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I. INTRODUCTION 

 

In the fields of mathematics and economics, fixed 

point theorems have significant implications. The well-

known Brouwer fixed point theorem [5] is essential to many 

existence problems and has spurred a surge of equilibria 

discovery and other uses, including  such as computer 

science [12], network problems [8-10], approximation 
theory [11], the Nash equilibrium [6], the general 

equilibrium [7], etc. 

 

Computation of brouwer fixed point by different 

algorithms is  an important field. 

 

As is widely famous, Sperner's lemma evolved into a 

straightforward method for demonstrating the existence of 

Brouwer type fixed points. Sperner's lemma continues to be 

the foundation for simplicial algorithms following Scarf's 

[13] outstanding work, including the restart algorithms 
[16,18], Kuhn's algorithm [14,15],  variable dimension 

algorithm [19] and homotopy algorithms [20,21]. Finding a 

complete labeled sub-simplex in a simplex for the 

approximation of a fixed point is a familiar practice for 

simplicial algorithms. Vector-valued and integer-valued are 

two popular labels. A complete vector-valued sub-simplex 

to fixed points is known to have a better approximation 

degree than the other given a set grid size. We will see 

whether the stability of these algorithms differ. Also we will 

focus on whether functions or simplices be perturbed 

without affecting a complete labeled sub-simplex. 

 

There has been a lot of interest in fixed point stability. 

Essential sets of fixed points and essential components were 

presented[23,24] following the groundbreaking work for 

essential fixed points of continuous functions (Brouwers 

fixed points) in  [22]. Minimal essential sets appear to be 

reasonable choices from the standpoint of stability, since 

they are the analogues of singletons [25]. Numerous 

problems, including coincidence points [26, 27], fixed 
points [28], KKM points [29, 30], game equilibrium points 

[31–35], maximal elements [36], variational relation 

problems [37,39], and many other, were analyzed using 

essential stabilities that are associated with lower semi-

continuity. 

 

II. PRELIMINARIES 

 

Consider 𝑆 be an 𝑚-simplex in 𝑅𝑚+1with vertices 

𝑣1, 𝑣2, … , 𝑣𝑚+1. With 𝐼𝑘 = {1, 2, … . , 𝑘} and uniform 

metric,𝐶(𝑆) be the space of continuous mappings 𝑔 on 𝑆. 

Denote 𝑖th unit vector of 𝑅𝑚+1 by 𝑒(𝑖), 𝑖 =  1, 2, … ,𝑚, and 

the (𝑚 +  1)-vector(1,1,… ,1)𝑇is denoted by 𝑒. 

 

A few definitions pertaining to simplicial fixed point 

algorithms are recalled. If we have the grid size  
1

𝑝
, then the 

standard triangulation of 𝑆 is the collection of all sub-

simplices 𝜎(𝑦1, 𝜋) with vertices 𝑦1, 𝑦2, … , 𝑦𝑚+1 in 𝑆 such 

that: 

 

 each element of 𝑦1 is a multiple of 
1

𝑝
; 

 𝜋 = (𝜋1, … , 𝜋𝑚) is a permutation of the members of 𝐼𝑚; 
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 𝑦𝑖+1 = 𝑦𝑖 +
𝑣(𝜋𝑖+1)−𝑣(𝜋𝑖)

𝑝
, where 𝑣(𝑖) = 𝑣𝑖 , ∀𝑖 ∈ 𝐼𝑚. 

 

This must be noted that the mesh of the standard 

triangulation of S having the grid size 
1

𝑝
 is 

√𝑚+1

𝑝
 or 

√𝑚

𝑝
 if 𝑚 is 

odd or even, respectively. For a mapping 𝑔 ∈ 𝐶(𝑆), a point 

𝑧 in 𝑆 is labeled an integer 𝑙(𝑧) ∈ 𝐼𝑚+1where 𝑙(𝑧) = 𝑖 if 
 

𝑖 = 𝑚𝑖𝑛{𝑗|𝑔𝑗(𝑧) − 𝑧𝑗 = (𝑓ℎ(𝑧) − 𝑧ℎ)ℎ∈𝐼𝑚+1
𝑚𝑖𝑛 |}. 

 

Explicitly, if 𝑓(𝑧) = 𝑧 and  𝑧1 = 0, then allocate the 

label of 𝑧 as the first index 𝑖 such that 𝑧𝑖 > 0, 𝑖 ∈ 𝐼𝑚+1,We 

call 𝑙: 𝑆 → 𝐼𝑚+1a standard integer-valued labeling mapping. 

According to Sperner's lemma, when we have the mesh of a 

standard triangulation on 𝑆, there is at least a sub-simplex 

having complete integer labels (a fully labeled simplex, 

where the labels of the sub-simplex's vertices are completely 
distinct). 

 

If the (𝑚 + 1)-vector 𝐿(𝑧), where 𝐿(𝑧) = – 𝑔(𝑧) +
𝑧 + 𝑒, is received by a point 𝑧 in 𝑆, 

 

𝐿: 𝑆 → 𝑅𝑚+1is referred to as a standard vector-valued 

labeling function in this context. A sub-simplex 

𝜎(𝑦1, 𝑦2, … , 𝑦𝑚+1) with vector-valued labels for a 

triangulation of 𝑆 is complete if ∑ 𝜆𝑖𝐿(𝑦𝑖) = 𝑒
𝑚+1
𝑖=1  has a 

solution 𝜆∗ = (𝜆1, 𝜆2,… , 𝜆𝑚+1) with 𝜆∗ ∈ 𝑅+
𝑚+1. 

