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I. INTRODUCTION 

 

We are interested in algorithms that determine a fixed 

point, or a point in 𝑅𝑛 where (𝑦) = 𝑦 , of a continuous 

mapping 𝑔 from  𝑅𝑛 (the n-dimensional Euclidean space) to 

𝑅𝑛 .[2] and [8] are two prominent algorithms in this area. 

 

These methods deform 𝑔𝑝 𝑎𝑠 𝑝 → ∞ 𝑡𝑜 𝑔∞ = 𝑔 , and 

then follow the path 𝑦𝑝 of fixed points of 𝑔𝑝  after starting 

with a constant map 𝑔0(𝑦) = 𝑦0. 𝑦∞ is a fixed point of 𝑔 if 

on 𝑦𝑝 → 𝑦∞ on a series of 𝑝′𝑠 going to infinity. The 

algorithm fails in the opposite scenario. Several 𝑔 features 
that ensure these algorithms won't fail are listed in [2]. 

 

The purpose of this research is to investigate how 

labeling and triangulation affect the algorithm's effectiveness. 

There are three sections in it. First examines the impact of 

labeling on the algorithm, Second examines the method's 

convergence characteristics, and third examines the impact of 

triangulation. 

 

II. LABELING 

 

 Definition: 

A labeling of the triangulation 𝑇 is a function given a 

triangulation 𝑇 of  𝑅𝑛, [10], with the set of vertices 𝑇0 ⊂ 𝑇, 

and an arbitrary collection 𝐿. 

 

ℓ: 𝑇 → 𝐿 . 

 

This labeling function  ℓ is created in a way that 

distinguishes some Simplexes in 𝑇 and links them to the 

fixed points of a mapping 𝑔. 

 

 Integer Labeling:  

Given a mapping  𝑔: 𝑅𝑛 → 𝑅𝑛  by integer labeling we 

mean that 𝐿 = {1,2, … , 𝑛 + 1}  . The integer labeling that we 

examine in this article is on the vertices 𝑦 𝑖𝑛 𝑇0. The 

distinguished Simplexes in this situation are referred to as 

completely labeled, and they are Simplexes where each 

vertex receives a different label. Such completely labeled 

Simplexes can be found using fixed point techniques. These 

completely labeled simplexes have the following connections 

to fixed points: 
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𝑔(𝑦) = {
𝑖  , 𝑖𝑓 𝑔𝑖(𝑦) > 𝑦𝑖 𝑎𝑛𝑑 𝑔𝑗(𝑦) ≤ 𝑦𝑗  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 < 𝑗

𝑛 + 1 , 𝑖𝑓 𝑔𝑗(𝑦) ≤ 𝑦𝑗  𝑓𝑜𝑟 𝑎𝑙𝑙   𝑗 = 1, … , 𝑛     .
 

 

Given a uniformly continuous mapping : 𝑅𝑛 → 𝑅𝑛 , and 

ε > 0 , we say 𝜕 is determined by ε and the uniform 

continuity of 𝑔 whenever ‖𝑦 −  𝑥‖  ≤ 𝜕 → ‖𝑔(𝑦) −
 𝑔(𝑥)‖ ≤ 𝜀  (here || · || denotes the max norm). 

 

 Theorem 1.1 

[Jeppson, 4] Let  𝑔: 𝑅𝑛 → 𝑅𝑛 be uniformly continuous 

on 𝑅𝑛, and ε > 0 be given. Let  𝑇 be a triangulation of 𝑅𝑛 

with diameter (mesh) δ , where 𝜕 is determined by ε and the 

uniform continuity of 𝑔 . Let ℓ: 𝑇0 → 𝐿  be the integer 

labeling defined above. Then for any completely labeled 

simplex = (𝑣1, … , 𝑣𝑛+1)  ∈  𝑇 , we have. 

 

𝑦 ∈  𝜎 → ‖𝑔(𝑦) −  𝑦‖ ≤ 𝜀 + 𝛿. 
 

