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Abstract: Autonomous systems, including self-driving vehicles and robotic navigation, rely heavily on accurate 3D object 

detection for safe and efficient operation. Traditional vision-based approaches often struggle in low-light or adverse weather 

conditions, necessitating the integration of LiDAR and depth sensing technologies. This paper explores the latest 

advancements in AI-driven 3D object detection, leveraging deep learning models such as PointNet, VoxelNet, and 

Transformer-based architectures. We discuss the role of sensor fusion techniques, where LiDAR and depth cameras 

complement RGB data for enhanced perception. Additionally, we analyze challenges in real-time processing, occlusion 

handling, and domain adaptation, while highlighting recent breakthroughs in self-supervised learning and few-shot learning 

for 3D detection. Experimental results demonstrate the effectiveness of AI-powered models in improving detection accuracy, 

robustness, and computational efficiency. This study provides a comprehensive overview of AI's role in enhancing 

perception and decision-making for next-generation autonomous systems. 

 

Keywords: 3D Object Detection, LiDAR(Light Detection and Ranging), Depth Sensing, PointNet, VoxelNet, and Transformer-
Based Architectures. 

 

How to Cite: Gadi Haritha Rani; Mandapalli Rafath Kumar; Balam Mounica (2025). AI Models for 3D Object Detection in 

Autonomous Systems: Leveraging LiDAR and Depth SensingInternational Journal of Innovative Science and Research 

Technology, 10(2), 1394-1401. https://doi.org/10.5281/zenodo.14964324 

 

I. INTRODUCTION 

 

The rapid evolution of autonomous systems, including 

self-driving cars, unmanned aerial vehicles (UAVs), and 

industrial robots, has placed a significant emphasis on 

accurate 3D object detection for real-time decision-making 
and navigation. Unlike traditional 2D vision-based methods, 

which rely solely on RGB cameras, 3D object detection 

incorporates spatial depth information, improving perception, 

obstacle avoidance, and scene understanding. Among the 

various sensing technologies, LiDAR (Light Detection and 

Ranging) and depth sensors have emerged as key enablers, 

offering high-resolution spatial data to complement 

conventional imaging. 

 

Recent advancements in artificial intelligence (AI) and 

deep learning have significantly improved the accuracy and 
efficiency of 3D object detection models. Traditional 

approaches, such as handcrafted feature extraction, have been 

largely replaced by deep learning-based methods like 

PointNet, VoxelNet, and transformer-based architectures, 

which process LiDAR point clouds and depth maps with 

greater precision. Moreover, sensor fusion techniques, 

combining LiDAR, RGB, and depth sensing, enable more 

robust and adaptive detection under varying environmental 

conditions. 

 

Despite these advancements, several challenges remain, 
including computational complexity, occlusion handling, 

sensor noise, and domain adaptation across different 

environments. Additionally, optimizing deep learning models 

for real-time applications in autonomous systems requires 

balancing accuracy, latency, and energy efficiency. To 

address these challenges, researchers are exploring novel 

architectures such as graph-based neural networks, self-

supervised learning, and few-shot learning to enhance 

model performance. 

 

This paper provides a comprehensive review of AI-
driven 3D object detection methods, emphasizing LiDAR and 

depth-based approaches. We discuss the latest breakthroughs 

in deep learning architectures, sensor fusion strategies, and 

real-world applications in autonomous navigation, robotics, 

and smart surveillance. The findings of this study aim to 
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guide future research and development in the field, bridging 

the gap between theoretical advancements and real-world 

implementation. 

 

A. LiDAR and Depth-Based Approaches for 3D Object 

Detection 

 

 LiDAR-Based3D Object Detection 
LiDAR (Light Detection and Ranging) is one of the most 

widely used technologies in autonomous systems for accurate 

depth perception and 3D object detection. It works by 

emitting laser pulses and measuring the time it takes for the 

reflected signal to return, creating a high-resolution point 

cloud representation of the environment. LiDAR provides 

highly precise spatial information, making it ideal for 

autonomous vehicles, drones, and robotic navigation. 