 

Given a grid size 
1

𝑝
, the assemblage of all the sub-

simplices having complete integer-valued (vector-valued) 

labels in 𝑆 is represented by 𝐺(𝑔, 𝑝)(𝐺′(𝑔, 𝑝)), for each 𝑔 ∈
𝐶(𝑆). Let us now define aset-valued mapping from 𝐶(𝑆) to 

𝑆 with 𝐺(𝐺′): 𝐶(𝑆) → 2𝑆, additionally, for notations to be 

convenient, we write 𝐺(𝑔) as 𝐺(𝑔, 𝑝). Note that each 𝑧 ∈
𝐺(𝑔, 𝑝), (𝐺′(𝑔, 𝑝)) is an approximation of fixed points of 𝑔 

on 𝑆. It is possible to decompose  𝐺(𝑔, 𝑝), (𝐺′(𝑔, 𝑝)) as 

∪𝑖∈∨ 𝐶𝑖with 𝑐𝑖 ∩ 𝑐𝑗 = ∅ for any 𝑖 ≠ 𝑗, and 𝑐𝑖 , ∀𝑖 ∈∧, is a 

connected element based on  connectedness. 
 

The upcoming example demonstrates that a set-valued 

function G is not upper semi-continuous on 𝐶(𝑆), and there 

are notable distinctions between 𝐺 and 𝐺′ with regard to 

semi-continuities; further outcomes we will  show in Section 

3. 

 

 Example 2.1: Consider 𝑆 as a standard simplex in 𝑅2. 
The identity of a map 𝑔 ∈ 𝐶(𝑆) is 𝑔(𝑧) = 𝑧, ∀ 𝑧 ∈ 𝑆. 

For the integer labels of the sub-simplicies of the 

triangulation having the grid size 
1

𝑝
, given that 

1

 𝑝
=
1

2
,we 

obtain 

 

𝑙(𝑧) = {

2, 𝑧 = (0, 1),
1, 𝑧 = (1, 0),

1, 𝑧 = (
1

2
,
1

2
) ,

 

 

Here, we can check that 𝐺(𝑔, 𝑝) = {(𝑧1, 1– 𝑧1)|0 ≤

𝑧1 ≤ 
1

2
}. For each 𝑚 = 1, 2, …, define 𝑔𝑚  ∈  𝐶(𝑆),  

satisfying 

 

𝑓𝑚(𝑧1, 𝑧2) = ((𝑧1)
𝑚

1+𝑚, 1 − (𝑧1)
𝑚

1+𝑚) 

 

Then, the corresponding integer labels using 𝑔𝑚 for 

each 𝑚 = 1,2,… is same as 

 

𝑙(𝑧) = {

2, 𝑧 = (0, 1),
1, 𝑧 = (1, 0),

2, 𝑧 = (
1

2
,
1

2
) ,

 

 

It can be calculated that 𝐺(𝑔𝑚  , 𝑝) =

{(𝑧1, 1 –  𝑧1) | 
1

2
≤ 𝑧1 ≤  1}. Clearly, for a sufficiently small  

openset 𝑈 with 𝐺(𝑔, 𝑝) ⊂ U, we have  𝐺(𝑔𝑚  , 𝑝) ⊄ 𝑈 

however close 𝑔𝑚 is to 𝑔. Consequently, 𝐺 is not upper 

semi-continuous on 𝐶(𝑆), therefore, the graph of  𝐺 is not 

closed also. Obviously, 𝐺 is not lower semi-continuous 

either. 

 

Let us denote the fixed point set of 𝑔 on 𝑆 for each 𝑔 ∈
𝐶(𝑆) by Fix(𝑔). The following definitions take into 

consideration a type of illustration for stability of 𝐺′and 

subsets of Fix(𝑔) as shown in  Example 2.1 regarding 𝐺. 

 

 Definition 2.1: If  for any open set U we have U ⊃
𝑒(𝑔),there exists an open neighbourhood 𝑂(𝑔) of 𝑔 in 

𝐶(𝑆) such that 𝐺 (𝑔, 𝑝) ∩ U ≠ ∅, ∀𝑔 ∈ 𝑂(𝑔), then a 

closed subset 𝑒(𝑔) of 𝐺 (𝑔, 𝑝),for each 𝑔 ∈ 𝐶(𝑆), with 

the grid size 
1

𝑝
 is said to be an essential set with respect 

to  𝐶(𝑆) .If a connected component 𝐶 ⊂ 𝐺 (𝑔, 𝑝) is an 

essential set, 𝐶 is said to be an essential connected 

component of 𝐺 (𝑔, 𝑝) with respect to 𝐶(𝑆). 
 Definition 2.2: Let 𝑔 ∈ 𝐶(𝑆), a closed subset of 𝐹𝑖𝑥(𝑔) 

be 𝑒(𝑔). 𝑒(𝑔) is said to be an approximate essential set if 

for each 𝜖 neighbourhood, 𝐵(𝑒(𝑔), 𝜖) of 𝑒(𝑔) there 

exists a 𝜅 > 0 such that, for each 𝑔′ ∈ 𝐶(𝑆) with 
‖𝑔–𝑔′‖ < 𝜅, we have Ν a number, such that 𝐺′(𝑔′, p) ∩
𝐵(𝑒(𝑔), 𝜖) ≠ ∅ ∀𝑝 > Ν. 

 Lemma 2.1: Let 𝐸 be a Baire space, 𝑌 be a metric space 

and 𝐺 ∶ 𝐸 → 2𝑌 be a mapping with compact values that 

is upper semi-continuous. Hence, there exists  a dense 

residual subset 𝑄 of 𝐸 in such a way 𝐺 is lower semi-

continuous at each 𝑧 ∈ 𝑄. ( [40]). 

 

III. RESULTS OF STABILITY WHEN 

FUNCTIONS ARE PERTURBED 

 

 Theorem 3.1: Given a grid size 
1

𝑝
 and a triangulation of 

𝑆 comprising vertices 𝑣1, 𝑣2, … , 𝑣𝑚+1, the graph of the 

set-valued mapping 𝐺′, 
 

𝐺𝑟𝐺′ = {(𝑔 , 𝑧) | 𝑔 ∈ 𝐶(𝑆), 𝑧 ∈ 𝐺′(𝑔 , 𝑝)}, is closed. 

