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Abstract: AI pathfinding is essential for autonomous transport and many other industries, for example, bot movement inside 

video games, navigation, and logistics in mapping applications. This paper compares DFS (depth-first search), BFS 

(breadth-first search), Dijkstra, and A* (A-star) algorithms. A* uses adaptive training to locate the direction needed to 

move from the start point to the endpoint, and proceeds to move only in that direction. Dijkstra and BFS expand in all 

directions, updating the least recent node in the case of BFS, or at random with Dijkstra. Lastly, DFS has a set algorithm 

with a priority of directions that update on the most recent node. The objective of pathfinding is to help the algorithm 

navigate from point A to point B in a manner where it does not cross obstacles, but still in the fastest time. Results are still 

ongoing in this ever-changing field; however, in conclusion, A* has proved to be the most efficient at balancing speed with 

results. Results from the analysis prove that A* was the fastest at completing the computing and traversing while loading 

the fewest number of nodes. DFS took the longest and Dijkstra loaded the most nodes and took the longest to compute. 
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I. INTRODUCTION 
 

It is fascinating to consider the methods with which 

autonomous vehicles navigate the same complexity that a 

human may operate with. AI pathfinding involves getting 

from one point to another and using the shortest route to get 

there to a location while avoiding programmed hazards and 

obstacles. A model is a process that is trained using data to 

run a task. Models are promoted to perform pathfinding by 

reward-based systems that give tokens to incentive behavior 

that matches what the user desires¹. Models are also based on 

algorithms that are the base for dictating what to do. In the 

case of A*, for example, the model is trained using 
parameters that are given by the algorithm. Programs such as 

DFS, BFS, Dijkstra, and A* all help onboard systems traverse 

mazes or new maps using step-by-step algorithms. Nodes are 

one point used in a pathfinding map that serves as a base 

location an algorithm can check. Nodes are core elements for 

exploring new terrain with autonomous vehicles and viewing 

their surroundings since they rely on nodes to plot points and 

designate a value for them for models to apply³. They are also 

essential in things like delivery, video game¹⁴ bot movement, 

shipping, and logistics. It is also a prevalent part of prominent 

fields including robotics such as drone routes¹⁵. How do 
different pathfinding algorithms compare in speed of 

computing and pathfinding efficiency? Pathfinding is 

important as it improves the efficiency of users of its products 

such as robot taxis⁸. Making it efficient not only saves time 

but also resources, freeing up more assets to do other work 

and also saving on fuel or battery charge in the case of 

autonomous cars². Having fast computing also is important 

with an algorithm, as it will take much less processing power 
when scaled up, and will work faster for much larger 

processes⁶. Make faster decisions and will use knowledge 

from their surroundings to look ahead and see variables 

such as the traffic around the car and make the decision 

that would save the most time while still being safe and 

making that call faster than a human driver. Pathfinding can 

also improve the accuracy of GPS systems that have already 

been established by updating and improving upon previously 

recorded data for example monitoring traffic levels for future 

reference daily by using sensors. We created a row-first 

search algorithm that linearly checks cells in a rectangular 

shape. Additionally, in the empirical section of this paper, we 
are comparing the speed of pathfinding a particular route is 

traversed with the percentage of nodes checked and the speed 

at which they are computed. There will be 3 sets of trials in 

the empirical analysis that determine the efficiency of each 

program on a randomly generated maze, using differing 

amounts of traffic. 

 

II. PATHFINDING MODELS 

 

History of previous key pathfinding models. Several 

pathfinding models have been used to complete tasks 
throughout history. These first started for basic logistics, but 

have adapted to work with the world we know today. This is 

important as it provides context for how each of these 

programs works and the importance of where they should be 

used. 
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BFS (breadth first search) was first explored in 1959 by 

E.F. Moore, as it found the shortest path inside a maze. BFS⁹ 
is one of the oldest algorithms that use fundamental 

principles. BFS searches for the nodes bordering those that 

have already been searched with a function of V+E, V 

demonstrated with the number of bordering vertices, and E 

being the edges between those vertices. Since in an open area, 

most of the exposed vertices are equivalent, it is still 

commonly used as the basis for tree structures which will then 

select a selection of the greater BFS area to search for the 

fastest path. 