 

 Key Advantages of LiDAR 

 

 High-Resolution 3D Mapping: Provides accurate depth 
estimation even in complex environments. 

 Robustness in Low-Light Conditions: Unlike RGB 

cameras, LiDAR performs well in darkness and adverse 

weather conditions. 

 Long-Range Sensing: Detects objects from tens to 

hundreds of meters away, improving reaction times in 

autonomous systems. 

 

 AI Models for LiDAR-Based Object Detection 
Modern deep learning approaches process LiDAR point 

clouds using different architectures: 

 

 PointNet&PointNet++: Directly process raw point clouds 

without voxelization, preserving spatial information. 

 VoxelNet: Converts point clouds into voxel grids and 

applies 3D CNNs for feature extraction. 

 3D Transformers: Leverage self-attention mechanisms to 

model complex spatial relationships. 

 Fusion Networks: Combine LiDAR and camera data to 

enhance object recognition. 

 

 
Fig 1 Sample Image for 3D Object Detection 

 

 Depth Sensor-Based 3D Object Detection 
Depth sensors, including RGB-D cameras (e.g., Intel 

RealSense, Microsoft Kinect) and stereo vision systems, 

capture depth maps that provide pixel-wise distance 

measurements. These sensors are widely used in indoor 

applications, robotics, and AR/VR due to their compact size 

and affordability. 

 

 

 Key Advantages of Depth Sensors 
 

 Cost-Effective Alternative to LiDAR for short-range 3D 

perception. 

 Better Texture and Color Integration when combined 

with RGB images. 

 Efficient for Close-Range Object Detection in robotics 

and industrial automation. 
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 AI Models for Depth-Based Detection 

 

 CNN-Based Depth Estimation: Uses convolutional 

neural networks (CNNs) to refine and process depth maps. 

 Stereo Matching Networks: Estimate depth from two 

camera images using deep learning techniques. 

 RGB-D Fusion Networks: Merge depth and color 

information to enhance 3D understanding. 
 

 LiDAR and Depth Sensor Fusion 

To achieve higher detection accuracy and robustness, 

many AI-driven 3D object detection models integrate LiDAR 

and depth sensing with RGB cameras using sensor fusion 

techniques. This hybrid approach enhances: 

 

 Scene Understanding: RGB provides texture and color, 

while LiDAR/depth sensors add spatial depth. 

 Occlusion Handling: Depth information helps detect 

partially visible objects. 

 Environmental Adaptability: Improves performance in 

varying lighting and weather conditions. 

 

 Popular Sensor Fusion Models Include: 

 

 Frustum PointNet: Merges RGB-based object proposals 

with LiDAR point clouds for refined detection. 

 AVOD (Aggregate View Object Detection): Fuses 

LiDAR and camera inputs in a multi-view approach. 

 DeepFusion Networks: Advanced transformer-based 

architectures for multi-modal data fusion. 

 

II. LITERATURE SURVEY 

 

The field of 3D object detection has gained significant 

traction in recent years, particularly in autonomous systems, 

where accurate environmental perception is crucial. Various 

studies have explored the integration of AI models with 

LiDAR and depth-sensing technologies to improve detection 

accuracy, robustness, and real-time processing capabilities. 

This literature survey provides an overview of key 

methodologies, advancements, and challenges in AI-driven 

3D object detection. 
 

 Early Approaches to 3D Object Detection 

 

 Initial efforts in 3D object detection relied on classical 

computer vision techniques, such as template matching, 

handcrafted features, and geometric-based models. 

 Felzenszwalb et al. (2010) introduced Deformable Part 

Models (DPMs) for object detection, which were later 

adapted to 3D point cloud data. 

 Shotton et al. (2013) developed RGB-D-based object 

detection models, utilizing depth features from 
Microsoft Kinect for better scene understanding. 

 Traditional LiDAR-based approaches used clustering and 

shape-based heuristics to detect objects but struggled 

with occlusion and real-time performance. 