 Proof: From the definition of ℓ we have 

 
𝑔𝑗(𝑥) − 𝑥𝑗 = 𝑔𝑗(𝑥) − 𝑔𝑗(𝑣𝑛+1) + 𝑔𝑗(𝑣𝑛+1) − 𝑣𝑗

𝑛+1 + 𝑣𝑗
𝑛+1 − 𝑥𝑗 

 

𝑔𝑗(𝑥) − 𝑥𝑗 ≤ 𝑔𝑗(𝑥) − 𝑔𝑗(𝑣𝑛+1) + 𝑣𝑗
𝑛+1 − 𝑥𝑗 ≤ 𝜀 + 𝛿 

 

Similarly 

 

𝑔𝑗(𝑥) − 𝑥𝑗 = 𝑔𝑗(𝑥) − 𝑔𝑗(𝑣𝑗) + 𝑔𝑗(𝑣𝑗) − 𝑣𝑗
𝑖 + 𝑣𝑗

𝑖 − 𝑥𝑗  

 

𝑔𝑗(𝑥) − 𝑥𝑗 ≥ 𝑔𝑗(𝑥) − 𝑔𝑗(𝑣𝑗) + 𝑣𝑗
𝑖 − 𝑥𝑗 ≥ −𝜀 − 𝛿 

 

Hence 

 
‖𝑔(𝑥) −  𝑥‖ ≤ 𝜀 + 𝛿. 

 

 Vector Labeling: 

Given a mapping  𝑔: 𝑅𝑛 → 𝑅𝑛 , and 𝐿 = 𝑅𝑛 ,by a vector 

labeling we mean the function. 
 

ℓ(𝑥) = 𝑔(𝑦) − 𝑦 

 

On the vertices 𝑦 𝑖𝑛 𝑇0 . The distinguished simplexes in 

this case are also called completely labeled, and are 

simplexes 𝜎 = (𝑣1, … , 𝑣𝑛+1) 𝑖𝑛  𝑇 such that 0 ∈  convex 

hull {ℓ(𝑣1), ℓ(𝑣2), … , ℓ(𝑣𝑛+1)}, i.e., the following system of 

equations. 

 

∑ 𝜆1ℓ(𝑣𝑖) = 0

𝑛+1

𝑖=1

 

 

∑ 𝜆1 = 1

𝑛+1

𝑖=1

 

 

𝜆𝑖 ≥ 0,   𝑖 = 1, … , 𝑛 + 1 
 

Has a solution. 

 

If 𝜎 is such a completely labeled simplex one define. 

 

𝑦∗ = ∑ 𝜆𝑖𝑣
𝑖

𝑛+1

𝑖=1

 

 

To be an approximate fixed point of 𝑔. The justification 

for calling 𝑦∗  an approximate fixed point of 𝑔 is the 

following : 

 

 Theorem 1.2 

Let 𝑔: 𝑅𝑛 → 𝑅𝑛 be uniformly continuous on 𝑅𝑛 , and let 

𝜀 > 0 be given . Let 𝑇 be a triangulation of 𝑅𝑛 with mesh 𝜕 

where 𝜕 is determined by 𝜀 and the uniform continuity of 𝑔. 

Let ℓ ∶ 𝑇0 → 𝐿  be the vector labeling defined above. Then 

for any completely labeled simplex 𝜎 = (𝑣1, … , 𝑣𝑛+1) ∈ 𝑇 

and any approximate fixed point 𝑦∗ ∈ 𝜎 we have. 

 
‖𝑔(𝑦∗) − 𝑦∗‖ ≤ 𝜀 

 

 Proof : Since  𝑦∗ ∈ 𝜎 = (𝑣1, … , 𝑣𝑛+1) we have 

 

−𝜀 ≤ 𝑔𝑗(𝑦∗) − 𝑔𝑗(𝑣𝑖) ≤ 𝜀 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 = 1, … , 𝑛 + 1. 

