Interval-valued Bipolar Vague Volterra Spaces

F. Prishka¹; Dr. L. Mariapresenti²

¹Research Scholar, Department of Mathematics, Nirmala College for Women, Redfield's, Coimbatore, Tamil Nadu, India.
²Assistant Professor, Department of Mathematics, Nirmala College for Women, Redfield's, Coimbatore, Tamil Nadu, India.

Publication Date: 2025/06/24

Abstract: A novel idea of an inter-val bip.vag Volterra spaces and an inter-val bip.vag weakly Volterra spaces are presented and their properties are carefully considered and examined. Some of the interesting propositions based on the newly introduced set are obtainable.

Keywords: Inter-Val Bip. Vag Sets, Inter-Val Bip. Vag Topology, Inter-Val Bip. Vag Volterra Spaces and an Inter-Val Bip. Vag Weakly Volterra Spaces.

How to Cite: F. Prishka; Dr. L. Mariapresenti; (2025) Interval-valued Bipolar Vague Volterra Spaces. *International Journal of Innovative Science and Research Technology*, 10(6), 1681-1689. https://doi.org/10.38124/ijisrt/25jun1073

I. INTRODUCTION

Uncertain set was Presented by L.A.Zadeh [10] in 1965. The idea of fuzzy topology was announced by C.L.Chang [3] in 1968. The generalized cld.sets in general topology remained initialy by N.Levine [9] in 1970. K.Atanassov [2] in 1986 presented the perception of intuitionistic fuzzy sets. The notion of vague set theory was introduced by W.L.Gau and D.J.Buehrer [7] in 1993. D.Coker [6] in 1997 announced intuitionistic fuzzy topo.sps. Bipolar- valued fuzzy sets, which was presented by K.M.Lee [8] in 2000 is an leeway of fuzzy sets whose membership degree range is distended from the interval [0, 1] to [-1,1]. A innovative class of generalized bip.vag sets was announced by S.Cicily Flora and I.Arockiarani [4] in 2016. The persistence of this paper is to present and study the thought of inter-val bip.vag Volterra spaces and an inter-val bip.vag weakly Volterra spaces.

II. PRELIMINARIES

At this time in this paper the bip.vag topo.sps are meant by (Y, $BV_{\tau*}$). The bipolar vague and interval-valued meant by bip.vag and inter-val correspondingly. Also, the bip.vag interior, bip.vag closure of a bip.vag set B are represented by BVInt(B) and BVCl(B). The complement of a bip.vag set B is denoted by B^c and the empty set and whole sets are symbolized by $0_{\sim "}$ and $1_{\sim "}$ separately.

> Definition 2.1:

[8] Let Y be the universe. Then a bipolar valued fuzzy sets, B on Y is demarcated by positive membership function μ_B^+ , that is μ_B^+ : Y \rightarrow [0,1], and a negative membership function μ_B^- , that is μ_B^- : Y \rightarrow [-1,0]. For the own good of simplicity, we shall use the representation.

$$\mathbf{B} = \{ \langle y, \mu_B^+(y), \mu_B^-(y) \rangle \colon y \in Y \}$$

 \blacktriangleright Definition 2.2:

[8] Let B and C be two bipolar valued fuzzy sets then their union, intersection and complement are clear as follows:

- $\mu_{B\cup C}^+ = \max \{\mu_B^+(y), \mu_C^+(y)\}$
- $\mu_{B\cup C}^- = \min \{\mu_B^-(y), \mu_C^-(y)\}$
- $\mu_{B\cap C}^+ = \min \{\mu_B^+(y), \mu_C^+(y)\}$
- $\mu_{B\cap C}^{-} = \max \{\mu_B^{-}(y), \mu_C^{-}(y)\}$
- $\mu_{B^c}^+(y) = 1 \mu_B^+(y)$ and $\mu_{B^c}^-(y) = -1 \mu_B^-(y)$ for all $y \in Y$.

\blacktriangleright Definition 2.3:

[7] A vague set B in the universe of discourse W is a pair of (t_B, f_B)

where

$$t_B: W \rightarrow [0,1], f_A:$$

W→[0,1] are the mapping such that $t_B + f_B \le 1$ for all $w \in W$. The function t_B and f_B are called true membership function and false membership function respectively. The interval $[t_B, 1 - f_B]$ is called the vague value of w in B, and denoted by $v_B(w)$, that is.

$$v_B(w) = [t_B(w), 1 - f(w)].$$

 \succ Definition 2.4:

[7] Let B be a non-empty set and the vague set B and C in the form $B = \{\langle y, t_B(y), 1 - f_B(y) \rangle : y \in Y \}, C = \{\langle y, t_C(y), 1 - f_C(y) \rangle : y \in Y \}$. Then

- $B \subseteq C$ if and only if $t_B(y) \leq t_C(y)$ and $1 f_B(y) \leq 1 f_C(y)$
- $B \cup C = \{ (\max(t_B(y), t_C(y)), \max(1 f_B(y), 1 f_C(y))) / y \in Y \}.$
- $B \cap C = \{ (\min(t_B(y), t_C(y)), \min(1 f_B(y), 1 f_C(y))) / y \in Y \}.$
- $B^c = \{ \langle y, f_B(y), 1 t_B(y) \rangle : y \in Y \}.$

> Definition 2.5:

[1] Let Y be the universe of discourse. A bipolar-valued vague set B in Y is an object having the form B = $\{\langle y, [t_B^+(y), 1 - f_B^+(y)], [-1 - f_B^-(y), t_B^-(y)]\rangle : y \in Y\}$ where $[t_B^+, 1 - f_B^+] : Y \rightarrow [0,1]$ and $[-1 - f_B^-, t_B^-] : Y \rightarrow [-1,0]$ are the mapping such that $t_B^+(y) + f_B^+(y) \leq 1$ and $-1 \leq t_B^- + f_B^-$. The positive membership degree $[t_B^+(y), 1 - f_B^+(y)]$ denotes the satisfaction region of an element x to the property corresponding to a bipolar-valued set B and the negative membership degree $[-1 - f_B^-(y), t_B^-(y)]$ denotes the satisfaction region of x to some implicit counter property of A. For a sake of simplicity, we shall use the notion of bip.vag set $v_B^+ = [t_B^+, 1 - f_B^+]$ and $v_B^- = [-1 - f_B^-, t_B^-]$.

> Definition 2.6:

[5] A bip.vag set $B = [v_B^+, v_B^-]$ of a set W with $v_B^+ = 0$ implies that $t_B^+ = 0$, $1 - f_B^+ = 0$ and $v_B^- = 0$ implies that $t_B^- = 0$, $-1 - f_B^- = 0$ for all $x \in U$ is called zero bip.vag set and it is denoted by 0.

> Definition 2.7:

[5] A bip.vag set $B = [v_B^+, v_B^-]$ of a set W with $v_B^+ = 1$ implies that $t_B^+ = 1$, $1 - f_B^+ = 1$ and $v_B^- = -1$ implies that $t_B^- = -1$, $-1 - f_B^- = -1$ for all $y \in W$ is called unit bip.vag set and it is denoted by 1.

\blacktriangleright Definition 2.8:

[4] Let $B = \langle y, [t_B^+, 1 - f_B^+], [-1 - f_B^-, t_B^-] \rangle$ and $C = \langle x, [t_C^+, 1 - f_C^+], [-1 - f_C^-, t_C^-] \rangle$ be two bip.vag sets then their union, intersection and complement are defined as follows:

- B U C = { $\langle y, [t_{B\cup C}^+(y), 1 f_{B\cup C}^+(y)], [-1 f_{B\cup C}^-(y), t_{B\cup C}^-(y)] \rangle / y \in Y$ } where $t_{B\cup C}^+(y) = \max \{t_B^+(y), t_C^+(y)\}, t_{B\cup C}^-(y) = \min \{t_B^-(y), t_C^-(y)\} \text{ and } 1 f_{B\cup C}^+(y) = \max \{1 f_B^+(y), 1 f_C^+(y)\} 1 f_{B\cup C}^-(y) = \min \{-1 f_B^-(y), -1 f_C^-(y)\}.$
- B \cap C = { $\langle y, [t_{B\cap C}^+(y), 1 f_{B\cap C}^+(y)], [-1 f_{B\cap C}^-(y), t_{B\cap C}^-(y)] \rangle / y \in Y$ } where $t_{B\cap C}^+(y) = \min \{t_B^+(y), t_C^+(y)\}, t_{B\cap C}^-(y) = \max \{t_B^-(y), t_C^-(y)\}$ and $1 f_{B\cap C}^+(y) = \min \{1 f_B^+(y), 1 f_C^+(y)\}, -1 f_{B\cup C}^-(y) = \max \{-1 f_B^-(y), -1 f_C^-(y)\}.$ • B^c = { $\langle y, [f_B^+(y), 1 - t_B^+(y)], [-1 - t_B^-(y), f_B^-(y)] \rangle /$
- B^c = { $\langle y, [f_B^+(y), 1 t_B^+(y)], [-1 t_B^-(y), f_B^-(y)] \rangle / y \in Y$ }.

