y, [[𝑡𝐵∪𝐶
+𝐿 (𝑦), 𝑡𝐵∪𝐶

+𝑈 (𝑦)][1 − 𝑓𝐵∪𝐶
+𝐿 (𝑦), 1 −

𝑓𝐵∪𝐶
+𝑈 (𝑦)], [−1 − 𝑓𝐵∪𝐶

−𝐿 (𝑦), [−1 −
𝑓𝐵∪𝐶

−𝑈 (𝑦)][𝑡𝐵∪𝐶
−𝐿 (𝑦), 𝑡𝐵∪𝐶

−𝑈 (𝑦)]]/y ∈ Y } where  𝑡𝐵∪𝐶
+𝐿 (𝑦) = 

max {𝑡𝐵
+𝐿(𝑦), 𝑡𝐵

+𝐿(𝑦)},  𝑡𝐵∪𝐶
+𝑈 (𝑦) = max 

{𝑡𝐵
+𝐿(𝑦), 𝑡𝐶

+𝑈(𝑦)}, 𝑡𝐵∪𝐶
−𝐿 (𝑦) = min {𝑡𝐵

−𝐿(𝑦), 𝑡𝐶
−𝐿(𝑦)} and 

𝑡𝐵∪𝐶
−𝑈 (𝑦) = min {𝑡𝐵

−𝑈(𝑦), 𝑡𝐶
−𝑈(𝑦)} 1 − 𝑓𝐵∪𝐶

+𝐿 (𝑦) = max 

{1 − 𝑓𝐵
+𝐿(𝑦), 1 − 𝑓𝐶

+𝐿(𝑦)},  1 − 𝑓𝐵∪𝐶
+𝑈 (𝑦) = max {1 −

𝑓𝐵
+𝑈(𝑦), 1 − 𝑓𝐶

+𝑈(𝑦)}, −1 − 𝑓𝐵∪𝐶
−𝐿 (𝑦) = min {−1 −

𝑓𝐵
−𝐿(𝑦), −1 − 𝑓𝐶

−𝐿(𝑦)} and−1 − 𝑓𝐵∪𝐶
−𝑈 (𝑦) = min {−1 −

𝑓𝐵
−𝑈(𝑦), −1 − 𝑓𝐶

−𝑈(𝑦)}.. 

 B ∩C= {y, [[𝑡𝐵∩𝐶
+𝐿 (𝑦), 𝑡𝐵∩𝐶

+𝑈 (𝑦)][1 − 𝑓𝐵∩𝐶
+𝐿 (𝑦), 1 −

𝑓𝐵∩𝐶
+𝑈 (𝑦)], [−1 − 𝑓𝐵∩𝐶

−𝐿 (𝑦), −1 −
𝑓𝐵∩𝐶

−𝑈 (𝑦)][𝑡𝐵∩𝐶
−𝐿 (𝑦), 𝑡𝐵∩𝐶

−𝑈 (𝑦)]]/y ∈ Y } where 𝑡𝐵∩𝐶
+𝐿 (𝑦) = 

min {𝑡𝐵
+𝐿(𝑦), 𝑡𝐶

+𝐿(𝑦)},  𝑡𝐵∩𝐶
+𝑈 (𝑦) = min {𝑡𝐵

+𝑈(𝑦), 𝑡𝐶
+𝑈(𝑦)},  

𝑡𝐵∩𝐶
−𝐿 (𝑦) = max {𝑡𝐵

−𝐿(𝑦), 𝑡𝐶
−𝐿(𝑦)} and 𝑡𝐵∩𝐶

−𝑈 (𝑦) = max 

{𝑡𝐵
−𝑈(𝑦), 𝑡𝐶

−𝑈(𝑦)} 1 − 𝑓𝐵∩𝐶
+𝐿 (𝑦) = min {1 − 𝑓𝐵

+𝐿(𝑦), 1 −
𝑓𝐶

+𝐿(𝑦)}, 1 − 𝑓𝐵∩𝐶
+𝑈 (𝑦) = min {1 − 𝑓𝐵

+𝑈(𝑦), 1 − 𝑓𝐶
+𝑈(𝑦)},  

−1 − 𝑓𝐵∪𝐶
−𝐿 (𝑦) = max {−1 − 𝑓𝐵

−𝐿(𝑦), −1 − 𝑓𝐶
−𝐿(𝑦)} and 

−1 − 𝑓𝐵∪𝐶
−𝑈 (𝑦) = max {−1 − 𝑓𝐵

−𝑈(𝑦), −1 − 𝑓𝐶
−𝑈(𝑦)}. 

 Bc = {[y, [[𝑓𝐵
+𝐿(𝑦), 𝑓𝐵

+𝑈(𝑦)][1 − 𝑡𝐵
+𝐿(𝑦), 1 −

𝑡𝐵
+𝑈(𝑦)][−1 − 𝑡𝐵

−𝐿(y), −1 −
𝑡𝐵

−𝑈(y)][𝑓𝐵
−𝐿(y), 𝑓𝐵

−𝑈(y)]]]/ y ∈ Y}]. 

 Proposition 3.5:   

Let (Y, B𝑉𝜏∗) be an inter-val bip.vag topological space 

and let B, C belongs to an inter-val bip.vag set in Y. Then the 

following properties hold: 

 

 0~” ⊆ B ⊆ 1~” 

 B  ∪ C = C  ∪ B; B ∩ C = C ∩ B 

 B, C ⊂ B ∪ C; B ∩ C ⊂ B, C 

 B ∩ (∪𝑖 𝐶𝑖 ) = ∪𝑖(B ∩ 𝐶𝑖) and B ∪ (∩𝑖 𝐶𝑖 ) = ∩𝑖(B ∪ 𝐶𝑖) 

 0~”
𝑐 = 1~”; 1~”

𝑐 = 0~” 

 (Bc)c = B 

 (∪𝑖 𝐵𝑖)
c = ∩𝑖 𝐵𝑖

𝑐 and (∩𝑖 𝐵𝑖)
c = ∪𝑖 𝐵𝑖

𝑐 

 

 Proof: Obvious 

 
 Definition 3.6:  

Let (𝑌, IB𝑉𝜏∗) be an inter-val bip.vag topological space 

and B = y, [[𝑡𝐵
+𝐿(𝑦), 𝑡𝐵

+𝑈(𝑦)][1 − 𝑓𝐵
+𝐿(𝑦), 1 −

𝑓𝐵
+𝑈(𝑦)], [−1 − 𝑓𝐵

−𝐿(𝑦), −1 − 𝑓𝐵
−𝑈(𝑦)][𝑡𝐵

−𝐿(y), 𝑡𝐵
−𝑈(y)]]  

be an interval--valued bip.vag set in Y. Then the inter-val 

bip.vag interior and an inter-val bip.vag closure defined by, 

IBVInt(B) = ∪ {T: T is an inter-val bip.vag open set in Y and 

T ⊆ B}, IBVCl(B) = ∩ {J: J is an inter-val bip.vag closed set 

in Y and A⊆ K}. 
 

Note that for any inter-val bip.vag set B in (Y, IB𝑉𝜏∗), 

we have IBVCl(Bc) = (IBVInt(B))c and IBVInt(Bc) = 

(IBVCl(B))c and IBVCl(B) is an inter-val bip.vag closed set 

and IBVInt(B) is an inter-val bip.vag open set in Y. Further 

we have, if B is an inter-val bip.vag closed set in Y, then 

IBVCl(B) = B and if B is an inter-val bip.vag open set in Y, 

then IBVInt(B) = B. 