 

Hence 

 

−𝜀 ≤ 𝑔𝑗(𝑦∗) − ∑ 𝑔𝑗(𝑣𝑖)

𝑛+1

𝑖=1

≤ 𝜀 

 

But 

 

∑ 𝜆𝑖𝑔𝑗(𝑣𝑖)

𝑛+1

𝑖=1

= ∑ 𝜆𝑖𝑣𝑗
𝑖 = 𝑦𝑗

∗

𝑛+1

𝑖=1

 

 

 And the Result follows. 

The result of Theorem 1.2 can be considerably 

improved if 𝑔 is assumed to be twice continuously 

differentiable with 𝑔𝑗 , 𝑗 = 1, … , 𝑛 having bounded second 

derivatives ; i.e., there exists an 𝛼 > 0 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑔 𝑜𝑟 𝑗 =
1, … . , 𝑛 |𝑢𝑡𝐻𝑗(𝑦)𝑢| ≤ 𝛼||𝑢|| for all 𝑦 and 𝑢 in 𝑅𝑛 where 

𝐻𝑗(𝑦) is the Hessian of 𝑔𝑗𝑎𝑡 𝑦 . 

 

III. CONVERGENCE PROPERTIES 

 

The fixed point algorithms produce a sequence of 

approximate fixed points 𝑦𝑘 , k = 1,2,... on a sequence of 

grids of diameter  𝛿𝑘 , k = 1,2,.. such that the sequence 𝛿𝑘 

converges to zero. It can be readily shown (see in sec. 1st) 

that all cluster points of the sequence 𝑦 are fixed points of 𝑔. 
 

In this section we will show that the rate of convergence 

of the sequence 𝑦𝑘is, at least, linear. For this we make the 

following assumptions. 

 

 The sequence 𝑦𝑘converges to 𝑦∞. 

 𝑔 is twice continuously differentiable. 

 The matrix 𝐷(𝑔 − 𝐼)(𝑦∞) is nonsingular. (Here Dh is the 

Jacobian matrix of the mapping h and I is the identity 

map). 
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 The Hessian matrix 𝐻𝑗 of 𝑔𝑗, j = 1,…,n  has the property 

that  |𝑢𝑡𝐻𝑗(𝑦)𝑢| ≤ 𝛼||𝑢||2 for all 𝑢  and 𝑦. 

 

We are now ready to prove 

 

 Theorem 2.1:-   

Let the assumptions 2,1-2.4 hold on a sequence of 

approximate fixed points generated by a fixed point 

algorithm, and let ||𝑦𝑘 − 𝑔(𝑦𝑘)|| < 𝜃𝑘. Then, for large 

enough k , there is a 𝜌 > 0 Such that 
 

||𝑦𝑘 − 𝑦∞|| ≤ 𝜌𝜃𝑘. 
 

 Proof: 

Taking the second order Taylor's expansion of 𝑔𝑗 about 

𝑦∞, we get 

 

𝑔𝑗 (𝑦𝑘) = 𝑔𝑗(𝑦∞) + ∇𝑔𝑗(𝑦∞)(𝑦𝑘 − 𝑦∞) +
1

2
(𝑦𝑘 − 𝑦∞)𝑇𝐻𝑗 (𝑢)(𝑦𝑘 − 𝑦∞) 

 

Since 𝑦∞ is a fixed point of 𝑔, rewriting we get 

 

−
1

2
(𝑦𝑘 − 𝑦∞)𝑇𝐻𝑗(𝑢)(𝑦𝑘 − 𝑦∞) − 𝑦𝑘,𝑗 + 𝑔𝑗(𝑦𝑘) = −𝑦𝑘,𝑗 + 𝑦∞,𝑗 + (𝑦𝑘 − 𝑦∞)∇𝑔𝑗(𝑦∞) 