> Definition 2.9:

[4] Let B and C be two bip.vag sets defined over a universe of discourse Y. We say that $B \subseteq C$ if and only if $t_B^+(y) \leq t_C^+(y), \ 1 - f_B^+(y) \leq 1 - f_C^+(y)$ and $t_B^-(y) \geq t_C^-(y), \ -1 - f_B^-(y) \geq 1 - f_C^-(y)$ for all $y \in Y$.

\blacktriangleright Definition 2.10:

[4] A bip.vag topology (BVT) on a non-empty set Y is a family $BV_{\tau*}$ of bip.vag set in Y satisfying the following axioms:

https://doi.org/10.38124/ijisrt/25jun1073

- $0_{\sim "}, 1_{\sim "} \in BV_{\tau*}$
- $T_1 \cap T_2 \in \mathrm{B}V_{\tau*}$, for any $T_1, T_2 \in \mathrm{B}V_{\tau*}$
- $\bigcup T_i \in BV_{\tau*}$, for any arbitrary family $\{T: T_i \in BV_{\tau*}, i \in I\}$.

In this case the pair (Y, $BV_{\tau*}$) is called a bip.vag topological space and any bip.vag set (BVS) in $BV_{\tau*}$ is known as bip.vag open set in Y. The complement B^c of a bip.vag open set (BVOS) B in a bip.vag topological space (X, $BV_{\tau*}$) is called a bip.vag closed set (BVCS) in Y.

> Definition 2.11:

[4] Let $(Y, BV_{\tau*})$ be a bip.vag topological space $B = \langle y, [t_B^+, 1 - f_B^+], [-1 - f_B^-, t_B^-] \rangle$ be a bip.vag set in Y. Then the bip.vag interior and bip.vag closure of B are defined by, BVInt(B) = \cup {T: T is a bip.vag open set in Y and T \subseteq B}, BVCl(B) = \cap {J: J is a bip.vag closed set in Y and B \subseteq J}. Note that BVCl(B) is a bip.vag closed set and BVInt(B) is a bip.vag open set in X. Further,

- B is a bip.vag closed set in Y if and only if BVCl(B) = B,
- B is a bip.vag open set in Y if and only if BVInt(B) = B.

> Definition 2.12:

[4] Let $(Y, BV_{\tau*})$ be a bip.vag topological space. A bip.vag set B in $(Y, BV_{\tau*})$ is said to be a generalized bip.vag closed set if BVCl(B) \subseteq T whenever B \subseteq T and T is bip.vag open. The complement of a generalized bip.vag closed set is generalized bip.vag open set.

> Definition 2.13:

[4] Let $(Y, BV_{\tau*})$ be a bip.vag topological space and B be a bip.vag set in Y. Then the generalized bip.vag closure and generalized bip.vag interior of B are defined by, $GBVCl(B) = \cap \{T: T \text{ is a generalized bip.vag closed set in Y} and B \subseteq T \}$, $GBInt(B) = \cup \{T: T \text{ is a generalized bip.vag open set in Y and AB } \supseteq T \}$.

III. INTER-VAL BIP. VAG VOLTERRA SPACES

\blacktriangleright Definition 3.1:

An inter-val bip.vag sets $\widehat{B^{BV}}$ over a universe of discourse Y is defined as an object of the form $\widehat{B^{BV}} = \{\langle y_i, \left[\left[t_{B^{BV}}^+(x_i), 1 - f_{B^{BV}}^+(y_i)\right], \left[-1 - f_{B^{BV}}^-(y_i), t_{B^{BV}}^-(y_i)\right]\right] \rangle : y_i \in Y\}$ where $\left[t_{B^{BV}}^+, 1 - f_{B^{BV}}^+\right] : Y \rightarrow D[0,1]$ and $\left[-1 - f_{B^{BV}}^-, t_{B^{BV}}^-\right] : Y \rightarrow D[-1,0]$ are the mapping such that $t_{B^{BV}}^+ + f_{B^{BV}}^+ \leq 1$ and $-1 \leq t_{B^{BV}}^- + f_{B^{BV}}^-$. The positive membership degree $\left[t_{B^{BV}}^+(y_i), 1 - f_{B^{BV}}^+(y_i)\right]$ denotes the satisfaction region of an element y_i to the property corresponding to an inter-val bipolar-valued set $\widehat{B^{BV}}$ and the negative membership degree $\left[-1 - f_{B^{BV}}^-(y_i), t_{B^{BV}}^-(y_i)\right]$ denotes the satisfaction region of y_i to

some implicit counter property of $\widehat{B^{BV}}$. For a sake of simplicity, we shall use the notion of inter-val bip.vag set $v_{\overline{B^{BV}}}^+ = \left[t_{\overline{B^{BV}}}^+, 1 - f_{\overline{B^{BV}}}^+\right]$ and $v_{\overline{B^{BV}}}^- = \left[-1 - f_{\overline{B^{BV}}}^-, t_{\overline{B^{BV}}}^-\right]$.

> Definition 3.2:

An inter-val bip.vag topology (IBVT) on Y is a family $IBV_{\tau*}$ of interval- valued bip.vag sets (IBVS) in Y satisfying the following axioms:

- $0_{\sim "}, 1_{\sim "} \in IBV_{\tau*}$
- $T_1 \cap T_2$ for any $T_1, T_2 \in IBV_{\tau*}$
- $\cup T_i \in IBV_{\tau*}$, for any family $\{T_i / i \in J\} \subseteq IBV_{\tau*}$

In this case the pair (Y, $IBV_{\tau*}$) is called an inter-val bip.vag topological space (IBVTS) and any inter-val bip.vag set (IBVS) in $IBV_{\tau*}$ is known as an inter-val bip.vag open set (IBVOS) in Y. The complement of an inter-val bip.vag open set A^c in an inter-val bip.vag topological space (Y, $IBV_{\tau*}$) is called an inter-val bip.vag closed set (IBVCS) in Y.

➤ Definition 3.3:

Let Y = {a, b}, B = $\langle y, [[0.3, 0.4][0.5, 0.6], [-0.5, -0.6] [-0.3, -0.4]], [[0.4, 0.5][0.7, 0.8], [-0.7, -0.8][-0.4, -0.5]] \rangle$ and C = $\langle y, [[0.4, 0.5][0.6, 0.7], [-0.6, -0.7][-0.4, -0.5]], [[0.5, 0.6][0.7, 0.8], [-0.7, -0.8][-0.5, -0.6]] \rangle$. Then the family $\tau * = \{0_{\sim}^{n}, A, B, 1_{\sim}^{n}\}$ of an inter-val bip.vag sets in Y is an interval bip.vag topology on Y.

 \blacktriangleright Definition 3.4:

Let B = $\langle y, [[t_B^{+L}(y), t_B^{+U}(y)][1 - f_B^{+L}(y), 1 - f_B^{+U}(y)], [-1 - f_B^{-L}(y), -1 - f_B^{-U}(y)][t_B^{-L}(y), t_B^{-U}(y)]] \rangle$ and B = $\langle y, [[t_c^{-L}(y), t_c^{+U}(y)][1 - f_c^{-L}(y), 1 - f_c^{-U}(y)], [-1 - f_c^{-L}(y), -1 - f_c^{-U}(y)][t_c^{-L}(y), t_c^{-U}(y)]] \rangle$ be two inter-val bip.vag sets then their union, intersection and complement are defined as follows:

