
Volume 10, Issue 1, January – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.5281/zenodo.14885967

IJISRT25JAN1657 www.ijisrt.com 2563

Automated Cleanup of Unused AWS Cloud

Formation Resources Using AWS Resource

Tags and Lambda Functions

Prudhveer Reddy Kankar

DevOps Engineer

Publication Date: 2025/02/18

Abstract: The AWS cloud platform has experienced rapid growth due to its expanding features and support for on-demand

access to compute, storage, networking, and virtualization. AWS CloudFormation is a service that enables developers and

busi- nesses to create, provision, and manage a collection of related AWS and third-party resources in an orderly and

predictable manner. AWS CodePipeline can be utilized to deploy AWS CloudFormation stacks, enhancing continuous

integration and continuous delivery (CI/CD) capabilities. Companies often use multiple AWS accounts for different

environments and deploy resources across them. As part of the CI/CD process, a central AWS account is used to deploy

CloudFormation stacks to other accounts using AWS CodePipeline. However, when an application is no longer needed,

there is no straightforward way to use the centralized account to delete the unused CloudFormation resources. While

CloudFormation stacks can be updated and modified from the central account using AWS CodePipeline, deleting them

remains a challenge. This paper discusses an approach to address this issue using CloudFormation tags and AWS Lambda.

Keywords: AWS Code Pipeline, AWS Lambda, CI/CD, Cloud Resource Management, Tags, Automation, AWS Cleanup Processes,

Software Development Processes.

How to Cite: Prudhveer Reddy Kankar. (2025). Automated Cleanup of Unused AWS Cloud Formation Resources Using AWS

Resource Tags and Lambda Functions. International Journal of Innovative Science and Research Technology,
10(1), 2563-2564. https://doi.org/10.5281/zenodo.14885967.

I. INTRODUCTION

AWS CodePipeline is a native AWS service widely

used in CI/CD processes. It allows the deployment of AWS

Cloud- Formation stacks across multiple AWS accounts from

a single centralized account. Companies typically use

different AWS accounts for various environments, such as

development, infrastructure, testing, and production. AWS

CodePipeline can be connected to a source, such as GitHub,

containing the AWS CloudFormation template and its
associated resources. Whenever a change is made to the

source, AWS Code- Pipeline automatically updates the

CloudFormation resources in multiple accounts. In real-life

production scenarios, these stacks can deploy a significant

number of resources, such as ECS, VPC, and S3, which are

cost-intensive. While creating and updating CloudFormation

resources using CodePipeline is straightforward, deleting the

resources when they are no longer needed is not. This paper

presents an approach to delete CloudFormation stacks using

CloudFormation tags.

According to [1], tagging AWS resources is considered

one of the best practices for efficient resource management,

which aligns closely with the automated cleanup process

described in this paper.

II. METHODOLOGY

CloudFormation templates are JSON or YAML files

that define all the resources required by an application. AWS

resources can be tagged using custom key-value pairs. This

method suggests using CloudFormation tags to identify and

delete deployed stacks. A custom tag with the application

name should be added to the CloudFormation stack template.

A Lambda function needs to be created in the central account

with the following functionality: the function should connect
to the CloudFormation client in all the accounts where the

CloudFormation resources have been deployed using the STS

assume role functionality. It should be able to take the

applica- tion name as input, search for all the CloudFormation

stacks in the AWS accounts using boto3 that have that

particular application name as a tag, identify the specific

stack, and delete it as necessary.

In [2], researchers discuss the integration of AWS

Lambda with CI/CD pipelines for automating resource

management tasks, which further validates the proposed
methodology.

https://doi.org/10.5281/zenodo.14885967
http://www.ijisrt.com/
https://doi.org/10.5281/zenodo.14885967

Volume 10, Issue 1, January – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.5281/zenodo.14885967

IJISRT25JAN1657 www.ijisrt.com 2564

III. IMPLEMENTATION

Whenever an application is no longer needed, the

application name can be passed to the Lambda function,

which will delete all the stacks in all the accounts. This

approach helps reduce the cost of unused resources,

especially when an application is deployed to a large number

of accounts, eliminating the need to manually delete the

stacks.