 

https://doi.org/10.5281/zenodo.14936497
http://www.ijisrt.com/


Volume 10, Issue 2, February – 2025         International Journal of Innovative Science and Research Technology                                          

ISSN No:-2456-2165                                                                                                            https://doi.org/10.5281/zenodo.14936497 

 

IJISRT25FEB663                                                               www.ijisrt.com                                                                                      788 

 Proof: Suppose (𝑔𝑛, 𝑧𝑛) ∈ 𝐺𝑟𝐺′ with (𝑔𝑛, 𝑧𝑛) →
(𝑔0, 𝑧0), 𝑛 = 1,2,… . Clearly (𝑔0, 𝑧0) ∈ 𝐶(𝑆) × 𝑆. With 

vector-valued labels in 𝑆 we must show that  𝑧0 is a 

point of a complete sub-simplex 𝛼𝑔0 . Since (𝑔𝑛 , 𝑧𝑛) ∈

𝐺𝑟𝐺′, for each 𝑛 = 1,2,…, there exists a complete 

labeled sub-simplex 𝛼𝑔𝑛such that 𝑧𝑛 ∈ 𝛼𝑔𝑛 ⊂

𝐺′(𝑔𝑛 , 𝑝) ⊂ 𝑆, hence, denote 𝛼𝑔𝑛  as 

𝛼𝑔𝑛(𝑦𝑛
1, 𝑦𝑛

2,… , 𝑦𝑛
𝑚+1) = 𝛼𝑔𝑛(𝑦𝑛

1, 𝜋𝑛). 

 

Since {𝜋𝑛
1} belongs to the finite set Im+1, {𝜋𝑛

1} has a 

convergence subsequence {𝜋𝑛𝑘
1 }, such that 𝜋𝑛𝑖

1 = 𝜋𝑛𝑗
1 for 

very large i and j where𝑖 ≠  𝑗. For convenience of notation, 

we may also find such a convergence subsequence for 

{𝜋𝑛𝑘
2 }, that is represented by {𝜋𝑛𝑘

2 }. This approach can be 

unified as one {𝜋𝑖} with 𝜋𝑖 ≠ 𝜋𝑗, ∀𝑖 ≠ 𝑗, i.e 

𝛼𝑔𝑛𝑘(𝑦𝑛𝑘
1 , 𝜋𝑛𝑘) = 𝛼𝑔𝑛𝑘(𝑦𝑛𝑘

1 , 𝜋) and will then yield a 

convergence subsequence {𝜋𝑛𝑘
𝑖 } of {𝜋𝑛

𝑖 }. Since {𝑦𝑛𝑘
1 }  ⊂ 𝑍, 

then we have  a sequence, which is its convergence 

subsequence,  without losing generality,we also indicate it 

by {𝑦𝑛𝑘
1 } with {𝑦𝑛𝑘

1 } ⟶ 𝑦0
1, 𝑘 tends to infinity. Through the 

selection of a few real numbers 𝑞𝑛𝑘
𝑖 , 𝑖 ∈ 𝐼𝑚+1, we can write 

𝛼𝑔𝑛𝑘(𝑦𝑛𝑘
1 , 𝜋), as 

 

𝑦𝑛𝑘
1 = (𝑞𝑛𝑘

1 , 𝑞𝑛𝑘
2 ,… , 𝑞𝑛𝑘

𝑚+1)/𝑝 

 

And 

 

𝑦𝑛𝑘
𝑖+1 = 𝑦𝑛𝑘

𝑖 + (𝑣𝜋
𝑖+1
− 𝑣𝜋

𝑖
) /𝑝, ∀𝑖|∈ 𝐼𝑚. 

 

Then, we get a point 𝑦0
𝑖  such that 𝑦𝑛𝑘

𝑖 ⟶ 𝑦0
𝑖 ∈ 𝑆 for 

each 𝑖 ∈ 𝐼𝑚+1. That is, 𝛼(𝑦0
1, 𝜋) = 𝛼(𝑦0

1, 𝑦0
2… , 𝑦0

𝑚+1) is 

obviously  a sub-simplex in the triangulation of S under the 

grid size 
1

𝑝
. Remember, (𝑔𝑛𝑘 , 𝑧𝑛𝑘) ∈ 𝐺𝑟𝐺′ with 

(𝑔𝑛𝑘 , 𝑧𝑛𝑘) → (𝑔0, 𝑧0) as 𝑘 → ∞. Since 

𝛼(𝑦𝑛𝑘
1 , 𝑦𝑛𝑘

2 , … , 𝑦𝑛𝑘
𝑚+1) with vector valued labels is a 

complete sub-simplex there exists a non-negative vector 

(𝜆𝑛𝑘
1 , 𝜆𝑛𝑘

2 , … , 𝜆𝑛𝑘
𝑚+1) such that 

 

∑ 𝜆𝑛𝑘
𝑖 (−𝑔𝑛𝑘(𝑦𝑛𝑘

𝑖 ) + 𝑦𝑛𝑘
𝑖 + 𝑒) = 𝑒𝑚+1

𝑖=1 .                            (1) 

 

We have convergence subsequences {𝜆𝑛𝑘𝑗
𝑖 } of {𝜆𝑛𝑘

𝑖 } 

with 𝜆𝑛𝑘𝑗
𝑖 → 𝜆𝑜

𝑖 ≥ 0 (𝑗 → ∞),∀𝑖 ∈ 𝐼𝑚+1. Now substitute 𝑛𝑘 

with 𝑛𝑘𝑗 in equation (1), as 𝑗 → ∞, we have 

 