- BU C = { $\langle y, [[t_{BUC}^{+U}(y), t_{BUC}^{+U}(y)][1 f_{BUC}^{+L}(y), 1 f_{BUC}^{+U}(y)], [-1 f_{BUC}^{-L}(y), [-1 f_{BUC}^{-U}(y)][t_{BUC}^{-L}(y), t_{BUC}^{-U}(y)]] \rangle / y \in Y$ } where $t_{BUC}^{+L}(y) = \max \{t_{BUC}^{+L}(y), t_{BUC}^{+L}(y)\}, t_{BUC}^{+U}(y) = \max \{t_{BUC}^{+L}(y), t_{C}^{+U}(y)\}, t_{BUC}^{-L}(y) = \max \{t_{BUC}^{+L}(y), t_{C}^{-U}(y)\}, t_{BUC}^{-U}(y)\} = \max \{t_{BUC}^{+L}(y), t_{C}^{-U}(y)\}, t_{BUC}^{-U}(y)\} = \max \{1 f_{BUC}^{+L}(y), 1 f_{C}^{+L}(y)\}, 1 f_{BUC}^{+U}(y) = \max \{1 f_{B}^{+U}(y), 1 f_{C}^{-U}(y)\}, -1 f_{BUC}^{-U}(y) = \min \{-1 f_{B}^{-L}(y), -1 f_{C}^{-U}(y)\}$ and $-1 f_{BUC}^{-U}(y) = \min \{-1 f_{B}^{-U}(y), -1 f_{C}^{-U}(y)\}$. • B $\cap C = \{\langle v, [[t_{PC}^{+L}(v), t_{PC}^{+U}(v)][1 - f_{POC}^{+L}(y), 1 - f_{DOC}^{-U}(y)] = 0$
- B $\cap C = \{ \langle y, [[t_{B\cap C}^{+L}(y), t_{B\cap C}^{+U}(y)] [1 f_{B\cap C}^{+L}(y), 1 f_{B\cap C}^{+U}(y)], [-1 f_{B\cap C}^{-L}(y), -1 f_{B\cap C}^{-U}(y)] [t_{B\cap C}^{-L}(y), t_{B\cap C}^{-U}(y)]] \rangle / y \in Y \}$ where $t_{B\cap C}^{+L}(y) = \min \{t_{B\cap C}^{+U}(y), t_{C}^{-U}(y)\}, t_{B\cap C}^{+U}(y) = \min \{t_{B\cap C}^{+U}(y), t_{C}^{-U}(y)\}, t_{B\cap C}^{+U}(y) = \min \{t_{B\cap C}^{+U}(y), t_{C}^{-U}(y)\}$ and $t_{B\cap C}^{-U}(y) = \max \{t_{B\cap C}^{-L}(y) = \max \{t_{B\cap C}^{-L}(y) = \min \{1 f_{B\cap C}^{+L}(y), 1 f_{C}^{+L}(y)\}, 1 f_{B\cap C}^{+U}(y) = \min \{1 f_{B}^{+U}(y), 1 f_{C}^{-U}(y)\}, -1 f_{B\cup C}^{-L}(y) = \max \{-1 f_{B}^{-U}(y), -1 f_{C}^{-U}(y)\}$ and $-1 f_{B\cup C}^{-U}(y) = \max \{-1 f_{B}^{-U}(y), -1 f_{C}^{-U}(y)\}.$ • B^c = $\{ [\langle y, [[f_{B}^{+L}(y), f_{B}^{+U}(y)] [1 - t_{B}^{+L}(y), 1 - f_{D}^{-U}(y)] \}$
- $B^{c} = \{ [\langle y, [[f_{B}^{+L}(y), f_{B}^{+U}(y)][1 t_{B}^{+L}(y), 1 t_{B}^{+U}(y)][-1 t_{B}^{-L}(y), -1 t_{B}^{-U}(y)][f_{B}^{-L}(y), f_{B}^{-U}(y)]] \rangle] / y \in Y \}].$

▶ Proposition 3.5:

Let $(Y, BV_{\tau*})$ be an inter-val bip.vag topological space and let B, C belongs to an inter-val bip.vag set in Y. Then the following properties hold:

https://doi.org/10.38124/ijisrt/25jun1073

- $0_{\sim "} \subseteq B \subseteq 1_{\sim "}$
- B \cup C = C \cup B; B \cap C = C \cap B
- B, C \subset B \cup C; B \cap C \subset B, C
- $B \cap (\bigcup_i C_i) = \bigcup_i (B \cap C_i)$ and $B \cup (\bigcap_i C_i) = \bigcap_i (B \cup C_i)$
- $0_{\sim "}^{c} = 1_{\sim "}; 1_{\sim "}^{c} = 0_{\sim "}$
- $(B^c)^c = B$
- $(\bigcup_i B_i)^c = \bigcap_i B_i^c$ and $(\bigcap_i B_i)^c = \bigcup_i B_i^c$
- ✓ Proof: Obvious
- *▶ Definition 3.6:*

Let (Y, IBV_{τ^*}) be an inter-val bip.vag topological space and B = $\langle y, [[t_B^{+L}(y), t_B^{+U}(y)][1 - f_B^{+L}(y), 1 - f_B^{+U}(y)], [-1 - f_B^{-L}(y), -1 - f_B^{-U}(y)][t_B^{-L}(y), t_B^{-U}(y)]] \rangle$ be an interval--valued bip.vag set in Y. Then the inter-val bip.vag interior and an inter-val bip.vag closure defined by, IBVInt(B) = \cup {T: T is an inter-val bip.vag open set in Y and T \subseteq B}, IBVCl(B) = \cap {J: J is an inter-val bip.vag closed set in Y and A \subseteq K}.

Note that for any inter-val bip.vag set B in (Y, IBV_{r*}) , we have $IBVCl(B^c) = (IBVInt(B))^c$ and $IBVInt(B^c) = (IBVCl(B))^c$ and IBVCl(B) is an inter-val bip.vag closed set and IBVInt(B) is an inter-val bip.vag open set in Y. Further we have, if B is an inter-val bip.vag closed set in Y, then IBVCl(B) = B and if B is an inter-val bip.vag open set in Y, then IBVInt(B) = B.

▶ Example 3.7:

Let $Y = \{b,c\}$ and $\tau * = \{0_{\sim}", B, C, 1_{\sim}"\}$ be an inter-val vague topology on Y, where $B = \langle y, [[0.2, 0.3][0.4, 0.5], [-0.4, -0.5]][-0.2, -0.3]], [[0.3, 0.5][0.6, 0.7], [-0.6, -0.7][-0.3, -0.5]] \rangle$, C = $\langle y, [[0.3, 0.4][0.5, 0.6], [-0.5, -0.6][-0.3, -0.4]], [[0.4, 0.5][0.7, 0.8], [-0.7, -0.8][-0.4, -0.5]] \rangle$. Here the op.sets are $0_{\sim}"$, B, C and $1_{\sim}"$. If $R = \langle y, [[0.2, 0.5] [0.6, 0.8], [-0.6, -0.8][-0.2, -0.5]], [[0.3, 0.4] [0.5, 0.3], [-0.5, -0.3][-0.3, -0.4]] \rangle$ is an inter-val bip.vag set then, IBVCl(Q) = $\cap \{J: J \text{ is an inter-val bip.vag closed set in Y and Q \subseteq J\} = 1_{\sim}" IBVInt(Q) = \cup \{E: E \text{ is an inter-val bip.vag open set in Y and Q \supseteq E\} = 0_{\sim}".$

> Proposition 3.8:

Let $(Y, IBV_{\tau*})$ be an inter-val bip.vag set and let B, C belongs to an inter-val bip.vag set in Y. Then the following properties hold:

- $BVInt(B) \subset B$
- $B \subset C$ implies $BVInt(B) \subset BVInt(C)$
- B is a bip.vag open set if and only if BVInt(B) = B
- BVInt(BVInt(B)) = BVInt(B)
- $\operatorname{BVInt}(0_{\sim "}) = 0_{\sim "}, \operatorname{BVInt}(1_{\sim "}) = 1_{\sim "}$
- $BVInt(B \cap C) = BVInt(B) \cap BVInt(C)$

✓ Proof: The proof is obvious

> Proposition 3.9:

Let $(Y, IBV_{\tau*})$ be an inter-val bip.vag set and let B, C belongs to an inter-val bip.vag set in Y. Then the following properties hold:

- $B \subset BVCl(B)$
- $B \subset C$ implies $BVCl(B) \subset BVCl(C)$
- B is a bip.vag closed set if and only if BVCl(B) = B
- BVCl(BVCl(B)) = BVCl(B)
- $\operatorname{BVCl}(0_{\sim "}) = 0_{\sim "}, \operatorname{BVCl}(1_{\sim "}) = 1_{\sim "}$
- $BVCl(B \cup C) = BVCl(B) \cup BVCl(C)$

✓ Proof: The proof is obvious.

 \blacktriangleright Definition 3.10:

An inter-val bip.vag set B in an inter-val bip.vag topological space $(Y, IBV_{\tau*})$ is called an inter-val bip.vag dense if there exists no inter-val bip.vag closed set C in $(Y, IBV_{\tau*})$ such that $B \subset C \subset 1_{\sim "}$.

> Definition 3.11:

An inter-val bip.vag set B in an inter-val bip.vag topological space $(Y, IBV_{\tau*})$ is called an inter-val bip.vag nowhere dense set if there exists no inter-val bip.vag open set C in $(Y, IBV_{\tau*})$ such that $C \subset IBVCl(B)$. That is IBVInt $(IBVCl(B)) = 0_{\sim^n}$.

> Proposition 3.12:

If B is an inter-val bip.vag dense and inter-val bip.vag open set in an inter-val bip.vag topological space $(Y, IBV_{\tau*})$, then B^c is an interval- valued bip.vag nowhere dense set in $(Y, IBV_{\tau*})$.

• Proof:

Let B be an inter-val bip.vag dense and inter-val bip.vag open set in $(Y, IBV_{\tau*})$. Then we have $IBVCl(B) = 1_{-,"}$ and IBVInt(B) = B. Now we have to show that $IBVInt(IBVCl(B^c)) = 0_{-,"}$. Let $IBVCl(B^c) = (IBVInt(B))^c = B^c$ which implies that $IBVInt(IBVCl(B^c)) = IBVInt(B^c) = (IBVCl(B))^c = 1_{-,"}^c = 0_{-,"}$. That is, $IBVInt(IBVCl(B^c)) = 0_{-,"}$. Hence B^c is an inter-val bip.vag nowhere dense set in $(Y, IBV_{\tau*})$.

> Proposition 3.13:

Let B be an inter-val bip.vag set. If B is an inter-val bip.vag closed set in $(Y, IBV_{\tau*})$ with $IBVInt(B) = 0_{\sim}$, then B is an inter-val bip.vag nowhere dense set in $(Y, IBV_{\tau*})$.

• Proof:

Let B be an inter-val bip.vag closed set in $(Y, IBV_{\tau*})$. Then IBVCl(B) = B. Now IBVInt(IBVCl(B)) = IBVInt(B) = 0_{\sim^n} and hence B is an inter-val bip.vag nowhere dense set in $(Y, IBV_{\tau*})$.