 

DFS (depth-first search) was originally developed in the 
19th century by the French and was later implemented in 

1957 by Polish computer scientist Kazimierz Zarankiewicz, 

who used it to search graphs. It always expands the most 

recent nodes in the order of, left, down, right, and top. This is 

due to the directions being the reverse of the order they were 

added in. If not able to expand in one direction, DFS looks at 

the next one in the order until the solution is, filled¹⁷. DFS 

does not always return the fastest result and typically will 

have to check a large, wide range if the point is not to the left 

of it. “It is assumed that a Depth First search starts at A, the 

left edges in the given graph are chosen before right edges, 

and the search remembers previously-visited nodes, and it 
does not repeat them” (2, Kaur). Since edges and vertices are 

searched in one path, DFS’s time to compute can be 

simplified to E+V, where E is equivalent to the number of 

edges and V, the number of vertices. 

 

Dijkstra's algorithm was initially discovered by the 

Dutch computer scientist, Edsger Dijkstra, in 1959. It assigns 

a value to each node at random as well as a value for the 

connection to a new node which dictates which path will be 

selected. This requires viewing fewer areas than BFS and 

DFS in most areas. Dijkstra's time to compute can be 
simplified to E log(V), where E is the number of edges and V 

is the number of vertices. It branches out from a point of 

origin in all neighboring directions at the same pace, 

determined by the number of nodes. It is used to find the 

shortest path for many technology hardware components such 

as routers and sync connections between them. 

 

A* (A—star) was created during the Shakey project¹⁰ — 

a project that aimed to create a mobile robot that could 

navigate its surroundings. Essentially, A* is the same as 

Dijkstra in the way that it expands its search in all paths; 
however, it is different regarding how it rewards the 

movement of certain pathways. A* lengthens paths going 

away from the endpoint and lowers those going towards it (up 

until the point that no length is equivalent to 0 from any node) 

which helps the program find relevant pathways toward the 

end faster. This can be represented with the function f(n) = 

g(n) + h(n) where n is the next node g is the length of the node 

from the previous point (also known as the cost), h is the 

preferred reward that incentives paths going towards the start 

point. In conclusion, all of these show a varying degree of use 

and function as pathfinding models. This is shown by each 

having their technique and principle catered to a specific 
category. 

 

 
Fig 1: DFS Node Search Mapped on Grid 

 

 
Fig 2: Dijkstra node search mapped on grid 

 

 
Fig 3: BFS Node Search Mapped on Grid 
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Fig 4: A* Node Search Mapped on Grid 

 

III. APPLICATIONS 

 

Different pathfinding algorithms developed over time 

have varying uses. These can include from software to raw 

hardware purposes. 
 

BFS is an algorithm that serves many uses, especially 

for programs that require a detailed search of the targeted 

area. This is because it searches a larger radius than 

something like A* which only searches towards the end 

destination. It is also used in web crawlers which are models 

of websites laid out by web pages that the program can then 

sort through with pathfinding to find the easiest way to 

navigate within two points⁹; this is used commonly in social 

media algorithms to find the distance. BFS is also used to 

traverse unweighted graphs and map data in the same way. It 

is also used for routing to create a redundant system, as many 
outlets are identified. It is also used for basic video game 

pathfinding. BFS is a varied pathfinding algorithm. 

 

DFS pathfinding⁷ is used to search all points and find a 

route with minimal computing. It is used in mazes and 

topography, mapping altitudes as well. It has been used in 

areas where a whole plane needs to be filled such as planting 

crops. Moreover, DFS is also capable of solving sudoku and 

network topography, similar to BFS routing. Additionally, it 

can use topography to sort and determine various regions. It 

is also used to traverse tree models and section them¹³. This 
is used in forests in some cases to monitor health and reduce 

the risk of fires by identifying dry or dead trees. DFS has a 

use for finding redundant algorithms, and for identifying 

areas with certain characteristics within a provided sample. 

 

Dijkstra is used for many applications in pathfinding of 

all directions. It is used in GPS navigation for paths between 

maps. Furthermore, it is used for network routing to search in 

all directions and similarly in traffic management. Dijkstra is 

also very commonly used in game pathfinding⁴, as its circular 

search radius is important to locate where to go. This is 

effective as the simple pathfinding method requires fewer 
checks for node contact for larger distances, as the circular 

checking radius expands in all directions with distance. 