∑ 𝜆0
𝑖 (−𝑔0(𝑦0

𝑖 ) + 𝑦0
𝑖 + 𝑒) = 𝑒𝑚+1

𝑖=1 .                                   (2) 

 

Therefore, 𝛼𝑔0 = 𝛼(𝑦0
1, 𝑦0

2,… , 𝑦0
𝑚+1) with vector-

valued labels is a complete sub-simplex. Also, we have 𝑧0 ∈
𝛼𝑔0. Since 𝑧𝑛𝑘𝑗 ∈ 𝛼𝑔𝑛𝑘𝑗,∃ 𝛽𝑛𝑘𝑗

𝑖 ≥ 0 such that 

 

𝑧𝑛𝑘𝑗 = ∑ 𝛽𝑛𝑘𝑗
𝑖𝑚+1

𝑖=1 𝑦𝑛𝑘𝑗
𝑖                                                     (3) 

 

With ∑ 𝛽𝑛𝑘𝑗
𝑖𝑚+1

𝑖=1 = 1. Without losing generality,  

suppose that 𝛽𝑛𝑘𝑗
𝑖  is convergent with the limit 𝛽0

𝑖 , that is, 

𝛽𝑛𝑘𝑗
𝑖 → 𝛽0

𝑖(𝑗 → ∞). Then, as (𝑗 → ∞) for equation (3), we 

have 𝑧0 = ∑ 𝛽0
𝑖𝑚+1

𝑖=1 𝑦0
𝑖 ∈ 𝛼𝑔0. 

We have the following direct corollary From Theorem 

3.1. 

 

 Corollary 3.1 The set-valued mapping 𝐺′ is upper semi-

continuous on 𝐶(𝑆) given a triangulation of  𝑆 with a 

grid size of  1/𝑝. 
 

𝐺′ is not  lower semi-continuous on 𝐶(𝑆), as 

demonstrated by the example that follows. 
 

 Example 3.1.Let a standard simplex in 𝑅2 be S, 𝑔 ∈
𝐶(𝑆)be an identity mapping i.e 𝑔(𝑧) = 𝑧, ∀ 𝑧 ∈ 𝑆 , For 

the vector-valued labels of the sub-simplices of the 

triangulation with 𝑔, for each point in grid 𝑧 =

(
1

4
,
3

4
) , (

1

2
,
1

2
) , 𝐿(𝑧) = (1, 1), when the grid size 

1

𝑝
 with 

1

𝑝
=
1

4
. 

 

We have, the sub-simplex 

 

𝛼 = {(𝑧1, 𝑧2) ∈  𝑆 ∶  1/4 ≤ 𝑧1  ≤  1/2} is complete 

and 𝛼 ⊂ 𝐺′(𝑔 , 𝑝). 
 

We choose a point �̅�  =  (3/8, 5/8)  ∈  𝛼. For each 

𝑚 = 1,2,…, define𝑔𝑚 ∈ 𝐶(𝑆) such that 
 

𝑔𝑚(𝑧1, 𝑧2) = ((𝑧1)
𝑚+1

𝑚 , 1 − (𝑧1)
𝑚+1

𝑚 ) 

 

So, for each 𝑚 = 1,2,…,the vector-valued labels for 

the sub-simplex 𝛼using 𝑔𝑚is 

 

𝐿(𝑧) =

{
 
 

 
 (
5

4
− (
1

4
)

𝑚+1

𝑚

, (
1

4
)

𝑚+1

𝑚

+
3

4
) = (𝑟, 𝑠),   𝑧 = (1/4,3/4),

(
3

2
− (
1

2
)

𝑚+1

𝑚

, (
1

2
)

𝑚+1

𝑚

+
1

2
) = (𝑡, 𝑢),   𝑧 = (1/2,1/2),

 

 

So, the right-hand side of equation 

 

[
𝑟 𝑡
𝑠 𝑢

]
−1

[1
1
] =

1

𝑟𝑢 − 𝑡𝑠
[
𝑢 − 𝑠
𝑟 − 𝑡

] 

 

Is the solution (𝜆1
∗ , 𝜆2

∗) of the equations 𝜆1𝐿 (
1

4
,
3

4
) +

𝜆2𝐿 (
1

2
,
1

2
) = 𝑒, then 𝜆2

∗ =
𝑟−𝑠

𝑟𝑢−𝑠𝑡
, by a direct calculation, for 

each 𝑚 =  1, 2, . . ., we get, 𝑟– 𝑠 =
4
1
𝑚−1

2.4
1
𝑚

> 0, while 

𝑟𝑢 –  𝑡𝑠 =
(2−2

1
𝑚)2

1
𝑚−1

2.4
1
𝑚

< 0. Then 𝜆2
∗ < 0,∀ 𝑚 =

1,2,…  .Thus, one can see that 𝛼 is not complete by labeling 

the sub-simplex 𝛼 using 𝑔𝑚. Hence, for very small open 

neighborhood 𝑈 of  �̅�, we get  𝐺′(𝑔𝑚 , 𝑝) ∩ 𝑈 = ∅ for each 

𝑚 =  1, 2, …, that is, 𝐺′ is not lower semi-continuous on 

𝐶(𝑆). 
 

The set-valued mapping 𝐺′ with 𝐺′:𝐶(𝑆)  → 2𝑠 is 

upper semi-continuous according to Theorem 3.1. If we 

have a grid size 
1

𝑝
, it is clear, each point in 𝐺′(𝑔0, 𝑝) is 
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essential if the set-valued mapping 𝐺′ is lower semi-

continuous at a point 𝑔0. Therefore, the following generic 

stability result can be obtained using  Fort’s lemma (Lemma 

2.1) and Definition 2. 1. 