> Proposition 3.14:

Let B be an inter-val bip.vag closed set in $(Y, IBV_{\tau*})$, then B is an inter-val bip.vag nowhere dense set in $(Y, IBV_{\tau*})$ if and only if $IBVInt(B) = 0_{\sim "}$.

Proof:

Let B be an inter-val bip.vag closed set in $(Y, IBV_{\tau*})$, with IBVInt(B) = 0_{\sim} ". Then by Proposition 3.13, B is an inter-val bip.vag nowhere dense set in $(Y, IBV_{\tau*})$. Conversely, let B be an inter-val bip.vag nowhere dense set in $(Y, IBV_{\tau*})$. Then IBVInt(IBVCl(B)) = 0_{\sim} ", which implies that IBVInt(B) = 0_{\sim} ". Since B is an inter-val bip.vag closed, IBVCl(B) = B.

https://doi.org/10.38124/ijisrt/25jun1073

> Proposition 3.15:

If B is an inter-val bip.vag nowhere dense set in an inter-val bip.vag topological space $(Y, IBV_{\tau*})$, then IBVCl(B) is also an inter-val bip.vag nowhere dense set in $(Y, IBV_{\tau*})$.

• Proof:

Let B be an inter-val bip.vag nowhere dense set in $(Y, IBV_{\tau*})$. Then, IBVInt(IBVCl(B)) = 0_{\sim^n} . Now IBVCl(IBVCl(B)) = IBVCl(B). Hence IBVInt(IBVCl(IBVCl(B))) = IBVInt(IBVCl(B)) = 0_{\sim^n} . Therefore IBVCl(B) is also an inter-val bip.vag nowhere dense set in $(Y, IBV_{\tau*})$.

> Definition 3.16:

An inter-val bip.vag topological space $(Y, IBV_{\tau*})$ is called an interval- valued bip.vag first category set if $B = \bigcap_{i=1}^{\infty} B_i$, where B_i 's are inter-val bip.vag nowhere dense set in $(Y, IBV_{\tau*})$. Any other inter-val bip.vag set in $(Y, IBV_{\tau*})$ is said to be an inter-val bip.vag second category.

> Definition 3.17:

An inter-val bip.vag set B in an inter-val vague topological space $(Y, IBV_{\tau*})$ is called an inter-val bip.vag H_{δ} -sets in $(Y, IBV_{\tau*})$ if $B = \bigcup_{i=1}^{\infty} B_i$ where $B_i \in IBV_{\tau*}$ for $i \in I$.

> Definition 3.18:

An inter-val bip.vag set B in an inter-val bip.vag topological space (Y, IBV_{τ^*}) is called an inter-val bip.vag J_{σ} -sets in (Y, IBV_{τ^*}) if $B = \bigcup_{i=1}^{\infty} B_i$ where $B_i^c \in IBV_{\tau^*}$ for $i \in I$.

> Definition 3.19:

An inter-val bip.vag topological space $(Y, IBV_{\tau*})$ is called an inter-val bip.vag Volterra space if $IBVCl(\bigcap_{i=1}^{N} B_i)$ = 1_{\sim} , where B_i 's are inter-val bip.vag dense and inter-val bip.vag H_{δ} -sets in $(Y, IBV_{\tau*})$.

▶ Example 3.20:

Let Y = {b, c}. Define an inter-val bip.vag sets B, C, D and E as follows, B = $\langle y, [[0.4, 0.6][0.8, 0.9], [-0.8, -0.9][-0.4, -0.6]], [[0.2, 0.3][0.6, 0.7], [-0.6, -0.7][-0.2, -0.3]] \rangle$, C = $\langle y, [[0.4, 0.5][0.7, 0.8], [-0.7, -0.8][-0.4, -0.5]], [[0.3, 0.4][0.6, 0.8], [-0.6, -0.8][-0.3, -0.4]] \rangle$, D = $\langle y, [[0.4, 0.5][0.7, 0.8], [-0.7, -0.8][-0.4, -0.5]], [[0.2, 0.3][0.6, 0.7], [-0.6, -0.7][-0.2, -0.3]] \rangle$ and E = $\langle y, [[0.4, 0.6][0.8, 0.9], [-0.8, -0.9][-0.4, -0.6]], [[0.3, 0.4][0.6, 0.8], [-0.6, -0.8][-0.3, -0.4]] \rangle$. Clearly $\tau * = \{0_{\sim}^{n}, B, C, D, E, 1_{\sim}^{n}\}$ is an inter-val bip.vag topology on Y, thus (Y, IBV₇) is an inter-val bip.vag topology on Y, thus (Y, IBV₇) is an inter-val bip.vag topological space. Let F = {B∩ C ∩ D }, G = {B∩ C ∩ E} and H = {B∩ C ∩ D ∩ E} where F, G and H are inter-val bip.vag H_{\delta}-sets in (Y, IBV₇). Also, we have IBVCl(F) = 1_{\sim}^{n} , IBVCl(G) = 1_{\sim}^{n} and IBVCl(H) = 1_{\sim}^{n} .

Also, we have IBVCl(F \cap G \cap H) = 1_{~"}. Therefore, (Y, IBV_{7*}) is an inter-val bip.vag Volterra space.

> Proposition 3.21:

An inter-val bip.vag topological space $(Y, IBV_{\tau*})$ is an inter-val bip.vag Volterra space, if and only if $IBVInt(\bigcup_{i=1}^{N} B_i^c) = 0_{\sim "}$, where B_i 's are inter-val bip.vag dense and an inter-val bip.vag H_{δ} -sets in $(Y, IBV_{\tau*})$.

• Proof:

Let $(Y, IBV_{\tau*})$ be an inter-val bip.vag Volterra space and B_i 's are inter-val bip.vag dense and inter-val bip.vag H_{δ} -sets in $(X, IBV_{\tau*})$. Then we have $IBVCl(\bigcap_{i=1}^{N} B_i^c) = 1_{\sim^n}$. Now $IBVInt(\bigcup_{i=1}^{N} B_i^c) = (IBVCl(\bigcap_{i=1}^{N} B_i))^c = 0_{\sim^n}$. Conversely, let $IBVInt(\bigcup_{i=1}^{N} B_i^c) = 0_{\sim^n}$, where B_i 's are inter-val bip.vag dense and inter-val bip.vag J_{δ} -sets in $(Y, IBV_{\tau*})$. Then $(IBVInt(\bigcap_{i=1}^{N} B_i)^c) = 0_{\sim^n}$ implies $IBVCl(\bigcap_{i=1}^{N} B_i) = 1_{\sim^n}$. Hence $(Y, IBV_{\tau*})$ is an inter-val bip.vag Volterra space.

> Proposition 3.22:

Let $(Y, IBV_{\tau*})$ be an inter-val bip.vag topological space. If $IBVInt(\bigcup_{i=1}^{N} B_i) = 0_{\sim}$, where B_i 's are inter-val bip.vag nowhere dense and an inter-val bip.vag J_{σ} -sets in $(Y, IBV_{\tau*})$, then $(Y, IBV_{\tau*})$ is an inter-val bip.vag Volterra space.

• Proof:

Let IBVInt $(\bigcup_{i=1}^{N} B_i) = 0_{\sim r}$, this implies that $(\text{IBVInt}(\bigcup_{i=1}^{N} B_i))^c = 1_{\sim r}$. That is $\text{IBVCl}(\bigcap_{i=1}^{N} B_i) = 1_{\sim r}$ where B_i 's are inter-val bip.vag nowhere dense and an inter-val bip.vag J_{σ} -sets implies that B_i^c 's are inter-val bip.vag dense and an inter-val bip.vag H_{δ} -sets in $(Y, \text{IB}V_{\tau*})$ and also $\text{IBVCl}(\bigcap_{i=1}^{N} B_i^c) = 1_{\sim r}$. Then $(Y, \text{IB}V_{\tau*})$ is an inter-val bip.vag Volterra space.

> Definition 3.23:

Let B be a bip.vag first category set in an inter-val bip.vag topological space $(Y, IBV_{\tau*})$. Then B^c is called an inter-val bip.vag residual sets in $(Y, IBV_{\tau*})$.

> Definition 3.24:

An inter-val bip.vag topological space $(Y, IBV_{\tau*})$ is called an inter-val bip.vag ε_r - Volterra space if $IBVCl(\bigcap_{i=1}^N B_i) = 1_{\sim}$, where B_i 's are inter-val bip.vag dense and an inter-val bip.vag residual sets in $(Y, IBV_{\tau*})$.

> Proposition 3.25:

Let $(Y, IBV_{\tau*})$ be an inter-val bip.vag ϵ_r - Volterra space, then IBVInt $(\bigcup_{i=1}^N B_i) = 0_{\sim n}$, where B_i 's are inter-val bip.vag first category sets such that IBVInt $(B_i) = 0_{\sim n}$ in $(Y, IBV_{\tau*})$.