Dijkstra is an algorithm that is widely used to search for all 

directions. This application is specifically useful for 

monitoring distances between pre-disclosed routes such as 
with public roads¹⁸, railways¹², or flight paths to find the 

fastest distance between points. “Bachri et al. used the 

Dijkstra algorithm and node combination to find the shortest 

path in Geographical Information Systems where the result is 

with node combination and Dijkstra algorithm was succeeded 

in finding the optimal route in the case study route in Taman 

Sub-district, Sidoarjo Regency, East Java, Indonesia” (51, 

Pardede) 

 

A* is an application that has an increasing amount of 

uses in the present day. It is used in many programs such as 
mapping apps now to save space that is checked and factor in 

traffic. It is also considered in space exploration to calculate 

the orbit of planets during flight paths. A* is also used in 

many everyday uses and up-and-coming technology¹¹, being 

the standard for new autonomous vehicles and robots. A* 

Manhattan and A* Euclidean are two different popular 

algorithms of A* for specified tasks. A* Manhattan is a 

heuristic based on the sum of absolute differences of 

coordinates making it best suited for grids and city layout 

pathfinding. Conversely, A* Euclidean is a heuristic based on 

straight line distances between two points used in cases for 2d 

and 3d open environments, which allow diagonal movement. 
This indicates A* is a newer pathfinding algorithm with 

expanding possibilities. 

 

IV. ROW FIRST SEARCH 

 

RFS (row first search) is a linear pathfinding algorithm 

that we developed. It differs from other algorithms in terms 

of its linear search across rows over the whole select area 

even after locating the endpoint, for a thorough analysis of 

the possible paths. The program searches in rows across in 

this direction of the endpoint until it passes the x-axis point of 
the endpoint. Then, it moves either up or down in the 

direction of the endpoint until passing the y-axis of the 

endpoint. The results of these scanned pixels are then 

computed to find the route, similar to BFS. Concurrently, it is 

only able to analyze paths that have a straightforward 

approach toward the endpoint, not ones that go past it as those 

nodes are not scanned. RFS could be useful in scenarios with 

set rectangle-like shapes where every node can quickly be 

checked, such as in crop fields. 

 

 
Fig 5: RFS node search mapped on grid 
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In the future, RFS could be expanded on by adding a 

radius around the starting and ending points. Any path going 
behind these coordinates would be checked and therefore may 

not be solvable with the current model that was run. This 

radius could adapt depending on the length between the set 

points. Additionally, more focus could be put on prioritizing 

nodes toward the point, in an algorithm combining more 

through linear search with an adaptive algorithm such as A, 

allowing fewer nodes to be checked, which could enable RFS 

used in various applications. 

 

V. EMPIRICAL ANALYSIS 

 
Table 1 consists of 5 runs per trial, each with different 

conditions⁵. The conditions for the trial involve a trial area 

where the user begins starting at the bottom left and making 

their way to the top right. The user can move in all four 

directions as well as diagonally to the top right, top left, 

bottom right, and bottom left. Trial 1 consists of only barrier 

blocks that inhibit the path of movement through them. Trial 

2 has blocks that slow down the path of the user to a speed of 

50% normal when they are in contact. Trial 3 has on top of 
blocks that slow down the user by 55% also blocks that 

reduce the speed of movement by 75% when in contact. All 

the blocks are procedurally generated using noise rounded to 

a 0 or 1 value to around ¼ of the total pixel area each. The 

nodes modifier is trained to be punished for going 

onto slower tiled squares. 

 

Additionally, all trials were run on the same computer 

for computing consistency. The setup of noise allows for 

random variation, allowing for fair results across all 

algorithms. This allows the trials to mimic a random 2d grid 
of obstacles and varying traffic. This is applicable to 

navigation within a large city, where some areas can not be 

traversed such as buildings, and others such as intersections, 

have high traffic slowing down the time of crossing between 

points. The results depicted below were performed by each 

algorithm on a grid. 