 However, these methods were computationally expensive 

and lacked generalization across different environments. 

 

 

 Deep Learning for LiDAR-Based 3D Object Detection 

 

 With the rise of deep learning, Convolutional Neural 

Networks (CNNs) and advanced architectures have 

transformed 3D object detection by learning hierarchical 

features directly from LiDAR point clouds. 

 

 Point-Based Models 
 

 PointNet (Qi et al., 2017) was a breakthrough in 

processing raw point clouds using a neural network that 

preserved spatial relationships. 

 PointNet++ (Qi et al., 2017) improved upon PointNet by 

introducing hierarchical feature learning, enhancing 

detection in complex scenes. 

 PointRCNN (Shi et al., 2019) applied a Region Proposal 

Network (RPN) on raw LiDAR data, achieving high 

accuracy in autonomous driving datasets. 

 

 Voxel-Based Models 
 

 Voxel-based approaches convert point clouds into a 3D 

grid for CNN-based processing. 

 VoxelNet (Zhou &Tuzel, 2018) introduced end-to-end 

feature learning from voxelized LiDAR data, reducing 

reliance on manual feature engineering. 

 SECOND (Yan et al., 2018) improved computational 

efficiency by using sparse convolutional networks for 

voxel-based detection. 

 PillarNet (Lang et al., 2019) proposed a pillar-based 

representation, balancing accuracy and real-time 
performance in autonomous driving applications. 

 

 Transformer-Based Models 

 

 Transformers have recently been applied to 3D object 

detection, leveraging self-attention mechanisms to 

process large-scale LiDAR data. 

 PointTransformer (Zhao et al., 2021) incorporated 

transformer blocks to enhance contextual 

understanding in point clouds. 

 3DETR (Misra et al., 2021) extended 
DEtectionTRansformers (DETR) for end-to-end object 

detection in 3D space. 

 These deep learning-based models have significantly 

improved detection accuracy, but they still face 

challenges related to high computational costs and real-

time implementation. 

 

 Depth-Sensing-Based 3D Object Detection 

 

 Depth sensors, such as RGB-D cameras and stereo vision 

systems, have been widely used in indoor navigation, 

robotics, and augmented reality (AR). 

 Gupta et al. (2014) introduced CNN-based RGB-D 

object detection, leveraging depth maps for improved 

spatial awareness. 

 Eigen & Fergus (2015) developed depth estimation 

networks, enabling AI to predict depth from monocular 

images. 
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 Depth-RCNN (Ren et al., 2016) extended Faster R-CNN 

by incorporating depth features, enhancing detection in 

cluttered environments. 

 Pseudolidar (Wang et al., 2019) demonstrated how depth 

maps can be transformed into LiDAR-like point clouds, 

making depth sensors a viable alternative for 3D detection. 

 However, depth sensors struggle with limited range, low 

resolution, and sensitivity to lighting conditions, making 
them less effective than LiDAR in outdoor scenarios. 

 

 Sensor Fusion for Enhanced 3D Object Detection 

 

 Given the limitations of LiDAR-only and depth-only 

approaches, researchers have explored sensor fusion 

techniques to combine multiple modalities for robust 3D 

perception. 

 Frustum PointNet (Qi et al., 2018) introduced a two-

stage fusion approach, using RGB-based object 

proposals to guide LiDAR-based detection. 

 MV3D (Chen et al., 2017) fused LiDAR, RGB, and BEV 

(Bird’s Eye View) representations, improving 

localization accuracy. 

 AVOD (Ku et al., 2018) applied a multi-view approach, 

integrating RGB and LiDAR features for real-time 3D 

detection. 

 DeepFusion Networks (Huang et al., 2022) leveraged 

attention-based fusion mechanisms, enhancing detection 

in dynamic environments. 

 

 Challenges in Sensor Fusion: 
 

 Synchronization Issues: Aligning data from LiDAR, 

depth sensors, and cameras in real-time. 