 

 Example 3.7:  

Let Y = {b,c} and 𝜏 ∗ = {0~”, B, C, 1~”} be an inter-val 

vague topology on Y, where B = y,[[0.2, 0.3][0.4,0.5],[-0.4,-

0.5][-0.2,-0.3]],[[0.3,0.5][0.6, 0.7],[-0.6,-0.7][-0.3,-0.5]],  C 

= y, [[0.3, 0.4][0.5,0.6],[-0.5,-0.6][-0.3,-0.4]], 

[[0.4,0.5][0.7,0.8],[-0.7,-0.8][-0.4,-0.5]]. Here the op.sets 

are 0~”, B, C and 1~”. If R = y, [[0.2, 0.5] [0.6, 0.8],[-0.6,-

0.8][-0.2,-0.5]],[[0.3, 0.4] [0.5, 0.3],[-0.5,-0.3][-0.3,-0.4]] is 

an inter-val bip.vag set then, IBVCl(Q) = ∩ {J: J is an inter-

val bip.vag closed set in Y and Q ⊆ J} = 1~” IBVInt(Q) = ∪ 

{E: E is an inter-val bip.vag open set in Y and Q ⊇ E} = 0~”. 

 

 Proposition 3.8:  

Let (Y, IB𝑉𝜏∗) be an inter-val bip.vag set and let B, C 

belongs to an inter-val bip.vag set in Y. Then the following 

properties hold: 

 

 BVInt(B) ⊂ B 

 B⊂ C implies BVInt(B) ⊂ BVInt(C) 

 B is a bip.vag open set if and only if BVInt(B) = B 

 BVInt(BVInt(B)) = BVInt(B) 

 BVInt(0~”) = 0~”, BVInt(1~”) =1~” 

 BVInt(B ∩ C) = BVInt(B) ∩ BVInt(C) 

 

 Proof: The proof is obvious 
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 Proposition 3.9:  

Let (Y, IB𝑉𝜏∗) be an inter-val bip.vag set and let B, C 

belongs to an inter-val bip.vag set in Y. Then the following 

properties hold: 

 

 B  ⊂ BVCl(B) 

 B ⊂ C implies BVCl(B) ⊂ BVCl(C) 

 B is a bip.vag closed set if and only if BVCl(B) = B 

 BVCl(BVCl(B)) = BVCl(B) 

 BVCl(0~”) = 0~”, BVCl(1~”) =1~” 

 BVCl( B  ∪ C ) = BVCl(B) ∪ BVCl(C) 

 

 Proof: The proof is obvious. 

 

 Definition 3.10:  

An inter-val bip.vag set B in an inter-val bip.vag 

topological space (Y, IB𝑉𝜏∗) is called an inter-val bip.vag 

dense if there exists no inter-val bip.vag closed set C in 
(Y, IB𝑉𝜏∗) such that B ⊂ C ⊂ 1~”. 

 

 Definition 3.11:  
An inter-val bip.vag set B in an inter-val bip.vag 

topological space (Y, IB𝑉𝜏∗) is called an inter-val bip.vag 

nowhere dense set if there exists no inter-val bip.vag open set 

C in (Y, IB𝑉𝜏∗) such that C ⊂ IBVCl(B). That is IBVInt 

(IBVCl(B)) = 0~”. 

 

 Proposition 3.12:  

If B is an inter-val bip.vag dense and inter-val bip.vag 

open set in an inter-val bip.vag topological space (Y, IB𝑉𝜏∗), 
then Bc is an interval- valued bip.vag nowhere dense set in 
(Y, IB𝑉𝜏∗). 

 

 Proof:  

Let B be an inter-val bip.vag dense and inter-val 

bip.vag open set in (Y, IB𝑉𝜏∗). Then we have IBVCl(B) = 1~” 

and IBVInt(B) = B. Now we have to show that 

IBVInt(IBVCl(Bc)) = 0~”. Let IBVCl(Bc) = (IBVInt(B))c = 

Bc which implies that IBVInt(IBVCl(Bc)) = IBVInt(Bc) = 

(IBVCl(B))c = 1~”
c = 0~”. That is, IBVInt(IBVCl(Bc)) = 0~”. 

Hence Bc is an inter-val bip.vag nowhere dense set in 
(Y, IB𝑉𝜏∗). 

 

 Proposition 3.13:  

Let B be an inter-val bip.vag set. If B is an inter-val 

bip.vag closed set in (Y, IB𝑉𝜏∗) with IBVInt(B) = 0~”, then B 

is an inter-val bip.vag nowhere dense set in (Y, IB𝑉𝜏∗). 
 

 Proof:  

Let B be an inter-val bip.vag closed set in (Y, IB𝑉𝜏∗). 

Then IBVCl(B) = B. Now IBVInt(IBVCl(B)) = IBVInt(B) = 

0~” and hence B is an inter-val bip.vag nowhere dense set in 
(Y, IB𝑉𝜏∗). 

 

 Proposition 3.14:  

Let B be an inter-val bip.vag closed set in (Y, IB𝑉𝜏∗), 

then B is an inter-val bip.vag nowhere dense set in (𝑌, IB𝑉𝜏∗) 

if and only if IBVInt(B) = 0~”. 

 

 

 Proof:  

Let B be an inter-val bip.vag closed set in (Y, IB𝑉𝜏∗), 

with IBVInt(B) = 0~”. Then by Proposition 3.13, B is an 

inter-val bip.vag nowhere dense set in (𝑌, IB𝑉𝜏∗). 

Conversely, let B be an inter-val bip.vag nowhere dense set 

in (Y, IB𝑉𝜏∗). Then IBVInt(IBVCl(B)) = 0~”, which implies 

that IBVInt(B) = 0~”. Since B is an inter-val bip.vag closed, 

IBVCl(B) = B. 

 
 Proposition 3.15:  

If B is an inter-val bip.vag nowhere dense set in an 

inter-val bip.vag topological space (Y, IB𝑉𝜏∗), then IBVCl(B) 

is also an inter-val bip.vag nowhere dense set in (𝑌, IB𝑉𝜏∗). 

 

 Proof:  

Let B be an inter-val bip.vag nowhere dense set in 
(Y, IB𝑉𝜏∗). Then, IBVInt(IBVCl(B)) = 0~”. Now 

IBVCl(IBVCl(B)) = IBVCl(B). Hence 

IBVInt(IBVCl(IBVCl(B))) = IBVInt(IBVCl(B)) = 0~”. 

Therefore IBVCl(B) is also an inter-val bip.vag nowhere 

dense set in (Y, IB𝑉𝜏∗). 

 

 Definition 3.16:  

An inter-val bip.vag topological space (Y, IB𝑉𝜏∗) is 

called an interval- valued bip.vag first category set if B = 

⋂ 𝐵𝑖
∞
𝑖=1 , where 𝐵𝑖’s are inter-val bip.vag nowhere dense set 

in (Y, IB𝑉𝜏∗). Any other inter-val bip.vag set in (Y, IB𝑉𝜏∗) is 

said to be an inter-val bip.vag second category. 

 

 Definition 3.17: 

An inter-val bip.vag set B in an inter-val vague 

topological space (Y, IB𝑉𝜏∗) is called an inter-val bip.vag 𝐻𝛿-

sets in (Y, IB𝑉𝜏∗) if B = ⋃ 𝐵𝑖
∞
𝑖=1  where 𝐵𝑖 ∈ IB𝑉𝜏∗ for i ∈ I. 

 

 Definition 3.18:  

An inter-val bip.vag set B in an inter-val bip.vag 

topological space (Y, IB𝑉𝜏∗) is called an inter-val bip.vag 𝐽𝜎-

sets in (Y, IB𝑉𝜏∗) if                  B = ⋃ 𝐵𝑖
∞
𝑖=1  where 𝐵𝑖

𝑐 ∈ IB𝑉𝜏∗ 

for i ∈ I. 