In my experience, we faced a similar challenge of

managing and deleting unused AWS CloudFormation

resources across multiple AWS accounts. We implemented
the proposed solu- tion using CloudFormation tags and AWS

Lambda. Here is a step-by-step overview of our

implementation:

 Tagging CloudFormation Stacks: We added a custom tag

with the application name to each CloudFormation stack

template deployed across various AWS accounts.

 Creating the Lambda Function: We developed a Lambda

function in the central AWS account. This function

connects to the CloudFormation client in all the accounts

using the STS assumed role functionality.

 Searching and Deleting Stacks: The Lambda function

takes the application name as input, searches for all the

CloudFormation stacks with that tag using boto3,

identifies the specific stacks, and deletes them as

necessary.

 Automating the Process: We automated the process by

integrating the Lambda function with our CI/CD pipeline.

Whenever an application is no longer needed, the

application name is passed to the Lambda function, which

then deletes all the related stacks in all the accounts.

This implementation has significantly reduced the cost
of unused resources and improved our resource management

efficiency. Research findings in [3] emphasize the

importance of automation in reducing operational costs in

cloud environments, which aligns with our results.

IV. POTENTIAL CHALLENGES

 Implementing this Solution Comes with its Own Set of

Challenges:

 Rate Limiting and Throttling: AWS services have rate
limits that can cause throttling issues when making a large

number of API calls in a short period. This can be

mitigated by implementing exponential backoff and retry

mechanisms [4].

 Cross-Account Permissions: Ensuring that the Lambda

function has the necessary permissions to assume roles

and perform actions across multiple AWS accounts can

be com- plex. Proper IAM role configurations and trust

relationships are essential.

 Error Handling and Logging: Robust error handling and

logging mechanisms are crucial to identify and
troubleshoot issues during the deletion process. This

includes handling partial deletions and ensuring

idempotency.

 Resource Dependencies: Some resources may have de-

pendencies that need to be carefully managed during

deletion to avoid breaking other services. Using the

DependsOn at- tribute in CloudFormation can help

manage these dependencies.

 Security Considerations: Ensuring that the Lambda

function and associated resources are secure and follow

best practices for AWS security is vital. This includes

encrypting sensitive data and using secure

communication channels [5].

V. RELATED WORK

Several studies and implementations have explored the

use of AWS CloudFormation, AWS CodePipeline, and AWS

Lambda for managing cloud resources. These resources pro-

vide valuable insights into the capabilities and best practices

for using AWS services in CI/CD processes. For instance, [6]

discusses best practices for managing AWS resources in a

multi-account environment, which supports the techniques

detailed in this paper.

VI. CONCLUSION

This paper presents a method to clean up unused AWS

CloudFormation resources in AWS accounts using

CloudFormation tags and AWS Lambda. By leveraging

custom tags and a centralized Lambda function, companies

can efficiently manage and delete unused resources, thereby

reducing costs and improving resource management.

REFERENCES

[1]. AWS Documentation. "Tagging AWS Resources."
Available:

https://docs.aws.amazon.com/general/latest/gr/aws_ta

gging.html, Accessed: Jan. 23, 2021.

[2]. S. S. Gill, I. Chana, M. Singh, and R. Buyya,

"Efficient Management and Allocation of Resources

in Serverless," IEEE Transactions on Cloud

Computing, vol. 7, no. 4, pp. 1006-1019, 2019.

[3]. S. S. Gill, I. Chana, and R. Buyya, "Modeling and

Optimization of Performance and Cost of Serverless

Computing," IEEE Transactions on Cloud

Computing, vol. 9, no. 3, pp. 964-977, 2021.
[4]. AWS Documentation. "Error Retries and Exponential

Backoff in

AWS."Available:https://docs.aws.amazon.com/gener

al/latest/gr/api-retries.html, Accessed: Jan. 23, 2021.

[5]. J. Li, L. Yu, J. Zhang, and Z. Li, "A Survey of Security

in Cloud Computing," IEEE Access, vol. 6, pp. 64724-

64736, 2019.

[6]. M. Ali, A. R. Butt, and M. F. Younis, "Resource

Management and Allocation in Multi-Cloud

Environments: A Survey," IEEE Access, vol. 8, pp.

23524-23542, 2020.

https://doi.org/10.5281/zenodo.14885967
http://www.ijisrt.com/
https://docs.aws.amazon.com/general/latest/gr/api-retries.html
https://docs.aws.amazon.com/general/latest/gr/api-retries.html