 

 Corollary 3.2 We always have a dense residual set 𝐻 in 

𝐶(𝑆) such that for each 𝑔 ∈ 𝐶(𝑆), given a grid size 
1

𝑝
,  

each point in 𝐺′(𝑔, 𝑝)  is essential with respect to 𝐶(𝑆). 
 Theorem 3.2: For each𝑔 ∈ 𝐶(𝑆), ∃ finite essential 

connected components in 𝐺′(𝑔, 𝑝) with respect to 𝐶(𝑆), 

if we have a triangulation of 𝑆 having grid size 
1

𝑝
. 

 Proof: The set-valued mapping 𝐺′ is upper semi-

continuous on 𝑆, as stated in Theorem 3.1. Then, with 

respect to 𝐶(𝑆) the set 𝐺′ (𝑔 , 𝑝), itself is anessential set. 
Suppose the collection of all essential sets in 𝐺′(𝑔, 𝑝) be 

denoted by 𝜃. Keep in mind that the intersection of any 

descending chain in 𝜃 having the specified inclusion 

order serves as a lower bound. Consequently, an 

essential set in 𝐺′ (𝑔, 𝑝) is a minimal element 𝑒(𝑔 ) in 𝜃. 

Therefore, by definition 2.1, it is evident that every 

connected component 𝐶 with 𝐶 ⊃ 𝑒(𝑔) is an essential 
connected component. The next challenge is to 

demonstrate  that each 𝑒(𝑔) is connected. 

 

Otherwise, let 𝑒(𝑔) = 𝐷1 ∪𝐷2. Two open sets 𝑈1 and 

𝑈2 can be used to separate nonessential closed sets 𝐷1 and 

𝐷2 with 𝐷𝑖 ⊂ 𝑈𝑖, 𝑖 =  1, 2. For each 𝑖 =  1,2 and 𝜀 >  0, 

there exists an open set 𝑊 𝑖and 𝑔𝑖 ∈  𝐶(𝑆) with 𝐷𝑖 ⊂ 𝑊 𝑖 ⊂

 �̅� 𝑖 ⊂ 𝑈𝑖 such that ‖𝑔 − 𝑔𝑖‖ <
𝜀

3
 but 𝐺′(𝑔𝑖 , 𝑝) ∩ 𝑊 𝑖 = ∅; 

in the interim, for any 𝑔′ ∈ 𝐶(𝑆) with ‖𝑔′ − 𝑔‖ < 𝜀, we 

have 𝐺′(𝑔′, 𝑝) ∩ (𝑊1 ∪𝑊2) ≠ ∅. Construct a new 𝑔′ ∈
𝐶(𝑆) by defining. 

 

𝑔′(𝑧) = 𝜆 (𝑧)𝑔1(𝑧) + (1 − 𝜆 (𝑧))𝑔2(𝑧) ∀𝑧 ∈ 𝑆, 

 

Where, 𝜆(𝑧)  =
𝑑(𝑧,�̅�2)

𝑑(𝑧,�̅�1)+𝑑(𝑧,�̅�2)
.‖𝑔′ − 𝑔‖ < 𝜖 can be 

checked routinely, this means that there is at least a point 𝑧 
such that 𝑧 ∈ 𝐺′(𝑔′, 𝑝) ∩ (𝑊1 ∪𝑊2). For each 𝑖 = 1, 2, if 

𝑧 ∈ 𝑊 𝑖, such that 𝑔′(𝑧) = 𝑔𝑖(𝑧), then the labels for the sub-

simplice’s vertices in 𝑊 𝑖 using 𝑔𝑖 or 𝑔 are same. Therefore, 

𝐺′ (𝑔𝑖 , 𝑝)  ∩𝑊 𝑖 = 𝐺′(𝑔′, 𝑝) ∩ 𝑊 𝑖, from which we can 

deduce the fact that (𝑧 ∉ 𝐺′(𝑔′, 𝑝), is a contradiction. 

 

Finally, the result is derived from the finiteness of the 

complete labeled simplex in S. As 𝑝 → ∞ the following 

result shows that essential connected components under the 

grid size 
1

𝑝
 could be very close to an approximate fixed point 

set when 𝑝 → ∞. 
 

 Theorem 3.3: For each grid size 
1

𝑝
, we have a continuous 

function 𝑔 ∈ 𝐶(𝑆),  let 𝐶𝑝 ⊂ 𝐺′(𝑔, 𝑝) with respect to 

𝐶(𝑆) be an essential connected component, there exists a 

subsequence {𝐶𝑝𝑘} of {𝐶𝑝} with 𝐶𝑝𝑘
ℎ
→𝐶0 and 𝐶0 is an 

approximate essential connected set in Fix(𝑔), where ℎ 

is the Hausdorff metric induced by the Euclidean metric 

on 𝑅𝑚+1. 

 Proof: we have {𝐶𝑝} is a sequence in 𝐿(𝑆), where 𝐿(𝑆) 
is the collection of nonempty compact subsets of 𝑆. 

Since 𝑆 is compact so there is a subsequence {𝐶𝑝𝑘} of 
{𝐶𝑝} with the limit 𝐶0 ∈ 𝐿(𝑆). For convenience, we 

denote the subsequence just as {𝐶𝑝}. For each 𝑧0 ∈ 𝐶0, 

there is a sequence {𝑧𝑝} with 𝑧𝑝 ∈ 𝐶𝑝 and 𝑧𝑝 → 𝑧0.  For 

each 𝜀 > 0, there exists a number 𝑁 since 𝑔 is 

continuous, such that, for each sub-simplex 𝛼𝑔 in the 

triangulation of 𝑆 under the grid size 
1

𝑁
 , we have 

 

{|𝑔𝑖(𝑧) − 𝑔𝑖(𝑦)|}𝑖∈𝐼𝑚+1
𝑚𝑎𝑥 <

1

𝑁
<

𝜀

3√𝑚+1
 , ∀𝑧, 𝑦 ∈ 𝛼𝑔. 