 

Or 
 

1

2
∝ ||𝑦𝑘 − 𝑦∞||2 + 𝜃𝑘 ≥ |(∇𝑔𝑗(𝑦∞) − 𝑒𝑗)(𝑦𝑘 − 𝑦∞)| 

 

Or 

 
1

2
∝ ||𝑦𝑘 − 𝑦∞||2 + 𝜃𝑘 ≥ ||𝐷(𝑔 − 𝐼)(𝑦∞)(𝑦𝑘 − 𝑦∞)|| 

 

Since 𝐴 = 𝐷(𝑔 − 𝐼)(𝑦∞) is nonsingular, there is a 𝜀 >
0 such that 

 

||𝐴 𝑢|| ≥ 𝜃||𝑢||. 
 

Hence , we obtain 

 

𝜃𝑘 ≥ 𝜃||𝑦𝑘 − 𝑦∞|| −
1

2
∝ ||𝑦𝑘 − 𝑦∞||2 

 

Since the sequence 𝑦𝑘 converges to 𝑦∞ , for large 

enough 𝑘 the quadratic term will be neglibible, giving the  

result with 𝜌 =
2

𝜃
· 

 

As is seen in section ist, 𝜃𝑘 can be computed as a 

function of 𝛿𝑘 and 𝜀𝑘 . Its exact form depends on the labeling 

and assumptions about the function. 

 

IV. TRIANGULATION 

 

In this part, we examine how triangulations affect the 

fixed point algorithm's effectiveness. More results will be 
reported elsewhere, and the ones we offer here are quite 

incomplete. 

 

We focus only on Merrill's [8] , Eaves and Saigal [2] 

algorithms. The following triangulation of 𝑅𝑛, which we'll 

refer to as 𝐻, was used by both of these algorithms. It's 

produced by choosing any positive real number 𝐷 at random. 

 

The set of all points in 𝑅𝑛 whose coordinates are integer 

multiples of 𝐷 constitutes the triangulation's vertices, or 𝐻0. 

Each simplex in 𝑇 has a pair (𝑣, 𝜋)  that uniquely represents 

it, 𝑤ℎ𝑒𝑟𝑒 𝑣 ∈ 𝐻0 and 𝜋 is a permutations of the values 

{1,2, … , 𝑛} . The vertices of the simplex are produced as 

follows given the pair (𝑣, 𝜋). 

 

ss 

 

 
 

Then 

 

(𝑣, 𝜋) = (𝑣1, 𝑣2, … , 𝑣𝑛+1) 𝑤ℎ𝑒𝑟𝑒 𝑣1 = 𝑣 
 
And 

 

𝑣𝑖+1 = 𝑣1 + 𝑄𝜋𝑖
,        𝑖 = 1,2, … , 𝑛. 

 

𝑤ℎ𝑒𝑟𝑒 𝑄𝜋𝑖
𝑖𝑠 𝑡ℎ𝑒 𝜋𝑖

𝑡ℎ column of 𝑄. 

 

When this triangulation is only applied to the unit cube 

𝐶 = {𝑥 ∈ 𝑅𝑛  |0 ≤ 𝑥𝑖 ≤ 1,    𝑖 = 1,2, … , 𝑛} it results in 𝑛! 
Simplexes in 𝐶. Figure 1 displays these Simplexes for the 

instance 𝑛 = 3. 

 

The six Simplexes in this instance are the convex hull of 

the points in the sets {1,2,4,5}, {3,6,7,8}, {2,3,4,8},
{2,3,6,8}, {2,4,5,8}, {2,5,6,8} respectively, since the vertices 

of 𝐶 are labeled as in Figure 1. 

 

 
Fig 1 Triangulation 
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𝐻 could be replaced with another triangulation of 𝑅𝑛 

called Kuhn [6]. This triangulation, which we refer to as 𝐼, 

was created as shown below. The vertices 𝐼0 of this 

triangulation are all vectors in 𝑅𝑛 whose coordinates are 

integer multiples of a positive real number 𝐷 (as in 𝐻 ). 