 Definition 3.19:  

An inter-val bip.vag topological space (𝑌, IB𝑉𝜏∗) is 

called an inter-val bip.vag Volterra space if IBVCl(⋂ 𝐵𝑖
𝑁
𝑖=1 ) 

= 1~”, where 𝐵𝑖’s are inter-val bip.vag dense and inter-val 

bip.vag 𝐻𝛿-sets in (Y, IB𝑉𝜏∗). 

 

 Example 3.20:  

Let Y = {b, c}. Define an inter-val bip.vag sets B, C, D 

and E as follows, B = y,[[0.4,0.6][0.8,0.9],[-0.8,-0.9][-0.4,-

0.6]],[[0.2,0.3][0.6,0.7],[-0.6,-0.7][-0.2,-0.3]],C = y, [[0.4, 

0.5][0.7,0.8],[-0.7,-0.8][-0.4,-0.5]],[[0.3,0.4][0.6, 0.8], [-

0.6,-0.8][-0.3,-0.4]] , D = y, [[0.4,0.5][0.7,0.8],[-0.7,-0.8][-

0.4,-0.5]],[[0.2,0.3][0.6, 0.7] ,[-0.6,-0.7][-0.2,-0.3]]  and   E 

= y,[[0.4,0.6][0.8,0.9],[-0.8,-0.9][-0.4,-0.6]],[[0.3,0.4][0.6, 

0.8] ,[-0.6,-0.8][-0.3,-0.4]]. Clearly 𝜏 ∗ = {0~”, B, C, D, E, 

1~”} is an inter-val bip.vag topology on Y, thus (Y, IB𝑉𝜏∗) is 

an inter-val bip.vag topological space. Let F = {B⋂ C ⋂  D 

}, G = {B⋂ C ⋂ E} and      H = {B⋂ C ⋂  D ⋂ E} where F, 

G and H are inter-val bip.vag  𝐻𝛿-sets in (Y, IB𝑉𝜏∗). Also, we 

have IBVCl(F) = 1~”, IBVCl(G) =1~”and IBVCl(H) = 1~”. 
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Also, we have IBVCl(F ⋂ G ⋂ H) = 1~”. Therefore, 
(Y, IB𝑉𝜏∗) is an inter-val bip.vag Volterra space. 

 

 Proposition 3.21:  

An inter-val bip.vag topological space (Y, IB𝑉𝜏∗) is an 

inter-val bip.vag Volterra space, if and only if 

IBVInt(⋃ 𝐵𝑖
𝑐𝑁

𝑖=1 ) = 0~”, where 𝐵𝑖’s are inter-val bip.vag 

dense and an inter-val bip.vag 𝐻𝛿-sets in (𝑌, IB𝑉𝜏∗). 

 

 Proof:  

Let (Y, IB𝑉𝜏∗) be an inter-val bip.vag Volterra space and 

𝐵𝑖’s are inter-val bip.vag dense and inter-val bip.vag 𝐻𝛿-sets 

in (X, IB𝑉𝜏∗). Then we have IBVCl(⋂ 𝐵𝑖
𝑐𝑁

𝑖=1 ) = 1~”. Now 

IBVInt(⋃ 𝐵𝑖
𝑐𝑁

𝑖=1 ) = (IBVCl(⋂ 𝐵𝑖
𝑁
𝑖=1 ))c = 0~”. Conversely, let 

IBVInt(⋃ 𝐵𝑖
𝑐𝑁

𝑖=1 ) = 0~”, where 𝐵𝑖’s are inter-val bip.vag 

dense and inter-val bip.vag 𝐽𝛿-sets in (Y, IB𝑉𝜏∗). Then 

(IBVInt(⋂ 𝐵𝑖
𝑁
𝑖=1 )c) = 0~” implies IBVCl(⋂ 𝐵𝑖

𝑁
𝑖=1 ) = 1~”. 

Hence (𝑌, IB𝑉𝜏∗) is an inter-val bip.vag Volterra space. 

 

 Proposition 3.22:  

Let (Y, IB𝑉𝜏∗) be an inter-val bip.vag topological space. 

If IBVInt(⋃ 𝐵𝑖
𝑁
𝑖=1 ) = 0~”, where 𝐵𝑖’s are inter-val bip.vag 

nowhere dense and an inter-val bip.vag 𝐽𝜎-sets  in (Y, IB𝑉𝜏∗), 

then (Y, IB𝑉𝜏∗) is an inter-val bip.vag Volterra space. 

 

 Proof:  

Let IBVInt(⋃ 𝐵𝑖
𝑁
𝑖=1 ) = 0~”, this implies that 

(IBVInt(⋃ 𝐵𝑖
𝑁
𝑖=1 ))c = 1~”. That is IBVCl(⋂ 𝐵𝑖

𝑁
𝑖=1 ) = 1~” 

where 𝐵𝑖’s are inter-val bip.vag nowhere dense and an inter-

val bip.vag 𝐽𝜎-sets implies that 𝐵𝑖
𝑐’s are inter-val bip.vag 

dense and an inter-val bip.vag 𝐻𝛿-sets in (𝑌, IB𝑉𝜏∗) and also 

IBVCl(⋂ 𝐵𝑖
𝑐𝑁

𝑖=1 ) = 1~”. Then (𝑌, IB𝑉𝜏∗) is an inter-val bip.vag 

Volterra space. 

 

 Definition 3.23:  

Let B be a bip.vag first category set in an inter-val 

bip.vag topological space (𝑌, IB𝑉𝜏∗). Then Bc is called an 

inter-val bip.vag residual sets in (Y, IB𝑉𝜏∗). 

 

 Definition 3.24:  

An inter-val bip.vag topological space (Y, IB𝑉𝜏∗) is 

called an inter-val bip.vag 𝜀𝑟- Volterra space if 

IBVCl(⋂ 𝐵𝑖
𝑁
𝑖=1 ) = 1~”, where 𝐵𝑖’s are inter-val bip.vag dense 

and an inter-val bip.vag residual sets in  (Y, IB𝑉𝜏∗). 

 

 Proposition 3.25:  

Let (𝑌, IB𝑉𝜏∗) be an inter-val bip.vag 𝜖𝑟- Volterra space, 

then IBVInt(⋃ 𝐵𝑖
𝑁
𝑖=1 ) = 0~”, where  𝐵𝑖’s are inter-val bip.vag 

first category sets such that IBVInt(𝐵𝑖) = 0~” in (Y, IB𝑉𝜏∗). 

 

 Proof:  

Let  𝐵𝑖’s (i = 1 to N) be an inter-val bip.vag first 

category sets such that IBVInt(𝐵𝑖) = 0~” in (Y, IB𝑉𝜏∗). Then 

𝐵𝑖
𝑐 is an inter-val bip.vag residual sets such that IBVCl(𝐵𝑖

𝑐) 

= 1~” in (𝑌, IB𝑉𝜏∗). That is 𝐵𝑖
𝑐 is an inter-val bip.vag residual 

sets and an inter-val bip.vag dense sets in (Y, IB𝑉𝜏∗). Since 
(Y, IB𝑉𝜏∗) is an inter-val bip.vag 𝜖𝑟- Volterra space, IBVCl( 

⋂ 𝐵𝑖
𝑐𝑁

𝑖=1 ) = 1~” and hence we have IBVInt(⋃ 𝐵𝑖
𝑁
𝑖=1 ) = 0~” 

where  𝐵𝑖’s are inter-val bip.vag first category sets such that 

IBVInt(𝐵𝑖) = 0~” in (Y, IB𝑉𝜏∗). 