 

For each 𝑝 > 𝑁, since 𝑧𝑝 ∈ 𝐶𝑝 ⊂  𝐺′ (𝑔, 𝑝) , we have 

‖𝑔(𝑧𝑝) − 𝑧𝑝‖ <
𝜀

3
 . Next, we can identify a sufficiently 

large 𝑝 such that: 

 
‖𝑔(𝑧0) − 𝑧0‖ ≤ ‖𝑔(𝑧0) − 𝑔(𝑧𝑝)‖ + ‖𝑔(𝑧𝑝) − 𝑧𝑝‖

+ ‖𝑧𝑝 − 𝑧0‖ 
 

<
𝜀

3
+
𝜀

3
+
𝜀

3
= 𝜀 holds. 

 

Therefore, we claim that 𝑧0 ∈ 𝐹𝑖𝑥(𝑔).  hence, 𝐶0 ⊂
𝐹𝑖𝑥(𝑔). 

 

Let us suppose that 𝐶0 is not connected, hence𝐶0 can 

be split as two disjoint compact sets like 𝐶0 = 𝐶′ ∪ 𝐶′′ with 

two open sets 𝑊′ and 𝑊′′ such that 𝐶′ ⊂ 𝑊′, 𝐶′′ ⊂ 𝑊′′ 
and 𝑊′ ∩𝑊′′ = ∅. From  compactness of 𝐶′ and 𝐶′′, we 

have two open sets 𝑈′ and 𝑈′′ such that 𝐶′ ⊂ 𝑈′ ⊂ �̅�′ ⊂ 𝑊′ 
and 𝐶′′ ⊂ 𝑈′′ ⊂ �̅�′′ ⊂ 𝑊′′. Since 𝐶𝑝 is connected, we get 

𝐶𝑝 ⊂ 𝑈′ or 𝐶𝑝 ⊂ 𝑈′′ as  𝑝 sufficiently large. So, the limit of 

𝐶𝑝 is in 𝑊′ or 𝑊′′, that contradicts the fact that 𝐶𝑝
   ℎ   
→  𝐶′𝑈𝐶′′ and 𝐶′ ⊂ 𝑊′, 𝐶′′ ⊂ 𝑊′′, and 𝑊′ ∩𝑊′′ =  ∅. 
Therefore, 𝐶0 is connected. 

 

Lastly, we demonstrate that 𝐶0 is an approximate 

essential set of Fix(𝑔). Otherwise, then there exists 𝜀̅ > 0 

and 𝑔𝑗(𝑗 = 1,2, … ) with 𝑔𝑗 → 𝑔, such that for each number 

𝑝, 𝐺′(𝑔𝑗, 𝑝) ∩ 𝐵(𝐶0, 𝜀)̅ =  ∅, 𝑗 = 1,2,… . Since 𝐶𝑝
   ℎ   
→  𝐶0, 

there is a number 𝑁 such that 𝐶𝑝 ⊂ 𝐵(𝐶0, 𝜀̅) when 𝑝 ≥ 𝑁. 

Since 𝐶𝑁 is essential, for the open set 𝐵(𝐶0, 𝜀), there is a 

𝜅 > 0 such that for any 𝑔′ with ‖𝑔 –  𝑔′‖ < 𝜅 , we have 

𝐺(𝑔′,𝑁) ∩ 𝐵(𝐶0, 𝜀) ≠ ∅. From the fact that 𝑔𝑗 → 𝑔, for 

sufficiently large j, we have 𝐺(𝑔𝑗, 𝑁) ∩ 𝐵(𝐶0, 𝜀) ≠ ∅, a 
contradiction. 

 

IV. RESULTS OF STABILITY WHEN SIMPLICES 

AND FUNCTIONS ARE PERTURBED 

 

To have an analysis of the perturbation of domains, let 

𝑍 ⊂  𝑅𝑚+1 be a 𝑚  dimensional compact set, 𝑇 be the set of 

all 𝑚-simplex in 𝑍. Take any two 𝑆1(𝑣1
2, 𝑣1

2, … , 𝑣1
𝑚+1) and 

𝑆2(𝑣2
1, 𝑣2

2, … , 𝑣2
𝑚+1) in 𝑇, define 

 

𝜂(𝑆1, 𝑆2) =
𝑚𝑖𝑛
𝜋
∑‖𝑣1

𝑘 − 𝑣2
𝜋𝑘‖

𝑚+1

𝑘=0
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 Lemma 4.1 𝜂 is a metric on 𝑇. 

 

 Proof: 

 

 For any   𝑆1(𝑣1
1, 𝑣1

2, … , 𝑣1
𝑚+1), 

𝑆2(𝑣2
1, 𝑣2

2, … , 𝑣2
𝑚+1) ∈ 𝑇, we have 𝜂(𝑆1, 𝑆2)= 𝜂(𝑆2, 𝑆1). 

Let �̅� = (�̅�1, �̅�2, … , �̅�𝑚+1) match  𝜂(𝑆1, 𝑆2). We have 

 

𝜂(𝑆1, 𝑆2) = ∑ ‖𝑣1
𝑘 − 𝑣2

�̅�𝑘‖.𝑚+1
𝑘=0  Then 

 

𝜂(𝑆2, 𝑆1) =
𝑚𝑖𝑛
𝜋
∑‖𝑣2

�̅�𝑘 − 𝑣1
𝜋𝑘‖

𝑚+1

𝑘=0

 

 

=∑ ‖𝑣2
�̅�𝑘 − 𝑣1

𝑘‖ = 𝜂(𝑆1, 𝑆2)
𝑚+1
𝑘=0 . 

 

 For any 𝑆1(𝑣1
1, 𝑣1

2, … , 𝑣1
𝑚+1), 𝑆2(𝑣2

1, 𝑣2
2, … , 𝑣2

𝑚+1) ∈ 𝑇 , 

 

We have  𝜂(𝑆1, 𝑆2) = 0 ⇔ 𝑆1 = 𝑆2 . 