• Proof:

Let B_i 's (i = 1 to N) be an inter-val bip.vag first category sets such that IBVInt(B_i) = 0_{\sim^n} in (Y, IB $V_{\tau*}$). Then B_i^c is an inter-val bip.vag residual sets such that IBVCl(B_i^c) = 1_{\sim^n} in (Y, IB $V_{\tau*}$). That is B_i^c is an inter-val bip.vag residual sets and an inter-val bip.vag dense sets in (Y, IB $V_{\tau*}$). Since (Y, IB $V_{\tau*}$) is an inter-val bip.vag ϵ_r - Volterra space, IBVCl($\bigcap_{i=1}^N B_i^c$) = 1_{\sim^n} and hence we have IBVInt($\bigcup_{i=1}^N B_i$) = 0_{\sim^n} where B_i 's are inter-val bip.vag first category sets such that IBVInt(B_i) = 0_{\sim^n} in (Y, IB $V_{\tau*}$).

➤ Proposition 3.26:

If each an inter-val bip.vag nowhere dense set is an inter-val bip.vag closed set in an inter-val bip.vag Volterra space in $(Y, IBV_{\tau*})$, then $(Y, IBV_{\tau*})$ is an inter-val bip.vag ϵ_r -Volterra space.

https://doi.org/10.38124/ijisrt/25jun1073

Proof:

Let B_i 's (i=1 to N) be an inter-val bip.vag nowhere dense set and an inter-val bip.vag residual set in (Y, IB $V_{\tau*}$). Since B_i 's are inter-val bip.vag residual sets, B_i^c 's are interval bip.vag first category set in (Y, IB $V_{\tau*}$). Now $B_i^c = \bigcup_{i=1}^{\infty} C_{ij}$, where C_{ij} 's are an inter-val bip.vag nowhere dense set in (Y, IB $V_{\tau*}$). By hypothesis, an inter-val bip.vag nowhere dense set C_{ij} 's are inter-val bip.vag cld.sets and hence B_i^c 's are inter-val bip.vag J_{σ} -sets in (Y, IB $V_{\tau*}$). This implies that B_i^c 's are inter-val bip.vag H_{δ} -sets in (Y, IB $V_{\tau*}$). Hence B_i^c 's are inter-val bip.vag dense and an inter-val bip.vag Volterra space, IBVCl($\bigcap_{i=1}^N B_i$) = 1_{\sim} ". Hence IBVCl($\bigcap_{i=1}^N B_i$) = 1_{\sim} ", where B_i 's are inter-val bip.vag dense and an inter-val bip.vag residual sets in (Y, IB $V_{\tau*}$) implies that (Y, IB $V_{\tau*}$) is an inter-val bip.vag ϵ_r - Volterra space.

> Definition 3.27:

Let $(Y, IBV_{\tau*})$ be an inter-val bip.vag topological space. Then $(Y, IBV_{\tau*})$ is called an inter-val bip.vag Baire space if $IBVInt(\bigcup_{i=1}^{\infty} B_i) = 0_{\sim}$ where B_i 's are inter-val bip.vag nowhere dense sets in $(Y, IBV_{\tau*})$.

> Proposition 3.28:

Let $(Y, IBV_{\tau*})$ be an inter-val bip.vag topological space. Then the following are equivalent:

- (Y, IB $V_{\tau*}$) is an inter-val bip.vag Baire space.
- IBVInt(B) = 0,", for every inter-val bip.vag first category set B in (Y, IBV_T).
- IBVCl(B) = 1_{~"}, for every inter-val bip.vag residual set B in (Y, IBV_{T*}).

> Proof:

- ⇒ (ii) Let B be an inter-val bipolar first category set in (Y, IBV_{7*}). Then B = U[∞]_{i=1} B_i, where B_i's are inter-val bip.vag nowhere dense sets in (Y, IBV_{7*}). Now IBVInt(B) = IBV(U[∞]_{i=1} B_i) = 0_~", since (Y, IBV_{7*}) is an inter-val bip.vag Baire space. Therefore IBVInt(B) = 0_~".
- ⇒ (iii) Let B be an inter-val bip.vag residual set in (Y, IBV_{τ*}). Then C^c is an inter-val bip.vag first category set in (Y, IBV_{τ*}). By hypothesis IBVInt(C^c) = 0_~" which implies that (IBVCl(B))^c = 0_~". Hence IBVCl(B) = 1_~".
- \Rightarrow (i) Let B be an inter-val bip.vag first category set in (Y, IB $V_{\tau*}$). Then B = $\bigcup_{i=1}^{\infty} B_i$, where B_i 's are inter-val bip.vag nowhere dense sets in (Y, IB $V_{\tau*}$). Now B is an inter-val bip.vag first category set implies that B^c is an inter-val bip.vag residual set in (Y, IB $V_{\tau*}$). By hypothesis, we have IBVCl(B^c) = $1_{\sim "}$ which implies that (IBVInt(B) = $1_{\sim "}$)^c. Hence IBVInt(B) = $0_{\sim "}$. IBVInt($\bigcup_{i=1}^{\infty} B_i$) = $0_{\sim "}$, where B_i 's are inter-val bip.vag nowhere dense sets in (Y, IB $V_{\tau*}$). Hence (Y, IB $V_{\tau*}$) is an inter-val bip.vag Baire space.

> Proposition 3.29:

If $\bigcup_{i=1}^{\infty} B_i$ is the inter-val bip.vag sets, B_i 's are inter-val bip.vag nowhere dense sets in an inter-val bip.vag Baire space in $(Y, IBV_{\tau*})$, then $(Y, IBV_{\tau*})$ is an inter-val bip.vag ϵ_r -Volterra space.

• Proof:

Let B be an inter-val bip.vag Baire space and B_i 's (i = 1 to N) be an inter-val bip.vag dense and inter-val bip.vag residual sets in (Y, IBV_{τ *}). Since B_i 's are inter-val bip.vag residual set, B_i^c 's are inter-val bip.vag first category sets in (Y, IBV_t*). Now $B_i^c = \bigcup_{i=1}^{\infty} C_{ij}$, where C_{ij} 's are inter-val bip.vag nowhere dense sets in (Y, IBV_{τ *}). By hypothesis B_i^c is an inter-val bip.vag nowhere dense sets in $(Y, IBV_{\tau*})$. Let C_{α} 's be an inter-val bip.vag nowhere dense sets in (Y, IB $V_{\tau*}$) in which N inter-val bip.vag nowhere dense sets be B_i^c . Since $(Y, IBV_{\tau*})$ is an inter-val bip.vag Baire space, IBVInt($\bigcup_{i=1}^{\infty} C_{\alpha}$) $= 0_{\sim "}$. But IBVInt $(\bigcup_{i=1}^{N} B_i) \leq$ $IBVInt(\bigcup_{\alpha=1}^{\infty} C_{\alpha}) \text{ and } IBVInt(\bigcup_{\alpha=1}^{\infty} C_{\alpha}) = \bigcup_{\alpha''}^{N} Then$ $IBVInt(\bigcup_{i=1}^{\infty} B_i^c) = \bigcup_{\alpha''}^{N} Therefore IBVCl(\bigcap_{i=1}^{N} B_i) =$ 1_{\sim} where B_i 's (i=1 to N) are inter-val bip.vag dense set and inter-val bip.vag residual set in $(Y, IBV_{\tau*})$. Therefore (Y, IBV_{τ *}) is an inter-val bip.vag ϵ_r - Volterra space.

> Proposition 3.30:

If an inter-val bip.vag ϵ_r - Volterra space is an inter-val bip.vag Baire space, then IBVCl $(\bigcap_{i=1}^N B_i) = 1_{\sim n}$, where B_i 's (i=1to N) are inter-val bip.vag residual sets in (Y, IBV_{r*}) .

• Proof:

Let B_i 's (i=1to N) are inter-val bip.vag residual set in (Y, IB $V_{\tau*}$). Since (Y, IB $V_{\tau*}$) is an inter-val bip.vag Baire space, (By Proposition 3.28) IBVCl(B_i) = $1_{\sim^n} \forall i$. Then B_i 's are inter-val bip.vag dense and an inter-val bip.vag residual sets in (Y, IB $V_{\tau*}$). Since (Y, IB $V_{\tau*}$) in an inter-val bip.vag ϵ_r -Volterra space, IBVCl($\bigcap_{i=1}^{N} B_i$) = 1_{\sim^n} . Therefore, IBVCl($\bigcap_{i=1}^{N} B_i$) = 1_{\sim^n} where B_i 's (i=1 to N) are inter-val bip.vag residual sets in (Y, IB $V_{\tau*}$).

➤ Proposition 3.31:

If $\bigcap_{i=1}^{N} B_i$, where B_i 's (i = 1 to N) are inter-val bip.vag residual sets in an inter-val bip.vag Baire space (Y, IB $V_{\tau*}$), then (Y, IB $V_{\tau*}$) is an inter-val bip.vag ϵ_r - Volterra space.

• Proof:

Let B_i 's (i = 1to N) be an inter-val bip.vag dense and an inter-val bip.vag residual sets in $(Y, IBV_{\tau*})$. Then by hypothesis, $\bigcap_{i=1}^{N} B_i$ is an inter-val bip.vag residual sets in $(Y, IBV_{\tau*})$. Since $(Y, IBV_{\tau*})$ is an inter-val bip.vag Baire space, therefore (By Proposition 3.28) IBVCl $(\bigcap_{i=1}^{N} B_i) = 1_{\sim r}$. Hence IBVCl $(\bigcap_{i=1}^{N} B_i) = 1_{\sim r}$, where A_i 's are inter-val bip.vag dense set and an inter-val bip.vag residual set $(Y, IBV_{\tau*})$. Therefore $(Y, IBV_{\tau*})$ is an inter-val bip.vag ϵ_r -Volterra space.