Every simplex in 𝐼 has a unique representation 
(𝑣, 𝜋) 𝑤ℎ𝑒𝑟𝑒 𝑣 ∈ 𝐼0   and 𝜋 is a permutations of the values 

{1,2, … , 𝑛}. The vertices of this triangulation are produced as 

follows given the pair (𝑣, 𝜋). 

 

Let 

 

 
 

Then 

 

(𝑣, 𝜋) = (𝑣1, 𝑣2, … , 𝑣𝑛+1) 𝑤ℎ𝑒𝑟𝑒 𝑣1 = 𝑣 
 

𝑣𝑖+1 = 𝑣1 + 𝑃𝜋𝑖
,        𝑖 = 1,2, … , 𝑛. 

 

𝑤ℎ𝑒𝑟𝑒 𝑃𝜋𝑖
𝑖𝑠 𝑡ℎ𝑒 𝜋𝑖

𝑡ℎ column of 𝑃. 

 

When this triangulation is limited to the unit cube 𝐶 , it 

also produces 𝑛! Simplexes. These Simplexes are depicted in 

Figure 2 for the scenario where 𝑛 = 3. (contrast with Figure 

1) 

 

 
Fig 2 Triangulation 

 

The six Simplexes of this triangulation of 𝐶  are 

𝐶{1,3,4,7}, {1,2,3,7}, {1,4,8,7}, {1,5,8,7},  {1,6,5,7}, {1,2,6,7}  
with the vertices of 𝐶  labeled in Figure 2. 

 

Now, we investigate how the triangulations 𝐻 and 𝐼  

affect the effectiveness of fixed point algorithms. It should be 

noted that the triangulation regulates the amount of effort 

required to move from 𝑦𝑘𝑡𝑜 𝑦𝑘+1  (in the sequence examined 

in 2). The fixed point algorithm pivots traverses numerous 

cubical regions of the space as it rotates over various 

Simplexes in 𝑅𝑛. By examining the effort needed to move 

through a cubical portion of the space, it is possible to 

determine the effort required to move through the space. This 

thus enables us to focus our research on how various 

triangulations of 𝐶 affect the amount of work needed to pivot 

across 𝐶 . The worst situation in both 𝐻 and 𝐼 is to pass 

through 𝑛! of these Simplexes. We now define a measure that 

appears to explain the behavior of the algorithm better than 

𝑛!. To accomplish this, we focus just on the cube 𝐶 and the 

triangulation caused by 𝐻 and  , which we will also refer to 

as 𝐻 and 𝐼, respectively. 

 

 Boundary Facets of a Triangulations of C:  

The facets of a triangulation of C that are on its 

boundary are said to be its boundary facets. 

 

 Simple Path in the Triangulation: 

Is a sequence of different facets with 𝜏𝑖 , 𝑖 = 0,1, … , 𝑘 

and different simplexes with 𝜎𝑖 , such that 𝜏𝑖−1𝑎𝑛𝑑 𝜏𝑖 are 

facets of 𝜎𝑖 , 𝑖 = 1,2, … , 𝑘. 
 

This path is described as being between 𝜏0 and 𝜏𝑘 and 

having length 𝑘. 

 

𝜏0, 𝜎1,
𝜏1, … , 𝜎𝑘 , 𝜏𝑘 

 

 Minimal Path between Boundary Facets:  

Given a pair of boundary facets 𝜏 and �̅� , by ℓ(𝜏, �̅�) we 

represent the length of the minimal length simple path 

between 𝜏 and �̅� in the triangulation. 

 

 Diameter (Dia) of the Triangulation:  

Is the maximal of ℓ(𝜏, �̅�) between any pair of boundary 

facets 𝜏 and �̅�. i.e., 

 

𝐷𝑖𝑎 =
max

𝜏, �̅�
(𝜏, �̅�) 

 

We propose that the effectiveness of the algorithm is 

controlled by the diameter of the induced triangulation of 𝐶. 