 Proposition 3.26:  
If each an inter-val bip.vag nowhere dense set is an 

inter-val bip.vag closed set in an inter-val bip.vag Volterra 

space in (𝑌, IB𝑉𝜏∗), then (𝑌, IB𝑉𝜏∗) is an inter-val bip.vag 𝜖𝑟- 

Volterra space. 

 

 Proof:  

Let 𝐵𝑖’s (i=1 to N) be an inter-val bip.vag nowhere 

dense set and an inter-val bip.vag residual set in (Y, IB𝑉𝜏∗). 

Since 𝐵𝑖’s are inter-val bip.vag residual sets, 𝐵𝑖
𝑐’s are inter-

val bip.vag first category set in (Y, IB𝑉𝜏∗). Now  𝐵𝑖
𝑐 = 

⋃ 𝐶𝑖𝑗
∞
𝑖=1 , where 𝐶𝑖𝑗’s are an inter-val bip.vag nowhere dense 

set in (Y, IB𝑉𝜏∗). By hypothesis, an inter-val bip.vag nowhere 

dense set  𝐶𝑖𝑗’s are inter-val bip.vag cld.sets and hence 𝐵𝑖
𝑐’s 

are inter-val bip.vag 𝐽𝜎-sets in (Y, IB𝑉𝜏∗). This implies that 

𝐵𝑖
𝑐’s are inter-val bip.vag 𝐻𝛿-sets in (𝑌, IB𝑉𝜏∗). Hence  𝐵𝑖

𝑐’s 

are inter-val bip.vag dense and an inter-val bip.vag 𝐻𝛿-sets 

in (Y, IB𝑉𝜏∗). Since (Y, IB𝑉𝜏∗) is an inter-val bip.vag Volterra 

space, IBVCl(⋂ 𝐵𝑖
𝑁
𝑖=1 ) = 1~”. Hence IBVCl(⋂ 𝐵𝑖

𝑁
𝑖=1 ) = 1~”, 

where 𝐵𝑖’s are inter-val bip.vag dense and an inter-val 

bip.vag residual sets in (Y, IB𝑉𝜏∗) implies that (Y, IB𝑉𝜏∗) is an 

inter-val bip.vag 𝜖𝑟- Volterra space.       

 

 Definition 3.27:  

Let (Y, IB𝑉𝜏∗) be an inter-val bip.vag topological space. 

Then (Y, IB𝑉𝜏∗) is called an inter-val bip.vag Baire space if 

IBVInt(⋃ 𝐵𝑖
∞
𝑖=1 ) = 0~”where 𝐵𝑖’s are inter-val bip.vag 

nowhere dense sets in (Y, IB𝑉𝜏∗). 

 

 Proposition 3.28:  

Let (𝑌, IB𝑉𝜏∗) be an inter-val bip.vag topological space. 

Then the following are equivalent: 

 

 (Y, IB𝑉𝜏∗) is an inter-val bip.vag Baire space. 

 IBVInt(B) = 0~”, for every inter-val bip.vag first category 

set B in (Y, IB𝑉𝜏∗). 

 IBVCl(B) = 1~”, for every inter-val bip.vag residual set B 

in  (Y, IB𝑉𝜏∗). 

 

 Proof:  

 

 ⇒ (ii) Let B be an inter-val bipolar first category set in 
(𝑌, IB𝑉𝜏∗). Then B = ⋃ 𝐵𝑖

∞
𝑖=1 , where 𝐵𝑖’s are inter-val 

bip.vag nowhere dense sets in (Y, IB𝑉𝜏∗). Now IBVInt(B) 

= IBV( ⋃ 𝐵𝑖
∞
𝑖=1 ) = 0~”, since (Y, IB𝑉𝜏∗) is an inter-val 

bip.vag Baire space. Therefore IBVInt(B) = 0~”. 

 ⇒ (iii) Let B be an inter-val bip.vag residual set in 
(Y, IB𝑉𝜏∗). Then Cc is an inter-val bip.vag first category 

set in (Y, IB𝑉𝜏∗). By hypothesis IBVInt(Cc) = 0~” which 

implies that (IBVCl(B))c = 0~”. Hence IBVCl(B) = 1~”. 

 ⇒ (i) Let B be an inter-val bip.vag first category set in 

(Y, IB𝑉𝜏∗). Then B = ⋃ 𝐵𝑖
∞
𝑖=1 , where 𝐵𝑖’s are inter-val 

bip.vag nowhere dense sets in (Y, IB𝑉𝜏∗). Now B is an 

inter-val bip.vag first category set implies that 𝐵𝑐 is an 

inter-val bip.vag residual set in (Y, IB𝑉𝜏∗). By hypothesis, 

we have IBVCl(Bc) = 1~” which implies that (IBVInt(B) 

= 1~”)
c. Hence IBVInt(B) = 0~”. IBVInt(⋃ 𝐵𝑖

∞
𝑖=1 ) = 0~”, 

where 𝐵𝑖’s are inter-val bip.vag nowhere dense sets in 
(𝑌, IB𝑉𝜏∗). Hence (Y, IB𝑉𝜏∗) is an inter-val bip.vag Baire 

space. 
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 Proposition 3.29:  

If ⋃ 𝐵𝑖
∞
𝑖=1  is the inter-val bip.vag sets, 𝐵𝑖’s are inter-val 

bip.vag nowhere dense sets in an inter-val bip.vag Baire 

space in (Y, IB𝑉𝜏∗),then (Y, IB𝑉𝜏∗) is an inter-val bip.vag 𝜖𝑟- 

Volterra space.  

 

 Proof:  

Let B be an inter-val bip.vag Baire space and 𝐵𝑖’s (i = 

1 to N) be an inter-val bip.vag dense and inter-val bip.vag 

residual sets in (Y, IB𝑉𝜏∗). Since 𝐵𝑖’s are inter-val bip.vag 

residual set, 𝐵𝑖
𝑐’s are inter-val bip.vag first category sets in 

(Y, IB𝑉𝜏∗). Now 𝐵𝑖
𝑐 = ⋃ 𝐶𝑖𝑗

∞
𝑖=1 , where 𝐶𝑖𝑗’s are inter-val 

bip.vag nowhere dense sets in (Y, IB𝑉𝜏∗). By hypothesis 𝐵𝑖
𝑐 

is an inter-val bip.vag nowhere dense sets in (𝑌, IB𝑉𝜏∗). Let 

𝐶𝛼’s be an inter-val bip.vag nowhere dense sets in (Y, IB𝑉𝜏∗) 

in which N inter-val bip.vag nowhere dense sets be 𝐵𝑖
𝑐. Since 

(Y, IB𝑉𝜏∗) is an inter-val bip.vag Baire space, 

IBVInt(⋃ 𝐶𝛼
∞
𝑖=1 ) = 0~”. But IBVInt(⋃ 𝐵𝑖

𝑁
𝑖=1 ) ≤ 

IBVInt(⋃ 𝐶𝛼
∞
𝛼=1 ) and IBVInt(⋃ 𝐶𝛼

∞
𝛼=1 ) = 0~”. Then 

IBVInt(⋃  𝐵𝑖
𝑐∞

𝑖=1 ) = 0~”. Therefore IBVCl(⋂ 𝐵𝑖
𝑁
𝑖=1 ) = 

1~”where 𝐵𝑖’s (i=1 to N) are inter-val bip.vag dense set and 

inter-val bip.vag residual set in (Y, IB𝑉𝜏∗). Therefore 
(Y, IB𝑉𝜏∗) is an inter-val bip.vag 𝜖𝑟- Volterra space. 

 

 Proposition 3.30:  

If an inter-val bip.vag 𝜖𝑟- Volterra space is an inter-val 

bip.vag Baire space, then IBVCl(⋂ 𝐵𝑖
𝑁
𝑖=1 ) = 1~”, where 𝐵𝑖’s 

(i=1to N) are inter-val bip.vag residual sets in (𝑌, IB𝑉𝜏∗). 