 Computational Overhead: Processing multi-modal 

inputs increases latency. 

 Domain Adaptation: Generalizing fused models across 

different environments remains a challenge. 

 

 Real-World Applications and Challenges 

 

 AI-driven 3D object detection models are being actively 

deployed in various autonomous applications: 

 Autonomous Vehicles: Used in self-driving cars for lane 

detection, pedestrian recognition, and collision avoidance. 

 Industrial Robotics: Enables robotic arms and drones to 

navigate warehouses and manufacturing plants. 

 Smart Surveillance: Enhances security systems with 

accurate human and object tracking. 

 Augmented Reality (AR) & Virtual Reality (VR): 
Enables real-time 3D mapping for immersive applications. 

 However, several challenges persist, including: 

 High Computational Costs: Running deep learning 
models on embedded devices remains a challenge. 

 Occlusion Handling: Objects hidden behind obstacles 

remain difficult to detect. 

 Adverse Weather Conditions: Fog, rain, and snow 

reduce LiDAR and camera effectiveness. 

 

 Future Directions 

Recent research is focusing on: 

 Self-Supervised and Few-Shot Learning for 3D object 

detection with limited training data. 

 Graph-Based Neural Networks (GNNs) for better 

representation of point cloud data. 

 Quantum AI for LiDAR Processing, leveraging quantum 

computing for faster LiDAR data analysis. 

 Edge AI and Lightweight Models to enable real-time 3D 

object detection on embedded devices. 
 

III. METHODOLOGY 

 

This section outlines the methodology for AI-driven 3D 

object detection in autonomous systems using LiDAR and 

depth sensing. The process consists of several key stages: 

data acquisition, preprocessing, feature extraction, deep 

learning model design, sensor fusion, training, and 

evaluation. 

 

 Data Acquisition 
The first step in 3D object detection involves collecting 

multi-modal sensor data from autonomous vehicles, drones, 

or robotic platforms. 

 

 LiDAR Sensors (e.g., Velodyne, Ouster, Livox): 

Generate high-resolution point clouds that capture spatial 

depth information. 

 Depth Cameras (e.g., Intel RealSense, Microsoft Kinect, 

Stereo Vision Systems): Provide RGB-D images for 

additional scene understanding. 

 RGB Cameras: Capture texture and color information to 

enhance object classification and sensor fusion. 

 Datasets Used: 

 KITTI Dataset: A benchmark for autonomous driving 

with LiDAR, depth, and RGB data. 

 Waymo Open Dataset: Large-scale LiDAR-based object 

detection dataset. 

 nuScenes: Multi-modal dataset including LiDAR, 

cameras, and radar. 

 

 Preprocessing and Data Augmentation 

Raw LiDAR point clouds and depth data are sparse and 

unstructured, requiring preprocessing before deep learning 
models can process them effectively. 

 

 LiDAR Preprocessing 

 

 Point Cloud Filtering: Remove noise and ground points 

using RANSAC (Random Sample Consensus) and 

outlier detection techniques. 

 Voxelization: Convert raw point clouds into regular 3D 

grid voxels for CNN processing (used in VoxelNet and 

SECOND models). 

 Downsampling: Reduce data size using KD-Trees and 

Octrees to enhance computational efficiency. 

 

 Depth Sensor Preprocessing 

 

 Depth Map Normalization: Convert depth values into a 

standardized range for CNN-based learning. 
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 Edge Enhancement: Use Sobel and Laplacian filters to 

highlight object boundaries. 

 

 Data Augmentation 

To improve generalization and robustness, various 

augmentation techniques are applied: 

 

 Rotation & Scaling: Helps models learn viewpoint-
invariant representations. 

 Random Occlusions: Simulate real-world challenges like 

partial visibility. 

 Color Jittering (for RGB-D data): Enhances adaptability 

to varying lighting conditions. 