 

We need only the proof of the necessity 

 

From the definition of  𝜂. Let 𝜂(𝑆1, 𝑆2)  =  0, then there 

 

Exists �̅� such that ∑ ‖𝑣1
𝑘 − 𝑣2

�̅�𝑘‖𝑚+1
𝑘=0 = 0, which means 

 

That ‖𝑣1
𝑘 − 𝑣2

�̅�𝑘‖ = 0, ∀𝑘 ∈ 𝐼𝑚+1. That is 𝑆1 = 𝑆2. 

 

 For any 𝑆1(𝑣1
1, 𝑣1

2, … , 𝑣1
𝑚+1), 𝑆(𝑣1, 𝑣2, … , 𝑣𝑚+1),

𝑆(𝑣2
1, 𝑣2

2, … , 𝑣2
𝑚+1) ∈  𝑇 , we have𝜂(𝑆1, 𝑆2) =≤ 𝜂(S1, S) + 

𝜂(S, S2). Let 𝜂(S1, S) =∑ ‖𝑣1
𝑘 − 𝑣�̅�𝑘‖𝑚+1

𝑘=0 . Then we have 

 

𝜂(𝑆1, 𝑆2) =
𝑚𝑖𝑛
𝜋
∑‖𝑣1

𝑘 − 𝑣2
𝜋𝑘‖

𝑚+1

𝑘=0

 

 

≤
𝑚𝑖𝑛
𝜋
(∑‖𝑣1

𝑘 − 𝑣�̅�𝑘‖ + ∑‖𝑣�̅�𝑘 − 𝑣2
𝜋𝑘‖

𝑚+1

𝑘=0

𝑚+1

𝑘=0

) 

 

= ∑‖𝑣1
𝑘 − 𝑣�̅�𝑘‖+

𝑚𝑖𝑛
𝜋
∑‖𝑣�̅�𝑘 − 𝑣2

𝜋𝑘‖

𝑚+1

𝑘=0

𝑚+1

𝑘=0

 

 

= 𝜂(𝑆1, 𝑆) +
𝑚𝑖𝑛
𝜋
∑‖𝑣𝑘 − 𝑣2

𝜋𝑘‖

𝑚+1

𝑘=0

 

 

= 𝜂(𝑆1, 𝑆) + 𝜂(𝑆, 𝑆2). 
 

We want to restrict domains to escape from a domain 

perturbed in a large-scale range with regard to a stability 

analysis of approximate fixed points. Let ∆ be a subset of a 

compact set 𝑍 in 𝑅𝑚+1 with 𝑚 dimensions. Let 𝑇′ ⊂ 𝑇 

satisfy  𝑇′ = {𝑆 ∈ 𝑇: ∆ ⊂ 𝑆 ⊂ 𝑍}. 
 

 Lemma 4.2: Prove that the metric space (𝑇′ , 𝜂) is 

complete. 

 Proof: Choose {𝑆𝑛(𝑣𝑛
1, 𝑣𝑛

2, … , 𝑣𝑛
𝑚+1)} a Cauchy 

sequence in 𝑇′. Therefore, for each 𝜀 > 0, ∃, a number N 

such that 𝜂(𝑆𝑠 , 𝑆𝑡) < 𝜀 for any 𝑠, 𝑡 >  𝑁. It is possible to 

assume that 𝜂(𝑆𝑠 , 𝑆𝑡) = ∑ ‖𝑉𝑠
𝑘 −𝑉𝑡

𝑘‖𝑚+1
𝑘=0  without losing 

generality . Therefore, {𝑉𝑛
𝑘} is a Cauchy sequence with 

the limit 𝑣0
𝑘 , ∀𝑘 ∈ 𝐼𝑚+1. Denote the simplex 

𝑆0(𝑣0
1, 𝑣0

2, … , 𝑣0
𝑚+1) by 𝑆0.  Then we have 𝜂(𝑆𝑛 , 𝑆0) → 0. 

Since ∆⊂∩𝑛=1
∞ 𝑆𝑛 ⊂ 𝑍, it follows that ∆⊂ 𝑆0 ⊂ 𝑍, hence 

𝑆0 is an 𝑚-simplex in 𝑇′. 
 

Consider 𝑄 as the set of pairs (𝑔, 𝑆) such that𝑄 =
{(𝑔 , 𝑆)  ∈ 𝐶(𝑍) x 𝑇′ ∶  𝑔 (𝑧)  ∈ 𝑆, ∀𝑧 ∈ 𝑆} 
 

Let us now define the metric 𝑑 between two 𝑢1 =
(𝑔1, 𝑆1) and 𝑢2 = (𝑔2, 𝑆2) in 𝑇′as 

 

𝑑(𝑢1, 𝑢2) =
𝑚𝑎𝑥
𝑧 ∈ 𝑍

‖𝑔1(𝑧) − 𝑔2(𝑧)‖ + 𝜂(𝑆1, 𝑆2). 

 

We establish a set-valued mapping 𝑅 from 𝑄 to 𝑍 

having a grid size of 1/𝑝. For each 𝑢 = (𝑔, 𝑆) ∈ 𝑄, let 

𝑅(𝑢, 𝑝) be the collection of all sub-simplices with complete 

vector-valued labels with the mapping 𝑔 in the triangulation 

of 𝑆 having the grid size of 1/𝑝. 
 
We take into account the  essential stability of 

approximation fixed points under function and domain 

perturbations, just like in Definition 2.1. 

 

 Definition 4.1: If we have the grid size 
1

𝑝
, for each 𝑢 =

(𝑔 , 𝑆)  ∈  𝑄, we call a closed subset 𝑒(𝑔 ) in 𝑅(𝑢, 𝑝) an 

essential set with respect to 𝑄 if, for any open set 𝑈 with 

𝑈 ⊃ 𝑒(𝑔), there existsan open 𝑂(𝑢) of 𝑢 in 𝑄 such that 

𝑈 ∩ 𝑅(𝑢′, 𝑝)  ≠ ∅, ∀𝑢′ ∈ 𝑂(𝑢). A  minimal essential set 

with respect to 𝑄 is a minimal element in the collection 

of essential sets in 𝑅(𝑢, 𝑝) (arranged by set inclusion). 