 

 Proof:  

Let 𝐵𝑖’s (i=1to N) are inter-val bip.vag residual set in 
(Y, IB𝑉𝜏∗). Since (Y, IB𝑉𝜏∗) is an inter-val bip.vag Baire 

space, (By Proposition 3.28) IBVCl(𝐵𝑖) = 1~” ∀ i. Then 𝐵𝑖’s 

are inter-val bip.vag dense and an inter-val bip.vag residual 

sets in (Y, IB𝑉𝜏∗). Since (Y, IB𝑉𝜏∗) in an inter-val bip.vag 𝜖𝑟- 

Volterra space, IBVCl(⋂ 𝐵𝑖
𝑁
𝑖=1 ) = 1~”. Therefore, 

IBVCl(⋂ 𝐵𝑖
𝑁
𝑖=1 ) = 1~” where 𝐵𝑖’s (i=1 to N) are inter-val 

bip.vag residual sets in (𝑌, IB𝑉𝜏∗). 

 

 Proposition 3.31:  

If ⋂ 𝐵𝑖
𝑁
𝑖=1 , where 𝐵𝑖’s (i = 1to N) are inter-val bip.vag 

residual sets in an inter-val bip.vag Baire space (Y, IB𝑉𝜏∗), 

then (Y, IB𝑉𝜏∗) is an inter-val bip.vag  𝜖𝑟- Volterra space. 

 

 Proof:  

Let 𝐵𝑖’s (i = 1to N) be an inter-val bip.vag dense and 

an inter-val bip.vag residual sets in (𝑌, IB𝑉𝜏∗). Then by 

hypothesis, ⋂ 𝐵𝑖
𝑁
𝑖=1  is an inter-val bip.vag residual sets in 

(Y, IB𝑉𝜏∗). Since (Y, IB𝑉𝜏∗) is an inter-val bip.vag Baire 

space, therefore (By Proposition 3.28) IBVCl(⋂ 𝐵𝑖
𝑁
𝑖=1 ) = 1~”. 

Hence IBVCl(⋂ 𝐵𝑖
𝑁
𝑖=1 ) = 1~”, where  𝐴𝑖’s are inter-val 

bip.vag dense set and an inter-val bip.vag residual set 
(Y, IB𝑉𝜏∗). Therefore (Y, IB𝑉𝜏∗) is an inter-val bip.vag 𝜖𝑟- 

Volterra space.   

 

 

 

 

 

IV. INTER-VAL BIP. VAG WEAKLY VOLTERRA 

SPACES 

 

 Definition 4.1:  

Let (𝑌, IB𝑉𝜏∗) be an inter-val bip.vag topological space. 

An inter-val bip.vag set B in (𝑌, IB𝑉𝜏∗) is called an inter-val 

bip.vag 𝜎-nowhere dense set if B is an inter-val bip.vag 𝐽𝜎 

set in (Y, IB𝑉𝜏∗)  such that IBVInt(B) = 0~”. 

 

 Definition 4.2:  

Let (𝑌, IB𝑉𝜏∗) be an inter-val bip.vag topological space. 

Then (Y, IB𝑉𝜏∗) is called an inter-val bip.vag 𝜎-Baire space if 

IBVInt(⋃ 𝐵𝑖
∞
𝑖=1 ) = 0~”, where 𝐵𝑖’s are inter-val bip.vag 𝜎-

nowhere dense sets. 

 

 Proposition 4.3:  

In an inter-val bip.vag topological space (𝑌, IB𝑉𝜏∗). An 

inter-val bip.vag set B is an inter-val bip.vag 𝜎-nowhere 

dense set in (𝑌, IB𝑉𝜏∗) if and only if Bc is an inter-val bip.vag 

dense and an inter-val bip.vag 𝐻𝛿-set in (𝑌, IB𝑉𝜏∗). 

 

 Proof:  

Let B be an inter-val bip.vag 𝜎-nowhere dense set in 
(Y, IB𝑉𝜏∗). Then B = ⋃ 𝐵𝑖

∞
𝑖=1  where 𝐵𝑖

𝑐 ∈  IB𝑉𝜏∗, for i ∈ I and 

IBVInt(B) = 0~” Then (IBVInt(B))c = (0~”)
c = 1~” implies 

that IBVCl(Bc) =1~”. Also, Bc = (⋃ 𝐵𝑖
∞
𝑖=1 )c = ⋂ 𝐵𝑖

𝑐∞
𝑖=1  where 

𝐵𝑖
𝑐 ∈  IB𝑉𝜏∗, for i∈  I. Hence, we have Bc is an inter-val 

bip.vag dense and an inter-val bip.vag 𝐻𝛿-set in (𝑌, IB𝑉𝜏∗). 

 

Conversely, let B be an inter-val bip.vag dense and an 

inter-val  𝐻𝛿-set in (𝑌, IB𝑉𝜏∗). Then B = ⋂ 𝐵𝑖
∞
𝑖=1  where 𝐵𝑖 ∈

 IB𝑉𝜏∗, for i ∈ I. Now Bc = (⋂ 𝐵𝑖
∞
𝑖=1  )c = ⋃ 𝐵𝑖

𝑐∞
𝑖=1 . Hence Bc 

is an inter-val bip.vag 𝐽𝜎 set in (𝑌, IB𝑉𝜏∗) and since B is an 

inter-val bip.vag dense set we have IBVInt( Bc) = 0~”. 

Therefore, Bc is an inter-val bip.vag 𝜎-nowhere dense set in 
(𝑌, IB𝑉𝜏∗). 

 

 Proposition 4.4:  

If B is an inter-val bip.vag dense set in (𝑌, IB𝑉𝜏∗) such 

that C ⊆ Bc, where C is an inter-val bip.vag 𝐽𝜎 set in 
(Y, IB𝑉𝜏∗), then C is an inter-val bip.vag 𝜎-nowhere dense set 

in (Y, IB𝑉𝜏∗). 

 

 Proof:  

Let B be an inter-val bip.vag dense set in (Y, IB𝑉𝜏∗). 

Now C ⊆ Bc implies that IBVInt(C) ⊆ IBVInt( Bc) = 

(IBVCl(B))c = 0~” and hence IBVInt(C) = 0~”. Therefore, C 

is an inter-val bip.vag 𝜎-nowhere dense set in (Y, IB𝑉𝜏∗).   

 

 Proposition 4.5:  

If B is an inter-val bip.vag  𝐽𝜎 set and an inter-val 

bip.vag nowhere dense set in (Y, IB𝑉𝜏∗), then B is an inter-val 

bip.vag 𝜎-nowhere dense set in (𝑌, IB𝑉𝜏∗). 
 

 Proof:  

Now B ⊆ IBVCl(B) for any inter-val bip.vag set in 
(Y, IB𝑉𝜏∗). Then, IBVInt(B) ⊆ IBVInt(IBV(Cl(B))). Since B 

is an inter-val bip.vag nowhere dense set in (Y, IB𝑉𝜏∗), 

IBVInt(IBVCl(B)) = 0~” and hence IBVInt(B) = 0~” and B 
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is an inter-val bip.vag 𝐽𝜎 set implies that B is an inter-val 

bip.vag 𝜎-nowhere dense set in (Y, IB𝑉𝜏∗). 

 

 Proposition 4.6:  

If 𝐵𝑖’s (i =1 to N) are inter-val bip.vag 𝜎-nowhere 

dense set in (𝑌, IB𝑉𝜏∗) and IBVInt(⋃ 𝐵𝑖
𝑁
𝑖=1 ) = 0~”, then 

(Y, IB𝑉𝜏∗) is an inter-val bip.vag Volterra space. 