IV. INTER-VAL BIP. VAG WEAKLY VOLTERRA SPACES

https://doi.org/10.38124/ijisrt/25jun1073

➤ Definition 4.1:

Let $(Y, IBV_{\tau*})$ be an inter-val bip.vag topological space. An inter-val bip.vag set B in $(Y, IBV_{\tau*})$ is called an inter-val bip.vag σ -nowhere dense set if B is an inter-val bip.vag J_{σ} set in $(Y, IBV_{\tau*})$ such that $IBVInt(B) = 0_{\sim r}$.

> Definition 4.2:

Let $(Y, IBV_{\tau*})$ be an inter-val bip.vag topological space. Then $(Y, IBV_{\tau*})$ is called an inter-val bip.vag σ -Baire space if $IBVInt(\bigcup_{i=1}^{\infty} B_i) = 0_{\sim i}$, where B_i 's are inter-val bip.vag σ -nowhere dense sets.

> Proposition 4.3:

In an inter-val bip.vag topological space $(Y, IBV_{\tau*})$. An inter-val bip.vag set B is an inter-val bip.vag σ -nowhere dense set in $(Y, IBV_{\tau*})$ if and only if B^c is an inter-val bip.vag dense and an inter-val bip.vag H_{δ} -set in $(Y, IBV_{\tau*})$.

\succ Proof:

Let B be an inter-val bip.vag σ -nowhere dense set in $(Y, IBV_{\tau*})$. Then $B = \bigcup_{i=1}^{\infty} B_i$ where $B_i^{\ c} \in IBV_{\tau*}$, for $i \in I$ and $IBVInt(B) = 0_{\sim "}$ Then $(IBVInt(B))^c = (0_{\sim "})^c = 1_{\sim "}$ implies that $IBVCl(B^c) = 1_{\sim "}$. Also, $B^c = (\bigcup_{i=1}^{\infty} B_i)^c = \bigcap_{i=1}^{\infty} B_i^{\ c}$ where $B_i^{\ c} \in IBV_{\tau*}$, for $i \in I$. Hence, we have B^c is an inter-val bip.vag dense and an inter-val bip.vag H_{δ} -set in $(Y, IBV_{\tau*})$.

Conversely, let B be an inter-val bip.vag dense and an inter-val H_{δ} -set in $(Y, \operatorname{IB} V_{\tau*})$. Then $B = \bigcap_{i=1}^{\infty} B_i$ where $B_i \in \operatorname{IB} V_{\tau*}$, for $i \in I$. Now $B^c = (\bigcap_{i=1}^{\infty} B_i)^c = \bigcup_{i=1}^{\infty} B_i^c$. Hence B^c is an inter-val bip.vag J_{σ} set in $(Y, \operatorname{IB} V_{\tau*})$ and since B is an inter-val bip.vag dense set we have IBVInt(B^c) = $0_{\sim r}^{\cdot \cdot}$. Therefore, B^c is an inter-val bip.vag σ -nowhere dense set in $(Y, \operatorname{IB} V_{\tau*})$.

> Proposition 4.4:

If B is an inter-val bip.vag dense set in (Y, IBV_{τ^*}) such that $C \subseteq B^c$, where C is an inter-val bip.vag J_{σ} set in (Y, IBV_{τ^*}) , then C is an inter-val bip.vag σ -nowhere dense set in (Y, IBV_{τ^*}) .

> Proof:

Let B be an inter-val bip.vag dense set in $(Y, IBV_{\tau*})$. Now $C \subseteq B^c$ implies that $IBVInt(C) \subseteq IBVInt(B^c) = (IBVCl(B))^c = 0_{\sim "}$ and hence $IBVInt(C) = 0_{\sim "}$. Therefore, C is an inter-val bip.vag σ -nowhere dense set in $(Y, IBV_{\tau*})$.

> Proposition 4.5:

If B is an inter-val bip.vag J_{σ} set and an inter-val bip.vag nowhere dense set in $(Y, IBV_{\tau*})$, then B is an inter-val bip.vag σ -nowhere dense set in $(Y, IBV_{\tau*})$.

\succ Proof:

Now $B \subseteq IBVCl(B)$ for any inter-val bip.vag set in $(Y, IBV_{\tau*})$. Then, $IBVInt(B) \subseteq IBVInt(IBV(Cl(B)))$. Since B is an inter-val bip.vag nowhere dense set in $(Y, IBV_{\tau*})$, $IBVInt(IBVCl(B)) = 0_{\sim r}$ and hence $IBVInt(B) = 0_{\sim r}$ and B

is an inter-val bip.vag J_{σ} set implies that B is an inter-val bip.vag σ -nowhere dense set in (Y, IB $V_{\tau*}$).

> Proposition 4.6:

If B_i 's (i =1 to N) are inter-val bip.vag σ -nowhere dense set in $(Y, IBV_{\tau*})$ and $IBVInt(\bigcup_{i=1}^N B_i) = 0_{\sim "}$, then $(Y, IBV_{\tau*})$ is an inter-val bip.vag Volterra space.

> Proof:

Let B_i 's (i=1 to N) are inter-val bip.vag σ -nowhere dense set in $(Y, IBV_{\tau*})$ then B_i 's are inter-val bip.vag J_{σ} set with IBVInt $(B_i) = 0_{\sim^n}$.Now (IBVInt (B_i))^c = 1_{\sim^n}. Then, we have IBVCl $(B_i^c) = 1_{\sim^n}$. That is, B_i^c 's are inter-val bip.vag dense set in $(Y, IBV_{\tau*})$. Since B_i 's are inter-val bip.vag J_{σ} set, B_i^c are inter-val bip.vag H_{δ} -sets in $(Y, IBV_{\tau*})$. Hence B_i^c are inter-val bip.vag dense and an inter-val bip.vag H_{δ} -sets in $(X, IBV_{\tau*})$. Now IBVCl $(\bigcap_{i=1}^N B_i^c) = (IBVInt(\bigcup_{i=1}^N B_i))^c = 0_{\sim^n}^c = 1_{\sim^n}$. Hence $(Y, IBV_{\tau*})$ is an inter-val bip.vag Volterra space.

> Definition 4.7:

An inter-val bip.vag topological space $(Y, IBV_{\tau*})$ is called an inter-val bip.vag weakly Volterra space if $IBVCl(\bigcap_{i=1}^{N} B_i) \neq 0_{\sim}$, where B_i 's are inter-val bip.vag dense and an inter-val bip.vag H_{δ} -sets in $(Y, IBV_{\tau*})$.

▶ Example 4.8:

Let Y = {b, c}. The inter-val bip.vag sets are defined as follows B = $\langle y, [[0.3, 0.4][0.6,0.8], [-0.6,-0.8][-0.3,-0.4]], [[0.3,0.4][0.6,0.9], [-0.6,-0.9][-0.3,-0.4]] \rangle$, C = $\langle y, [[0.3, 0.5][0.6,0.7], [-0.6,-0.7][-0.3,-0.5]], [[0.2,0.3][0.4, 0.5], [-0.4,-0.5][-0.2,-0.3]] \rangle$, D = $\langle y, [[0.3, 0.4][0.6,0.7], [-0.6,-0.7][-0.3,-0.4]] \rangle$, [[0.1,0.3][0.4, 0.5], [-0.4,-0.5][-0.1,-0.3]] \rangle and E = $\langle y, [[0.3, 0.5][0.6,0.8], [-0.6,-0.8][-0.3,-0.5]], [[0.3,0.4][0.6, 0.9], [-0.6,-0.9][-0.3,-0.4]] \rangle$. Clearly $\tau * = \{0_{\sim}^{"}, B, C, D, E, 1_{\sim}^{"}\}$ is an inter-val bip.vag topological space IBVCl(B) = $1_{\sim}^{"}$, IBVCl(C) = $1_{\sim}^{"}$, IBVCl(E) = $1_{\sim}^{"}$. Now IBVCl(B C \cap E) $\neq 0_{\sim}^{"}$. Therefore (Y, IBV_{7*}) is an inter-val bip.vag volterra space.

> Definition 4.9:

Let $(Y, IBV_{\tau*})$ be an inter-val bip.vag topological space. An inter-val bip.vag set B in $(Y, IBV_{\tau*})$ is called an inter-val bip.vag σ - first category if $B = \bigcup_{i=1}^{\infty} B_i$, where B_i 's are inter-val bip.vag σ - nowhere dense set in $(Y, IBV_{\tau*})$. Any other inter-val bip.vag set in $(Y, IBV_{\tau*})$ is said to be an inter-val bip.vag σ -second category in $(Y, IBV_{\tau*})$.