 Theorem 4.1: If we have a grid size 
1

𝑝
 , and a continuous 

mapping 𝑔 ∈ 𝐶(𝑍), then the graph of the set-valued 

function 𝑅, 𝐺𝑟 𝑅 =  {(𝑢, 𝑧) | 𝑢 ∈ 𝑄, 𝑧 ∈ 𝑅(𝑢, 𝑝)}, is 

closed. 

 Proof: Let {(𝑢𝑛 , 𝑧𝑛)} ⊂ 𝐺𝑟 𝑅 with (𝑢𝑛 , 𝑧𝑛) → (𝑢0, 𝑧0) 
where 𝑢𝑛 = (𝑔𝑛, 𝑆𝑛), 𝑢0 = (𝑔0, 𝑆0) and 𝑆𝑛 is the 

simplex with 𝑣𝑛
1, 𝑣𝑛

2, …… , 𝑣𝑛
𝑚+1 as its vertices for each 

𝑛 =  1, 2…. Since (𝑢𝑛 , 𝑧𝑛) ∈ 𝐺𝑟 𝑅, there exists a 

complete sub-simplex 𝛼𝑔𝑛(𝑦𝑛
1, 𝑦𝑛

2,… , 𝑦𝑛
𝑚+1) with vector-

valued labels such that 𝑧𝑛 ∈ 𝛼𝑔𝑛 ⊂ 𝑅(𝑢𝑛 , 𝑝)  ⊂ 𝑆𝑛 , 𝑛 =

1, 2,… . 
 

Denote 𝛼𝑔𝑛(𝑦𝑛
1, 𝑦𝑛

2,… , 𝑦𝑛
𝑚+1)as 𝛼𝑔𝑛(𝑦𝑛

1, 𝜋𝑛) .Just like 

Theorem 3.1, there exists a subsequence {𝑛𝑘} 𝑜𝑓 {𝑛} and a 

permutation π such that 𝛼𝑔𝑛𝑘(𝑦𝑛𝑘
1 , 𝜋𝑛𝑘) =  𝛼𝑔𝑛𝑘(𝑦𝑚𝑘

1 , 𝜋). 

We have a convergent subsequence of {𝑦𝑛𝑘
1 } ⊂ 𝑍, which is 

also denoted by {𝑦𝑛𝑘
1 } with 𝑦𝑛𝑘

1 → 𝑦0
1(𝑘 → ∞). So far, for 

each 𝑛𝑘, by choosing some real numbers 𝑞𝑛𝑘
𝑖 (𝑖 ∈ 𝐼𝑚+1) 

with 𝑞𝑛𝑘
𝑖 → 𝑞0

𝑖 (𝑘 → ∞), the sub-simplex 𝛼𝑔𝑛𝑘(𝑦𝑛𝑘
1 , 𝜋) can 

be written as 

 

𝑦𝑛𝑘
1 = (𝑞𝑛𝑘

1 , 𝑞𝑛𝑘
2 ,… , 𝑞𝑛𝑘,

𝑚+1)/𝑝 and 

 

𝑦𝑛𝑘
𝑖+1 = 𝑦𝑛𝑘

𝑖 + (𝑣𝑛𝑘
𝜋𝑖+1 − 𝑣𝑛𝑘

𝜋𝑖 )/𝑝, ∀𝑖 ∈ 𝐼𝑚. 
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Since, 𝑢𝑛
𝑑
→ 𝑢0, which means that 𝑆𝑛

𝜂
→ 𝑆0  ∈ 𝑇′, then, 

by    the definition of 𝜂, we have 𝑣𝑛𝑘
𝜋𝑖 → 𝑣0

𝜋𝑖 , ∀𝑖 ∈ 𝐼𝑚+1. 
 

Nothing that 𝑦𝑛𝑘
1 → 𝑦0

1, we have 𝛼𝑔𝑛𝑘(𝑦𝑛𝑘
1 , 𝜋 )

 
𝜂
→𝛼(𝑦0

1, 𝜋) as 𝑘 → ∞. Clearly, 𝛼𝑔0(𝑦0
1, 𝜋) is a simplex in 

the triangulation of 𝑆0(𝑣0
1, 𝑣0

2, … , 𝑣0
𝑚+1) with the grid size 

1

𝑝
 .To conclude  the proof that 𝑧0 ∈ 𝛼(𝑦0

1, 𝜋) and 𝛼(𝑦0
1, 𝜋) is 

a complete sub-simplex with vector- valued labels by 

function 𝑔0, we can adopt the corresponding  part of 
Theorem 3.1. 

 

𝑅 is upper semi-continuous on 𝑄 according to Theorem 

4.1. We arrive at the following conclusion after proving 

theorem 3.2 for the existence of minimal element of 

essential sets. 

 

 Theorem 4.2: For each 𝑢 = (𝑔 , 𝑆) ∈ 𝑄, there exists a 

minimal essential set in R(u, p) with respect to Q, when 

we have a triangulation of S with a grid size 
1

p
. 

 

V. CONCLUSION 

 
The steadiness of approximate fixed point sets utilizing 

simplicial methods under perturbation of the related 

functions and domains is addressed by applying the key 

stabilities. We demonstrate that simplicial methods being 

vector-valued and integer-valued  differ significantly. Using 

vector-valued labeling, it is proved that a set-valued function 

for approximate fixed points is  upper semi-continuous.. For 

vector-labeled simplicial approaches, it is also proved that 

approximate fixed point sets have finite essential connected 

components. 
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