 

 Proof:  

Let 𝐵𝑖’s (i=1 to N) are inter-val bip.vag 𝜎-nowhere 

dense set in (𝑌, IB𝑉𝜏∗) then 𝐵𝑖’s are inter-val bip.vag 𝐽𝜎 set 

with IBVInt(𝐵𝑖) = 0~”.Now (IBVInt(𝐵𝑖))
c = 1~”. Then, we 

have IBVCl(𝐵𝑖
𝑐) =1~”. That is, 𝐵𝑖

𝑐’s are inter-val bip.vag 

dense set in (Y, IB𝑉𝜏∗). Since 𝐵𝑖’s are inter-val bip.vag 𝐽𝜎 set, 

𝐵𝑖
𝑐are inter-val bip.vag 𝐻𝛿-sets in (Y, IB𝑉𝜏∗). Hence 𝐵𝑖

𝑐are 

inter-val bip.vag dense and an inter-val bip.vag 𝐻𝛿-sets in 

(X, IB𝑉𝜏∗). Now IBVCl(⋂ 𝐵𝑖
𝑐𝑁

𝑖=1 ) = (IBVInt(⋃ 𝐵𝑖
𝑁
𝑖=1 ))c = 

0~”
c = 1~”. Hence (𝑌, IB𝑉𝜏∗) is an inter-val bip.vag Volterra 

space. 
 

 Definition 4.7:  

An inter-val bip.vag topological space (Y, IB𝑉𝜏∗) is 

called an inter-val bip.vag weakly Volterra space if 

IBVCl(⋂ 𝐵𝑖
𝑁
𝑖=1 ) ≠ 0~”, where 𝐵𝑖’s are inter-val bip.vag 

dense and an inter-val bip.vag 𝐻𝛿-sets in (Y, IB𝑉𝜏∗). 

 

 Example 4.8:  

Let Y = {b, c}. The inter-val bip.vag sets are defined as 

follows  B = y, [[0.3, 0.4][0.6,0.8],[-0.6,-0.8][-0.3,-

0.4]],[[0.3,0.4][0.6, 0.9],[-0.6,-0.9][-0.3,-0.4]], C = y, [[0.3, 

0.5][0.6,0.7],[-0.6,-0.7][-0.3,-0.5]],[[0.2,0.3][0.4, 0.5],[-0.4,-

0.5][-0.2,-0.3]],  D = y, [[0.3, 0.4][0.6,0.7],[-0.6,-0.7][-0.3,-

0.4]],[[0.1,0.3][0.4, 0.5],[-0.4,-0.5][-0.1,-0.3]] and  E = y, 

[[0.3, 0.5][0.6,0.8],[-0.6,-0.8][-0.3,-0.5]],[[0.3,0.4][0.6, 

0.9],[-0.6,-0.9][-0.3,-0.4]]. Clearly 𝜏 ∗ = {0~”, B, C, D, E, 

1~”} is an inter-val bip.vag topology in Y. Then (Y, IB𝑉𝜏∗) is 

an inter-val bip.vag topological space IBVCl(B) = 1~”, 

IBVCl(C) = 1~”, IBVCl(E) = 1~”. Now IBVCl(B⋂ C ⋂  E) 

≠ 0~”. Therefore (Y, IB𝑉𝜏∗) is an inter-val bip.vag weakly 

Volterra space but it is not an inter-val bip.vag Volterra space. 

 

 Definition 4.9:  

Let (𝑌, IB𝑉𝜏∗) be an inter-val bip.vag topological space. 

An inter-val bip.vag set B in (Y, IB𝑉𝜏∗) is called an inter-val 

bip.vag 𝜎- first category if B = ⋃ 𝐵𝑖
∞
𝑖=1 , where 𝐵𝑖’s are inter-

val bip.vag 𝜎- nowhere dense set in (Y, IB𝑉𝜏∗). Any other 

inter-val bip.vag set in (Y, IB𝑉𝜏∗) is said to be an inter-val 

bip.vag 𝜎-second category in (𝑌, IB𝑉𝜏∗). 

 

 Definition 4.10:  

An inter-val bip.vag topological space (𝑌, IB𝑉𝜏∗) is an 

inter-val bip.vag 𝜎- first category space if 1~” = ⋃ 𝐵𝑖
∞
𝑖=1 , 

where 𝐵𝑖’s are inter-val bip.vag 𝜎- nowhere dense set in 
(Y, IB𝑉𝜏∗). (Y, IB𝑉𝜏∗) is called an inter-val bip.vag 𝜎- second 

category space if it is not an inter-val bip.vag 𝜎-first category 

space. 

 

 

 

 

 Proposition 4.11:  

If the inter-val bip.vag topological space (Y, IB𝑉𝜏∗) is 

an inter-val bip.vag 𝜎- second category space, then (Y, IB𝑉𝜏∗) 

is an inter-val bip.vag weakly Volterra space. 

 

 Proof:  

Let 𝐵𝑖’s (i= 1,2,…..N) be an inter-val bip.vag dense and 

an inter-val bip.vag 𝐻𝛿-set in (Y, IB𝑉𝜏∗). Then by Proposition 

4.3 𝐵𝑖
𝑐’s are an inter-val bip.vag 𝜎-nowhere dense set in 

(𝑌, IB𝑉𝜏∗). Let 𝐶𝛼(𝛼 = 1, 2, …..∞ ) be an inter-val bip.vag 𝜎-

nowhere dense set in (Y, IB𝑉𝜏∗) in which let us take the first 

N(𝐶𝛼)’s as 𝐵𝑖
𝑐. Since (Y, IB𝑉𝜏∗) is an inter-val bip.vag 𝜎-

second category space, ⋃ 𝐶𝛼
∞
𝛼=1  ≠ 1~”. Then (⋃ 𝐶𝛼

∞
𝛼=1 )𝑐 ≠ 

1~” ⟹ ⋂ 𝐶𝛼
𝑐∞

𝛼=1  ≠ 0~”. Then we have IBVCl(⋂ (𝐶𝛼)𝑐∞
𝛼=1 ). 

Since IBVCl(⋂ (𝐶𝛼)𝑐𝑁
𝛼=1 ) ⊆ IBVCl(⋂ (𝐶𝛼)𝑐∞

𝛼=1 ≠ 0~” then 

we have IBVCl(⋂ (𝐶𝛼)𝑐∞
𝛼=1 ) ≠ 0~”, where 𝐵𝑖’s (i=1,2,….N) 

are an inter-val bip.vag dense and an inter-val bip.vag 𝐻𝛿-set 

in (𝑌, IB𝑉𝜏∗). Therefore (Y, IB𝑉𝜏∗) is an inter-val bip.vag 
weakly Volterra space. 

 

 Proposition 4.12:  

 

 Let (X, IB𝑉𝜏∗) be an inter-val bip.vag weakly Volterra 

space if  ⋃ 𝐵𝑖
𝑁
𝑖=1  = 1~”, where 𝐵𝑖’s are an inter-val bip.vag 

𝐽𝜎 – set in (Y, IB𝑉𝜏∗) then there exits atleast one 𝐵𝑖 in 
(Y, IB𝑉𝜏∗) with IBVInt(𝐵𝑖) ≠ 0~”. 

 If  ⋃ 𝐵𝑖
𝑁
𝑖=1 = 1~” where 𝐵𝑖’s are an inter-val bip.vag 𝐽𝜎 – 

set in (Y, IB𝑉𝜏∗) and if, IBVInt(𝐵𝑖) ≠ 0~” for atleast one (i 

=1,2,….N) then (𝑌, IB𝑉𝜏∗) is an inter-val bip.vag weakly 

Volterra space. 