> Definition 4.10:

An inter-val bip.vag topological space $(Y, IBV_{\tau*})$ is an inter-val bip.vag σ - first category space if $1_{\sim "} = \bigcup_{i=1}^{\infty} B_i$, where B_i 's are inter-val bip.vag σ - nowhere dense set in $(Y, IBV_{\tau*})$. $(Y, IBV_{\tau*})$ is called an inter-val bip.vag σ - second category space if it is not an inter-val bip.vag σ -first category space.

\succ Proposition 4.11:

If the inter-val bip.vag topological space $(Y, IBV_{\tau*})$ is an inter-val bip.vag σ - second category space, then $(Y, IBV_{\tau*})$ is an inter-val bip.vag weakly Volterra space.

https://doi.org/10.38124/ijisrt/25jun1073

> Proof:

Let B_i 's (i=1,2,....N) be an inter-val bip.vag dense and an inter-val bip.vag H_{δ} -set in (Y, IB $V_{\tau*}$). Then by Proposition 4.3 B_i^c 's are an inter-val bip.vag σ -nowhere dense set in (Y, IB $V_{\tau*}$). Let $C_{\alpha}(\alpha = 1, 2,\infty)$ be an inter-val bip.vag σ nowhere dense set in (Y, IB $V_{\tau*}$) in which let us take the first N(C_{α})'s as B_i^c . Since (Y, IB $V_{\tau*}$) is an inter-val bip.vag σ second category space, $\bigcup_{\alpha=1}^{\infty} C_{\alpha} \neq 1_{\sim "}$. Then ($\bigcup_{\alpha=1}^{\infty} C_{\alpha}$)^c \neq $1_{\sim "} \Rightarrow \bigcap_{\alpha=1}^{\infty} C_{\alpha}^c \neq 0_{\sim "}$. Then we have IBVCl($\bigcap_{\alpha=1}^{\infty} (C_{\alpha})^c$). Since IBVCl($\bigcap_{\alpha=1}^{N} (C_{\alpha})^c$) \leq IBVCl($\bigcap_{\alpha=1}^{\infty} (C_{\alpha})^c \neq 0_{\sim "}$ then we have IBVCl($\bigcap_{\alpha=1}^{\infty} (C_{\alpha})^c$) $\neq 0_{\sim "}$, where B_i 's (i=1,2,....N) are an inter-val bip.vag dense and an inter-val bip.vag H_{δ} -set in (Y, IB $V_{\tau*}$). Therefore (Y, IB $V_{\tau*}$) is an inter-val bip.vag weakly Volterra space.

> Proposition 4.12:

- Let (X, IBV_{τ^*}) be an inter-val bip.vag weakly Volterra space if $\bigcup_{i=1}^{N} B_i = 1_{\sim^n}$, where B_i 's are an inter-val bip.vag J_{σ} - set in (Y, IBV_{τ^*}) then there exits atleast one B_i in (Y, IBV_{τ^*}) with $IBVInt(B_i) \neq 0_{\sim^n}$.
- If $\bigcup_{i=1}^{N} B_i = 1_{\sim}$ where B_i 's are an inter-val bip.vag J_{σ} set in (Y, IB $V_{\tau*}$) and if, IBVInt(B_i) $\neq 0_{\sim}$ for atleast one (i =1,2,...N) then (Y, IB $V_{\tau*}$) is an inter-val bip.vag weakly Volterra space.

> Proof:

(i) \Rightarrow (ii). Suppose that IBVInt(B_i) = $0_{\sim n}$ for all (i=1,2,...N). Then $(\text{IBVInt}(B_i))^c = 1_{\sim n} \implies \text{IBVCl}(B_i^c) = 1_{\sim n}$. Therefore B_i^c 's are an inter-val bip.vag dense set in Y. B_i 's are an inter-val bip.vag J_{σ} – set in (Y, IB $V_{\tau*}$) implies that B_i^c 's are an inter-val bip.vag H_{δ} -set. Now, IBVCl $(\bigcap_{i=1}^{N} B_i^{c}) =$ $\operatorname{IBVCl}(\bigcup_{i=1}^{N} B_i)^{c} = \operatorname{IBVCl}(1_{\sim "}) = 0_{\sim "}$, where B_i^{c} 's are an inter-val bip.vag dense set and an inter-val bip.vag H_{δ} -set. This implies $(Y, IBV_{\tau*})$ is not an inter-val bip.vag Volterra space, which is a contradiction. Therefore $IBVInt(B_i) \neq 0_{\sim "}$ for atleast one i(i=1,2,...,N) in $(Y, IBV_{\tau*})$. $(ii) \Longrightarrow (i)$. Suppose that $(Y, IBV_{\tau*})$ is not an inter-val bip.vag weakly Volterra space. IBVCl $(\bigcap_{i=1}^{N} B_i) = 0_{\sim n}$ where B_i 's are an inter-val bip.vag dense and an inter-val bip.vag H_{δ} -set in (Y, IB $V_{\tau*}$). This implies that IBVInt($\bigcup_{i=1}^{N}(B_{i}^{c})) = 1_{\sim} \implies \bigcup_{i=1}^{N}(B_{i}^{c}) =$ $1_{\sim r}$, where B_i^c 's are an inter-val bip.vag J_{σ} – set in (Y, IBV₇) and IBVInt $(B_i^c) = 0_{\sim "}$ (because IBVCl $(B_i) = 1_{\sim "} \forall i =$ 1,2,....N) which is a contradiction to the hypothesis. Hence (Y, IB $V_{\tau*}$) must be an inter-val bip.vag weakly Volterra space.

\blacktriangleright Definition 4.13:

An inter-val bip.vag topological space $(Y, IBV_{\tau*})$ is an inter-val bip.vag almost resolvable space if $\bigcup_{i=1}^{\infty} B_i = 1_{\sim^n}$, where the inter-val bip.vag sets B_i 's in $(Y, IBV_{\tau*})$ are such that $IBVInt(B_i) = 0_{\sim^n}$. Otherwise, $(Y, IBV_{\tau*})$ is called an inter-val bip.vag almost irresolvable.

https://doi.org/10.38124/ijisrt/25jun1073

ISSN No: 2456-2165 → Definition 4.14:

An inter-val bip.vag topological space $(Y, IBV_{\tau*})$ is called an inter-val bip.vag \mathcal{P} -space if countable intersection of an inter-val bip.vag op.sets in $(Y, IBV_{\tau*})$ is an inter-val bip.vag open in $(Y, IBV_{\tau*})$.

\blacktriangleright Definition 4.15:

An inter-val bip.vag topological space $(Y, IBV_{\tau*})$ is called an inter-val bip.vag submaximal space if for each an inter-val bip.vag set B in $(Y, IBV_{\tau*})$ such that $IBVCl(B) = 1_{\sim "}$, then $B \in \tau *$.

> Proposition 4.16:

If the inter-val bip.vag topological space (Y, $IBV_{\tau*}$) is an inter-val bip.vag almost irresolvable space, then (Y, $IBV_{\tau*}$) is an inter-val bip.vag weakly Volterra space.

\succ Proof:

Let B_i 's (i = 1,2,...N) be an inter-val bip.vag dense and an inter-val bip.vag H_{δ} -set in (Y, IB $V_{\tau*}$). Now IBVCl(B_i) \Rightarrow $IBVInt(B_i^c) = 0_{\sim "}$. Since (Y, $IBV_{\tau*}$) is an inter-val bip.vag almost irresolvable space, $\bigcup_{i=1}^{\infty} (C_i) \neq 1_{\sim n}$, where the interval bip.vag sets C_i 's in (Y, IB $V_{\tau*}$) are such that IBVInt(C_i) = $0_{\sim r}$. Let us take the first N((C_i)'s as B_i^c 's in (Y, IB $V_{\tau*}$). Now, $\bigcup_{i=1}^{\infty} (C_i) \neq 1_{\sim "} \implies (\bigcup_{i=1}^{\infty} (C_i))^c \neq 0_{\sim "}$. This implies that $\bigcap_{i=1}^{\infty} (C_i)^c \neq 0_{\sim n}$ and thus IBVCl $(\bigcap_{i=1}^{\infty} (C_i)^c) \neq 0_{\sim n}$. Since $\operatorname{IBVCl}(\bigcap_{i=1}^{N}(\mathcal{C}_{i})^{c})$ IBVCl($\bigcap_{i=1}^{\infty} (\mathcal{C}_i)^c$) \leq then IBVCl($\bigcap_{i=1}^{N} (C_i)^c$) $\neq 0_{\sim "}$. Hence IBVCl($\bigcap_{i=1}^{N} (C_i^c)^c$) $\neq 0_{\sim "}$ replacing C_i , by B_i^c , (i=1,2,...,N). This implies $\text{IBVCl}(\bigcap_{i=1}^{N}(B_i)) \neq 0_{\sim "}$. Therefore (Y, IBV_t) is an inter-val bip.vag weakly Volterra space.

> Proposition 4.17:

If the inter-val bip.vag topological space $(Y, IBV_{\tau*})$ is an inter-val bip.vag second category and an inter-val bip.vag \mathcal{P} -space, then $(Y, IBV_{\tau*})$ is an inter-val bip.vag weakly Volterra space.