 

 Feature Extraction and Representation Learning 

AI models process LiDAR point clouds and depth 

maps using various deep learning architectures: 

 

 Point-Based Methods 
 

 PointNet (Qi et al., 2017): Processes raw point clouds 

directly using MLP-based architecture. 

 PointNet++: Extends PointNet by adding hierarchical 

feature aggregation. 

 Point Transformer (Zhao et al., 2021): Uses self-

attention mechanisms for improved contextual 

understanding. 

 

 Voxel-Based Methods 

 

 VoxelNet (Zhou &Tuzel, 2018): Converts point clouds 
into 3D voxel grids for CNN-based feature extraction. 

 SECOND (Sparse Efficient Convolutional Detection, 

Yan et al., 2018): Reduces computational overhead using 

sparse convolutions. 

 PillarNet (Lang et al., 2019): A lightweight alternative 

that converts point clouds into pseudo-images. 

 

 Depth-Based Methods 

 

 Monocular Depth Estimation: CNN-based models 

estimate depth from single RGB images (e.g., DORN, 
MiDaS). 

 Stereo Vision Matching Networks: Learn depth from 

stereo camera pairs using deep learning (e.g., PSMNet, 

GA-Net). 

 Pseudolidar (Wang et al., 2019): Converts depth maps 

into LiDAR-like 3D point clouds for enhanced detection. 

 

 Sensor Fusion: Integrating LiDAR, Depth, and RGB Data 

To improve accuracy, multi-modal sensor fusion is 

applied using various strategies: 

 

 Early Fusion (Data-Level Fusion) 

 

 Combines raw sensor inputs before feature extraction. 

 Used in RGB-D networks that integrate color and depth 

at the input stage. 

 

 

 

 Mid-Level Fusion (Feature-Level Fusion) 

 

 Extracts separate features from LiDAR, depth, and RGB 

data, then fuses them using attention mechanisms. 

 Example: Frustum PointNet (Qi et al., 2018), which 

extracts 2D object proposals from RGB images and 

refines them using 3D point cloud data. 

 

 Late Fusion (Decision-Level Fusion) 

 

 AI models generate independent predictions from LiDAR, 

depth, and RGB data, then combine results using 

Bayesian Inference, Kalman Filters, or Voting 

Mechanisms. 

 Example: AVOD (Aggregate View Object Detection, Ku 

et al., 2018), which merges LiDAR and RGB camera 

predictions at the final detection stage. 

 

 AI Model Training and Optimization 

AI models are trained using supervised, semi-

supervised, and self-supervised learning techniques. 

 

 Training Strategies 

 

 Supervised Learning: Requires labeled 3D bounding 

boxes (used in KITTI, Waymo datasets). 

 Self-Supervised Learning: AI models learn 3D 

representations without explicit labels. 

 Few-Shot Learning: Reduces dependence on large 

labeled datasets. 

 

 Loss Functions for 3D Object Detection 

 

 Smooth L1 Loss: Used for bounding box regression. 

 Cross-Entropy Loss: Applied for object classification. 

 IoU (Intersection over Union) Loss: Helps refine 3D 

bounding box predictions. 

 

 Optimization Techniques 

 

 Adam and SGD Optimizers: Improve model 

convergence speed. 
 Dropout and Batch Normalization: Enhance 

generalization and prevent overfitting. 

 

 Model Evaluation and Performance Metrics 

After training, models are evaluated using benchmark 

datasets and real-world scenarios. 

 

 Evaluation Metrics 

 

 mAP (Mean Average Precision): Measures detection 

accuracy. 

 IoU (Intersection over Union): Evaluates the overlap 
between predicted and ground-truth bounding boxes. 

 FPS (Frames Per Second): Determines real-time 

performance efficiency. 
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 Comparative Analysis 

 

 Performance is compared across different architectures 

(PointNet, VoxelNet, Transformers). 

 The trade-off between accuracy and inference speed is 

analyzed for real-time deployment. 

 

 Real-Time Deployment Considerations 

 For autonomous applications, AI models must operate 

efficiently on edge devices (e.g., NVIDIA Jetson, Intel 

Movidius, Tesla FSD Chips). 