 

 Proof:  

(i) ⟹(ii). Suppose that IBVInt(𝐵𝑖) = 0~” for all 

(i=1,2,…N). Then (IBVInt(𝐵𝑖))
c = 1~” ⟹ IBVCl(𝐵𝑖

𝑐) = 1~”. 

Therefore 𝐵𝑖
𝑐’s are an inter-val bip.vag dense set in Y. 𝐵𝑖’s 

are an inter-val bip.vag 𝐽𝜎 – set in (𝑌, IB𝑉𝜏∗) implies that 𝐵𝑖
𝑐’s 

are an inter-val bip.vag 𝐻𝛿-set. Now, IBVCl(⋂ 𝐵𝑖
𝑐𝑁

𝑖=1 ) = 

IBVCl(⋃ 𝐵𝑖
𝑁
𝑖=1 )c = IBVCl(1~”) = 0~”, where 𝐵𝑖

𝑐’s are an 

inter-val bip.vag dense set and an inter-val bip.vag 𝐻𝛿-set. 

This implies (Y, IB𝑉𝜏∗) is not an inter-val bip.vag Volterra 

space, which is a contradiction. Therefore IBVInt(𝐵𝑖) ≠ 0~” 

for atleast one i(i=1,2,…..N) in (Y, IB𝑉𝜏∗). (ii) ⟹(i). Suppose 

that (Y, IB𝑉𝜏∗) is not an inter-val bip.vag weakly Volterra 

space. IBVCl(⋂ 𝐵𝑖
𝑁
𝑖=1 ) = 0~” where 𝐵𝑖’s are an inter-val 

bip.vag dense and an inter-val bip.vag 𝐻𝛿-set in (Y, IB𝑉𝜏∗). 

This implies that IBVInt(⋃ (𝐵𝑖
𝑐𝑁

𝑖=1 )) = 1~” ⟹ ⋃ (𝐵𝑖
𝑐𝑁

𝑖=1 ) = 

1~”, where 𝐵𝑖
𝑐’s are an inter-val bip.vag 𝐽𝜎 – set in (Y, IB𝑉𝜏∗) 

and IBVInt(𝐵𝑖
𝑐) = 0~”(because IBVCl(𝐵𝑖) = 1~”∀ i = 

1,2,…..N) which is a contradiction to the hypothesis. Hence 
(Y, IB𝑉𝜏∗) must be an inter-val bip.vag weakly Volterra space. 

 

 Definition 4.13:  

An inter-val bip.vag topological space (Y, IB𝑉𝜏∗) is an 

inter-val bip.vag almost resolvable space if ⋃ 𝐵𝑖
∞
𝑖=1  =  1~”, 

where the inter-val bip.vag sets 𝐵𝑖’s in (𝑌, IB𝑉𝜏∗) are such 

that IBVInt(𝐵𝑖) = 0~”. Otherwise, (Y, IB𝑉𝜏∗) is called an inter-

val bip.vag almost irresolvable. 
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 Definition 4.14:  

An inter-val bip.vag topological space (Y, IB𝑉𝜏∗) is 

called an inter-val bip.vag 𝒫-space if countable intersection 

of an inter-val bip.vag op.sets in (Y, IB𝑉𝜏∗) is an inter-val 

bip.vag open in (Y, IB𝑉𝜏∗). 
 

 Definition 4.15:  

An inter-val bip.vag topological space (Y, IB𝑉𝜏∗) is 

called an inter-val bip.vag submaximal space if for each an 

inter-val bip.vag set B in (𝑌, IB𝑉𝜏∗) such that IBVCl(B) = 

1~”, then B ∈ 𝜏 ∗. 

 

 Proposition 4.16:  

If the inter-val bip.vag topological space (Y, IB𝑉𝜏∗) is 

an inter-val bip.vag almost irresolvable space, then (Y, IB𝑉𝜏∗) 

is an inter-val bip.vag weakly Volterra space. 

 

 Proof:  

Let 𝐵𝑖’s (i = 1,2,….N) be an inter-val bip.vag dense and 

an inter-val bip.vag 𝐻𝛿-set in (Y, IB𝑉𝜏∗). Now IBVCl(𝐵𝑖) ⟹ 

IBVInt(𝐵𝑖
𝑐) = 0~”. Since (Y, IB𝑉𝜏∗) is an inter-val bip.vag 

almost irresolvable space, ⋃ (𝐶𝑖
∞
𝑖=1 ) ≠ 1~”, where the inter-

val bip.vag sets 𝐶𝑖’s in (Y, IB𝑉𝜏∗) are such that IBVInt(𝐶𝑖) = 

0~”. Let us take the first N((𝐶𝑖)’s as 𝐵𝑖
𝑐’s in (Y, IB𝑉𝜏∗). Now, 

⋃ (𝐶𝑖
∞
𝑖=1 ) ≠ 1~” ⟹ (⋃ (𝐶𝑖

∞
𝑖=1 ))c ≠ 0~”. This implies that 

⋂ (𝐶𝑖
∞
𝑖=1 )c ≠ 0~” and thus IBVCl(⋂ (𝐶𝑖

∞
𝑖=1 )c) ≠ 0~”. Since 

IBVCl(⋂ (𝐶𝑖
𝑁
𝑖=1 )c) ≤ IBVCl(⋂ (𝐶𝑖

∞
𝑖=1 )c) then 

IBVCl(⋂ (𝐶𝑖
𝑁
𝑖=1 )c) ≠ 0~”. Hence IBVCl(⋂ (𝐶𝑖

𝑐𝑁
𝑖=1 )c) ≠ 0~” 

replacing 𝐶𝑖, by 𝐵𝑖
𝑐, (i=1,2,….N). This implies 

IBVCl(⋂ (𝐵𝑖
𝑁
𝑖=1 )) ≠ 0~”. Therefore (Y, IB𝑉𝜏∗) is an inter-val 

bip.vag weakly Volterra space. 

 

 Proposition 4.17:  

If the inter-val bip.vag topological space (𝑌, IB𝑉𝜏∗) is 

an inter-val bip.vag second category and an inter-val bip.vag 

𝒫-space, then (Y, IB𝑉𝜏∗) is an inter-val bip.vag weakly 

Volterra space. 

 

 Proof:  

Let 𝐵𝑖’s (i = 1,2,….N) be an inter-val bip.vag dense and 

an inter-val bip.vag 𝐻𝛿-set in (Y, IB𝑉𝜏∗). Since (𝑌, IB𝑉𝜏∗) is 

an inter-val bip.vag 𝒫-space then inter-val bip.vag 𝐻𝛿-set 

𝐵𝑖’s are inter-val bip.vag open set in (Y, IB𝑉𝜏∗). Then 𝐵𝑖’s (i 

= 1,2,….N) be an inter-val bip.vag dense and an inter-val 

bip.vag open set in (𝑌, IB𝑉𝜏∗). Then by Proposition 3.12, 𝐵𝑖
𝑐’s 

are inter-val bip.vag nowhere dense set in (Y, IB𝑉𝜏∗). Since 
(𝑌, IB𝑉𝜏∗) is an inter-val bip.vag second category space 

⋃ (𝐶𝑖
∞
𝑖=1 ) ≠ 1~” where 𝐶𝑖’s are inter-val bip.vag nowhere 

dense set in (𝑌, IB𝑉𝜏∗). Let us take the first N(𝐶𝑖)’s as 𝐵𝑖
𝑐’s in 

(Y, IB𝑉𝜏∗). Then ⋃ (𝐵𝑖
𝑐𝑁

𝑖=1 ) = ⋃ (𝐶𝑖
𝑁
𝑖=1 ) ⊆ ⋃ (𝐶𝑖

∞
𝑖=1 ) ≠ 1~”. 