\succ *Proof:*

Let B_i 's (i = 1, 2, ..., N) be an inter-val bip.vag dense and an inter-val bip.vag H_{δ} -set in $(Y, IBV_{\tau*})$. Since $(Y, IBV_{\tau*})$ is an inter-val bip.vag \mathcal{P} -space then inter-val bip.vag H_{δ} -set B_i 's are inter-val bip.vag open set in $(Y, IBV_{\tau*})$. Then B_i 's (i = 1, 2, ..., N) be an inter-val bip.vag dense and an inter-val bip.vag open set in $(Y, IBV_{\tau*})$. Then by Proposition 3.12, B_i^c 's are inter-val bip.vag nowhere dense set in $(Y, IBV_{\tau*})$. Since $(Y, IBV_{\tau*})$ is an inter-val bip.vag second category space $\bigcup_{i=1}^{\infty} (C_i) \neq 1_{\sim^n}$ where C_i 's are inter-val bip.vag nowhere dense set in $(Y, IBV_{\tau*})$. Let us take the first $N(C_i)$'s as B_i^c 's in $(Y, IBV_{\tau*})$. Then $\bigcup_{i=1}^N (B_i^c) = \bigcup_{i=1}^N (C_i) \subseteq \bigcup_{i=1}^\infty (C_i) \neq 1_{\sim^n}$. This implies that, $(\bigcup_{i=1}^N (B_i^c))^c \neq 0_{\sim^n} \implies \bigcap_{i=1}^N (B_i) \neq 0_{\sim^n}$. Thus $IBVCl(\bigcap_{i=1}^N (B_i)) \neq 0_{\sim^n}$, where B_i 's are inter-val bip.vag dense and an inter-val bip.vag weakly Volterra space.

> Proposition 4.18:

If the inter-val bip.vag topological space $(Y, IBV_{\tau*})$ is an inter-val bip.vag second category and an inter-val bip.vag submaximal space, then $(Y, IBV_{\tau*})$ is an inter-val bip.vag weakly Volterra space.

> Proof:

Let B_i 's (i = 1, 2, ..., N) be an inter-val bip.vag dense and an inter-val bip.vag H_{δ} -set in $(Y, IBV_{\tau*})$. Since $(Y, IBV_{\tau*})$ is an inter-val bip.vag submaximal space, the inter-val bip.vag dense set B_i 's are inter-val bip.vag open set in $(Y, IBV_{\tau*})$. By proposition 3.12, B_i^c 's are inter-val bip.vag nowhere dense sets in $(Y, IBV_{\tau*})$. Since $(Y, IBV_{\tau*})$ is an inter-val bip.vag second category space $\bigcup_{i=1}^{\infty} (C_i) \neq 1_{\sim^n}$ where C_i 's are interval bip.vag nowhere dense set in $(Y, IBV_{\tau*})$. Let us take the first $N(C_i)$'s as B_i^c 's in $(Y, IBV_{\tau*})$. Then $\bigcup_{i=1}^N (B_i^c) \leq \bigcup_{i=1}^{\infty} (C_i)$ and $\bigcup_{i=1}^{\infty} (C_i) \neq 1_{\sim^n}$ implies that $\bigcup_{i=1}^N (B_i^c) =$ 1_{\sim^n} . This implies that, $\bigcap_{i=1}^N (B_i) \neq 0_{\sim^n}$ and hence $IBVCl(\bigcap_{i=1}^N (B_i)) \neq 0_{\sim^n}$, where B_i 's are inter-val bip.vag dense and an inter-val bip.vag H_{δ} -set in $(Y, IBV_{\tau*})$. Therefore $(Y, IBV_{\tau*})$ is an inter-val bip.vag weakly Volterra space.

> Proposition 4.19:

If the inter-val bip.vag topological space $(Y, IBV_{\tau*})$ is not an inter-val bip.vag weakly Volterra space, then $(Y, IBV_{\tau*})$ is an inter-val bip.vag σ -first category space.

\succ Proof:

Let C_i 's (i=1,2,... ∞) be an inter-val bip.vag σ -nowhere dense sets in an inter-val bip.vag topological space $(Y, \text{IB}V_{\tau^*})$ which is not an inter-val bip.vag weakly Volterra space. Now, we claim that $\bigcup_{i=1}^{\infty} (C_i) = 1_{\sim^n}$. Suppose that $\bigcup_{i=1}^{\infty} (C_i) \neq 1_{\sim^n}$. Then $\bigcap_{i=1}^{\infty} C_i^c \neq 0_{\sim^n}$. Since C_i 's are inter-val bip.vag σ nowhere dense set in $(Y, \text{IB}V_{\tau^*})$ by proposition 4.3, C_i^c 's are inter-val bip.vag dense and an inter-val bip.vag H_{δ} -set in $(Y, \text{IB}V_{\tau^*})$. Now, $\bigcap_{i=1}^{N} C_i^c \subseteq \bigcap_{i=1}^{\infty} C_i^c$ implies that $\bigcap_{i=1}^{N} C_i^c \neq 0_{\sim^n}$. Let $B_i = B_i^c$, then $\bigcap_{i=1}^{N} B_i \neq 0_{\sim^n}$ implies that IBVCl $(\bigcap_{i=1}^{N} B_i) \neq 0_{\sim^n}$, where B_i 's are inter-val bip.vag dense and an inter-val bip.vag H_{δ} -set in $(Y, \text{IB}V_{\tau^*})$. But this is a contradiction, since $(Y, \text{IB}V_{\tau^*})$ is not an inter-val bip.vag weakly Volterra space. Hence $\bigcup_{i=1}^{\infty} (C_i) = 1_{\sim^n}$. Therefore $(Y, \text{IB}V_{\tau^*})$ is an inter-val bip.vag σ -first category space.

> Proposition 4.20:

If an inter-val bip.vag topological space (Y, $IBV_{\tau*}$) is an inter-val bip.vag weakly Volterra space, then (Y, $IBV_{\tau*}$) is not an inter-val bip.vag σ -Baire space.

> Proof:

Let $(Y, IBV_{\tau*})$ be an inter-val bip.vag weakly Volterra space. Then we have $IBVCl(\bigcap_{i=1}^{N} B_i) \neq 0_{\sim}$ where B_i 's are inter-val bip.vag dense and an inter-val bip.vag H_{δ} -set in $(Y, IBV_{\tau*})$. Since B_i 's are inter-val bip.vag dense and an interval bip.vag H_{δ} -set in $(Y, IBV_{\tau*})$, then by proposition 4.3. Let C_i 's (i=1,2,...\infty) be an inter-val bip.vag σ -nowhere dense set in $(Y, IBV_{\tau*})$ in which the first N inter-val bip.vag σ -nowhere dense set be B_i^c 's. Now $\bigcup_{i=1}^{N} (B_i^c) \subseteq \bigcap_{i=1}^{\infty} (C_i)$. Then $IBVInt(\bigcup_{i=1}^{N} (B_i^c)) \subseteq IBVInt(\bigcap_{i=1}^{\infty} (C_i))$ this implies that $(IBVCl(\bigcap_{i=1}^{N} B_i))^c \subseteq \bigcap_{i=1}^{\infty} (C_i)$. Since $IBVCl(\bigcap_{i=1}^{N} B_i) \neq 0_{\sim}$ ", $IBVInt(\bigcup_{i=1}^{\infty} (C_i)) \neq 0_{\sim}$ ", where C_i 's $(i=1,2,...\infty)$ are interval bip.vag σ -nowhere dense set $(Y, IBV_{\tau*})$. Hence $(Y, IBV_{\tau*})$ is not an inter-val bip.vag σ -Baire space. Volume 10, Issue 6, June – 2025

ISSN No: 2456-2165

V. CONCLUSION

In this paper we developed the concepts of inter-val bip.vag Volterra spaces and inter-val bip.vag weakly Volterra spaces and discussed some of their newly introduced definitions and propositions with suitable illustrations.

REFERENCES

- [1]. Arockiarani.I and Cicily Flora.S., Positive Implicative bipolar vague ideals in BCK-algebras, International research journal of pure algebra, 2016, 1-7.
- [2]. Atanassov.K., Intuitionistic fuzzy sets, Fuzzy sets and systems, 1986, 87-96.
- [3]. Chang.C.L., Fuzzy topological spaces, J Math. Anal. Appl, 1968, 182-190.
- [4]. Cicily Flora.S and Arockiarani.I., A new class of Generalized bipolar vague sets, International journal of information research and review, 2016, 3058-3065.
- [5]. Cicily Flora.S and Arockiarani.I., On bipolar vague ring in baire spaces, Bulletin of mathematics and statistics research, 2017, 1-9.
- [6]. Coker.D., An introduction to intuitionistic fuzzy topological spaces, Fuzzy sets and systems, 1997, 81-89.
- [7]. Gau.W.L and D.J.Buehrer., Vague sets, IEEE Trans. Systems Man and Cybernet, 1993, 610-614.
- [8]. Lee.K.M., Bipolar-valued fuzzy sets and their operations, Proc. Int. Conf. on Intelligent technologies, Bangkok, Thailand, 2000, 307-312.
- [9]. Levine.N., Generalized closed sets in topological spaces, Rend. Circ. Mat. Palermo, 1970, 89-96.
- [10]. Zadeh.L.A., Fuzzy sets, Information and control, 1965, 338-335.