The triangulations 𝐻 and 𝐼 were implemented in Merrill's 
algorithm to test this. Starting from the same point in each 

algorithm, different problems were resolved utilizing both of 

them. It is pretty easy to calculate the diameters for both of 

these triangulations.  

 

 They are: 

Triangulation H I 

Diameter ≥ 𝑂(𝑛3) 𝑛(𝑛 − 1)

2
 

 

In Table 1(A), the outcomes of using these techniques to solve four nonlinear programming problems are compiled. The 

problems have dimensions of 5, 6, 8, and 15 respectively 
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Table 1(A) Techniques to Solve Four Nonlinear Programming Problems 

Dimension 

(𝒏) 

# starting points Triangulation Total Pivots for all 

starting points 
Ratio= 

𝑷𝒊𝒗𝒐𝒕𝒔 𝑯

𝑷𝒊𝒗𝒐𝒕𝒔 𝑰
 Ratio for each run 

5 8 𝐼 11,166 1.56 1.12-2.23 

  𝐻 17,416   

6 10 𝐼 14,964 2.94 1.66-4.65 

  𝐻 41,095   

8 6 𝐼 8,463 3.26 2.15-4.30 

  𝐻 27,590   

15 1 𝐼 990 3.59  

  𝐻 3,570   

 

Wilmuth [11] has discovered similar outcomes when 

comparing triangulations H and I in the Eaves and Saigal [2] 

technique. He figured out Scarf's [9] three economic 

equilibrium issues, which had dimensions 4, 7, and 9 in each 

case. These triangulations were also tested on a challenge 

supplied by Kellogg [5]. There are versions of this issue in 20 

and 80 dimensions. Merrill's algorithm continued to use the 

triangulations H and I. Table 1(B) provides a summary of the 

outcomes for the 20-dimensional problem. 

 
Table 1(B) 20 Dimensional Fixed Point Problem 

Run Starting point Pivots H Pivots I Pivots H 

Pivots I 

1 000...0 0 586 138 4.25 

2 111...1 1 1446 234 6.18 

3 -1 1 -1…-1 1 562 318 1.77 

4 -1-1-1…-1-1 2292 112 20.46 

5 -1-1-1-1-1 11111 -1-1…1 706 338 2.09 

6 1 11 -1-1-1 111…1 628 580 1.08 

7 11 -1 11 -1 … -1 262 310 0.85 

8 1 -1 1 -1 … -1 588 292 2.01 

 

The 80-dimensional problem's outcomes are particularly 

striking. Triangulation I, starting from the point (1,1,...,1,1), 

solved the problem in 2341 pivots (108.95 seconds on an 

IBM 370/68), whereas triangulation H did not reach the first 

level even after 49,000 pivots (40 minutes on an IBM 

370/68). With the beginning point, both parties were able to 

solve the one run (1,1,-1,1,1,-1,...,1). Triangulation I required 

4349 pivots compared to 14,988 for triangulation H, for a 

ratio of 3.42. Table 1(C) lists the additional triangulation I 

runs. 

 

Table 1(C) Triangulation 

Run Starting points # Pivots with I 

1 0,0,0,… 1413 

2 1,1,1,… 2341 

3 1,-1,1,… 4345 

4 -1,-1,1,1,-1,-1,… 4595 

5 0,-1,0,-1,… 2649 

6 11-1,11-1,.. 4349 

7 -1,-1,-1,… 1393 

8 -1,1,-1,1,… 4571 

 

V. CONCLUSION 

 
We have described the influence of labeling on the 

algorithm, the methods of convergence characteristics and 

the influence of triangulation, we have defined various 

theoretical measures of the efficiency of labeling and 

triangulation for computing fixed point. 
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