This implies that, (⋃ (𝐵𝑖
𝑐𝑁

𝑖=1 ))c ≠ 0~” ⟹ ⋂ (𝐵𝑖
𝑁
𝑖=1 ) ≠ 0~”. 

Thus IBVCl(⋂ (𝐵𝑖
𝑁
𝑖=1 )) ≠ 0~”, where 𝐵𝑖’s are inter-val 

bip.vag dense and an inter-val bip.vag  𝐻𝛿-set in (Y, IB𝑉𝜏∗). 

So (𝑌, IB𝑉𝜏∗) is an inter-val bip.vag weakly Volterra space. 

 
 Proposition 4.18:  

If the inter-val bip.vag topological space (Y, IB𝑉𝜏∗) is 

an inter-val bip.vag second category and an inter-val bip.vag 

submaximal space, then (𝑌, IB𝑉𝜏∗) is an inter-val bip.vag 

weakly Volterra space. 

 Proof:  

Let 𝐵𝑖’s (i = 1,2,….N) be an inter-val bip.vag dense and 

an inter-val bip.vag  𝐻𝛿-set in (Y, IB𝑉𝜏∗). Since (Y, IB𝑉𝜏∗) is 

an inter-val bip.vag submaximal space, the inter-val bip.vag 

dense set 𝐵𝑖’s are inter-val bip.vag open set in (𝑌, IB𝑉𝜏∗). By 

proposition 3.12, 𝐵𝑖
𝑐’s are inter-val bip.vag nowhere dense 

sets in (Y, IB𝑉𝜏∗). Since  (Y, IB𝑉𝜏∗) is an inter-val bip.vag 

second category space ⋃ (𝐶𝑖
∞
𝑖=1 ) ≠ 1~” where 𝐶𝑖’s are inter-

val bip.vag nowhere dense set in (𝑌, IB𝑉𝜏∗). Let us take the 

first N(𝐶𝑖)’s as 𝐵𝑖
𝑐’s in (Y, IB𝑉𝜏∗). Then ⋃ (𝐵𝑖

𝑐𝑁
𝑖=1 ) ≤ 

⋃ (𝐶𝑖
∞
𝑖=1 ) and ⋃ (𝐶𝑖

∞
𝑖=1 ) ≠ 1~” implies that ⋃ (𝐵𝑖

𝑐𝑁
𝑖=1 ) = 

1~”.This implies that, ⋂ (𝐵𝑖
𝑁
𝑖=1 ) ≠ 0~” and hence 

IBVCl(⋂ (𝐵𝑖
𝑁
𝑖=1 )) ≠ 0~”, where 𝐵𝑖’s are inter-val bip.vag 

dense and an inter-val bip.vag  𝐻𝛿-set in (Y, IB𝑉𝜏∗). Therefore 
(Y, IB𝑉𝜏∗) is an inter-val bip.vag weakly Volterra space. 

 

 Proposition 4.19:  

If the inter-val bip.vag topological space (Y, IB𝑉𝜏∗) is 

not an inter-val bip.vag weakly Volterra space, then 
(Y, IB𝑉𝜏∗) is an inter-val bip.vag 𝜎-first category space. 

 

 Proof:  

Let 𝐶𝑖’s (i=1,2,…∞) be an inter-val bip.vag 𝜎-nowhere 

dense sets in an inter-val bip.vag topological space (𝑌, IB𝑉𝜏∗) 

which is not an inter-val bip.vag weakly Volterra space. Now, 

we claim that ⋃ (𝐶𝑖
∞
𝑖=1 ) = 1~”. Suppose that ⋃ (𝐶𝑖

∞
𝑖=1 ) ≠ 1~”. 

Then ⋂ 𝐶𝑖
𝑐∞

𝑖=1 ≠ 0~”. Since 𝐶𝑖’s are inter-val bip.vag 𝜎-

nowhere dense set in (Y, IB𝑉𝜏∗) by proposition 4.3, 𝐶𝑖
𝑐’s are 

inter-val bip.vag dense and an inter-val bip.vag 𝐻𝛿-set in 

(Y, IB𝑉𝜏∗). Now, ⋂ 𝐶𝑖
𝑐𝑁

𝑖=1  ⊆ ⋂ 𝐶𝑖
𝑐∞

𝑖=1  implies that ⋂ 𝐶𝑖
𝑐𝑁

𝑖=1 ≠
0~”. Let 𝐵𝑖= 𝐵𝑖

𝑐, then ⋂ 𝐵𝑖
𝑁
𝑖=1  ≠ 0~” implies that 

IBVCl(⋂ 𝐵𝑖
𝑁
𝑖=1 ) ≠ 0~”, where 𝐵𝑖’s are inter-val bip.vag 

dense and an inter-val bip.vag 𝐻𝛿-set in  (Y, IB𝑉𝜏∗). But this 

is a contradiction, since (Y, IB𝑉𝜏∗) is not an inter-val bip.vag 

weakly Volterra space. Hence ⋃ (𝐶𝑖
∞
𝑖=1 ) = 1~”. Therefore 

(Y, IB𝑉𝜏∗) is an inter-val bip.vag 𝜎-first category space. 

 
 Proposition 4.20:  

If an inter-val bip.vag topological space  (Y, IB𝑉𝜏∗) is 

an inter-val bip.vag weakly Volterra space, then (Y, IB𝑉𝜏∗) is 

not an inter-val bip.vag 𝜎-Baire space. 

 

 Proof:  

Let (Y, IB𝑉𝜏∗) be an inter-val bip.vag weakly Volterra 

space. Then we have IBVCl(⋂ 𝐵𝑖
𝑁
𝑖=1 ) ≠ 0~” where  𝐵𝑖’s are 

inter-val bip.vag dense and an inter-val bip.vag 𝐻𝛿-set in 
(Y, IB𝑉𝜏∗). Since 𝐵𝑖’s are inter-val bip.vag dense and an inter-

val bip.vag 𝐻𝛿-set in (𝑌, IB𝑉𝜏∗), then by proposition 4.3. Let 

𝐶𝑖’s (i=1,2,…∞) be an inter-val bip.vag 𝜎-nowhere dense set 

in (Y, IB𝑉𝜏∗) in which the first N inter-val bip.vag 𝜎-nowhere 

dense set be 𝐵𝑖
𝑐’s. Now ⋃ (𝐵𝑖

𝑐𝑁
𝑖=1 )  ⊆ ⋂ (𝐶𝑖

∞
𝑖=1 ). Then 

IBVInt(⋃ (𝐵𝑖
𝑐𝑁

𝑖=1 )) ⊆ IBVInt(⋂ (𝐶𝑖
∞
𝑖=1 )) this implies that 

(IBVCl(⋂ 𝐵𝑖
𝑁
𝑖=1 ))c ⊆ ⋂ (𝐶𝑖

∞
𝑖=1 ). Since IBVCl(⋂ 𝐵𝑖

𝑁
𝑖=1 ) ≠ 0~”, 

IBVInt(⋃ (𝐶𝑖
∞
𝑖=1 )) ≠ 0~”, where 𝐶𝑖’s (i=1,2,…∞) are inter-

val bip.vag 𝜎-nowhere dense set (Y, IB𝑉𝜏∗). Hence (Y, IB𝑉𝜏∗) 

is not an inter-val bip.vag 𝜎-Baire space.    
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V. CONCLUSION 

 

In this paper we developed the concepts of inter-val 

bip.vag Volterra spaces and inter-val bip.vag weakly Volterra 

spaces and discussed some of their newly introduced 

definitions and propositions with suitable illustrations.  
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