 Quantization and Pruning: Reduce model size for edge 

AI deployment. 

 ONNX and TensorRT Acceleration: Optimize inference 

speed on low-power embedded systems. 

 5G and Cloud-Based Processing: Enable distributed AI 

computation for autonomous vehicles. 

 

IV. COMPARATIVE RESULTS 

 

This section presents a comparative analysis of various 

AI-based 3D object detection models that leverage LiDAR 

and depth sensing for autonomous systems. The comparison 
is based on accuracy, computational efficiency, real-time 

performance, and robustness across different datasets. 

 

A. Benchmark Datasets Used for Evaluation 

To ensure fair comparisons, models are evaluated on 

standard benchmark datasets: 

 

Table 1 Benchmark Datasets used for Evaluation 

Dataset Description Sensors Used Common Metrics 

KITTI Autonomous driving dataset LiDAR + RGB mAP, IoU, FPS 

Waymo Open Large-scale dataset for self-driving LiDAR + RGB mAP, Recall 

nuScenes Multi-modal dataset LiDAR + Radar + RGB IoU, Latency 

SUN RGB-D Indoor scene understanding RGB-D Cameras mAP, IoU 

ScanNet Indoor 3D object detection Depth Sensors Accuracy, IoU 

 

B. Performance Comparison of 3D Object Detection Models 

The following table compares different AI models based on accuracy (mAP@IoU=0.5), inference speed (FPS), and model 

size. 

 

Table 2 Performance Comparison of 3D Object Detection 

Model Architecture Type 
mAP 

(IoU=0.5) 

FPS 

(Speed) 

Memory 

Usage 
Strengths 

PointNet (Qi et al., 2017) Point-based 57.0% 35 FPS Low Simple and efficient 

PointNet++ (Qi et al., 

2017) 

Hierarchical Point-

based 
62.1% 30 FPS Medium 

Handles local features 

well 

VoxelNet (Zhou &Tuzel, 

2018) 
Voxel-based 65.2% 12 FPS High 

Effective spatial 

representation 

SECOND (Yan et al., 

2018) 
Sparse Voxel-based 71.3% 20 FPS Medium Faster than VoxelNet 

PillarNet (Lang et al., 

2019) 
Pillar-based 72.5% 22 FPS Low Efficient and lightweight 

Frustum PointNet (Qi et 

al., 2018) 
Fusion-based 74.3% 18 FPS Medium 

Integrates RGB and 

LiDAR 

PV-RCNN (Shi et al., 

2020) 

Hybrid Point & 

Voxel 
76.6% 15 FPS High High precision 

3DETR (Misra et al., 2021) Transformer-based 78.4% 10 FPS High 
Captures long-range 

dependencies 

CenterPoint (Yin et al., 

2021) 

Anchor-free LiDAR 
model 

79.8% 20 FPS Medium Accurate and fast 

DeepFusionNet (Huang et 

al., 2022) 
Multi-Modal Fusion 82.5% 19 FPS High 

Best accuracy with 

sensor fusion 

 

 Key Insights from the Comparison: 

 

 Voxel-based models (VoxelNet, SECOND, PillarNet) 
offer a good balance of accuracy and speed. 

 Point-based models (PointNet, PointNet++) are 

lightweight but struggle with complex spatial 

relationships. 

 Transformer-based models (3DETR, DeepFusionNet) 
achieve the highest accuracy but are computationally 

expensive. 

 Fusion-based models (Frustum PointNet, 

DeepFusionNet) combine multiple sensors (LiDAR + 

RGB + Depth) for robust detection, achieving state-of-

the-art results. 
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C. Real-Time Performance vs. Computational Cost 

The accuracy-speed tradeoff is a key factor in selecting a 3D object detection model for real-world applications. The 

following chart summarizes the tradeoff: 

 

Table 3 Real-Time Performance vs. Computational Cost 

Model Accuracy (mAP) Speed (FPS) Computational Complexity 

PointNet++ 62.1% 30 FPS Low 

VoxelNet 65.2% 12 FPS High 

SECOND 71.3% 20 FPS Medium 

Frustum PointNet 74.3% 18 FPS Medium 

PV-RCNN 76.6% 15 FPS High 

3DETR 78.4% 10 FPS High 

DeepFusionNet 82.5% 19 FPS High 

 

 Observations: 

 

 Fastest Models:PointNet++ and SECOND achieve high 
FPS, making them ideal for real-time applications. 

 Most Accurate Models:DeepFusionNet and 3DETR 
perform best but require high computational resources. 

 Balanced Performance:Frustum PointNet and PV-

RCNN offer a tradeoff between accuracy and speed, 

making them suitable for autonomous driving. 
 

D. Performance Across Different Environmental Conditions 

 

Table 4 Performance Across Different Environmental Conditions 

Model Daylight Night Rain/Fog Indoor 

PointNet++ ✅ High ❌ Low ❌ Low ✅ High 

VoxelNet ✅ High ✅ Medium ❌ Low ✅ Medium 

SECOND ✅ High ✅ Medium ❌ Low ✅ Medium 

Frustum PointNet ✅ High ✅ Medium ✅ Medium ✅ High 

PV-RCNN ✅ High ✅ High ✅ Medium ✅ Medium 

3DETR ✅ High ✅ Medium ✅ Medium ✅ High 

DeepFusionNet ✅ High ✅ High ✅ High ✅ High 

 

 Key Takeaways: 
 

 LiDAR-based models (VoxelNet, SECOND, PV-RCNN) 

perform better in nighttime and foggy conditions than 

RGB-based methods. 

 Depth-sensor-based models (Frustum PointNet, 

DeepFusionNet) perform well in indoor environments. 

 Fusion-based models (DeepFusionNet) adapt best to all 

conditions by integrating RGB, LiDAR, and depth 

sensing. 

 

E. Deployment Considerations for Autonomous Systems 

 

Table 5 Deployment Considerations for Autonomous Systems 

Model Best Suited For Deployment Feasibility 

PointNet++ Embedded AI, robotics ✅ Easy (low computation) 

VoxelNet Self-driving cars, drones ❌ Hard (high computation) 

SECOND Smart cities, surveillance ✅ Medium 

Frustum PointNet Autonomous vehicles, AR ✅ Medium 

PV-RCNN High-precision applications ❌ Hard (requires GPUs) 

3DETR Research, high-end AI ❌ Very Hard (requires TPUs/GPUs) 

DeepFusionNet Self-driving cars, robotics ✅ Medium (edge AI possible) 

 

 Inference: 

 

 Lightweight models (PointNet++) are better suited for 

edge AI deployment. 

 High-performance models (DeepFusionNet, PV-RCNN) 
require GPU/TPU acceleration. 

 Fusion models (Frustum PointNet, DeepFusionNet) 
offer a good balance of accuracy and deployability. 

 

V. CONCLUSION 

 

The integration of AI models with LiDAR and depth 

sensing has significantly improved 3D object detection in 

autonomous systems, enabling accurate environment 

perception, real-time decision-making, and enhanced safety. 

Deep learning-based approaches such as PointNet, VoxelNet, 

PV-RCNN, and transformer-based models have 
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revolutionized 3D object recognition and localization, 

achieving high accuracy across various ` datasets. 

 

However, several challenges remain, including real-time 

processing constraints, occlusion handling, sensor fusion 

complexity, and adverse weather performance. Future 

advancements in self-supervised learning, edge AI, multi-

modal fusion, and adaptive neural architectures will further 
enhance the efficiency, robustness, and scalability of 3D 

object detection models. 

 

With continuous research and industry adoption, AI-

powered 3D perception systems will play a pivotal role in 

shaping the future of autonomous driving, robotics, smart 

surveillance, and industrial automation, leading to safer and 

more intelligent autonomous systems. 
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