 

Table 1: Results of Empirical Analysis 
 Computing Time (sec) Traversing Time (sec) Scanned Nodes (%) Nodes Checked (#) 

 T1 T2 T3 Avg T1 T2 T3 Avg T1 T2 T3 Avg T1 T2 T3 Avg 

A* 

Man. 

0.022 0.026 0.028 0.025 5.62 6.25 8.76 6.88 4.13 4.35 4.61 4.36 536 649 681 622 

A* Ecu. 0.024 0.027 0.028 0.026 6.23 7.34 9.18 7.58 5.34 6.08 6.49 5.97 842 972 1045 953 

Dijkstra 0.127 0.130 0.129 0.129 8.56 9.27 10.52 9.45 76.13 76.83 76.59 76.52 11486 11588 11490 11521 

RFS 0.062 0.063 0.063 0.063 7.43 8.18 9.64 8.42 33.88 34.97 34.62 34.49 5562 5682 5624 5623 

BFS 0.042 0.041 0.042 0.042 7.74 8.26 9.82 8.61 76.19 74.26 76.23 75.56 11262 10865 11306 11144 

DFS 0.027 0.027 0.027 0.027 126.52 152.78 173.85 151.05 30.26 31.05 30.85 30.72 4613 4686 4628 4642 

 

 Average results rounded to the thousandths for computing 

 Average results rounded to hundredths for traversing 

 Average results rounded to the hundredths of a percent for 

scanned nodes  

 Average results rounded to the nearest node 

 

 
Fig 6: Computing Time of Algorithms (Sec) 
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Fig 7: Avg Number of Nodes vs % Scanned of Algorithms 

 

The computing time shows algorithms that searched 

more nodes that were irrelevant towards the position of the 

ending node took longer to compute. The computing time 

shows that Dijkstra took the longest along across all the 

algorithms, with an average of 0.129 seconds. This is because, 

on a rectangular grid, Dijkstra searches mostly towards the 

axes of the starting node, farthest from an end path node 

that is Orthodiagonal, and had to search all nodes to find 

the ending path. RFS took the second longest as it had to 

compute many terms in an ordered list before checking every 
time if it had exceeded the limit past the endpoint. This was 

contrasted by BFS which searched with an arc toward the 

end node and did not have to frequently check leading to 

faster computing time. DFS was faster than BFS as it was able 

to not have to continuously check for position while scanning 

nodes, and had to continue on a linear path. Both A* 

algorithm variations were the fastest, with A* Manhattan 

being the fastest with an average of 0.025 seconds. A* in 

particular was able to adapt to the slower nodes that were 

added as it was able to factor them into its distancing height 

map and was trained to avoid them, making computing faster. 

This also meant the breadth of the A* path was wider, due to 

the interruptions discouraging certain paths of the path; it was 

therefore more branched out. This led to A* having a 

significantly varying number of nodes checked, from 536 to 

1045. Furthermore, accounting for the speed of the node in 
A* made its computing speed slower than DFS (due to 

calculations having to be made using the height map) on the 

third trial even though DFS searched more than 4500 nodes 

compared to the two A* algorithms searching less than 1000 

nodes on average. 

 

 
Fig 8: Traversing Time of Algorithms (sec) 
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The traversing time was largely impacted by the amount 

of traffic, with each consecutive trial having more traffic and 
therefore taking longer to traverse. The amount of time it took 

to navigate the grid was highest for DFS by a large margin 

due to the linear pattern of its search going through every 

possible path to the left of the shortest one. Dijkstra took an 

average of 9.45 seconds per path, due to it not scanning all 

the nodes around the finishing node, only allowing it to 

find paths that approached  in one  direction to the final 

node. Likewise, this was seen with RFS and BFS which 

scanned a similar set of nodes approaching primarily from 

one expected path, leading to close results in terms of speed. 

A* Manhattan was fastest with an average time of 6.88 and 
trial 1 had the fastest time of 5.26 seconds. A* Euclidean had 

an average of 7.58 seconds due to less punishment in the 

model for diverting routes compared to Manhattan. The 

height map-like reward systems for the A* allowed them to 

have the fastest traversing speeds by searching the most 

crucial nodes to the fastest path. A* was generally able to 

perform the best in all categories as it was best suited for a 

grid-like pathfinding simulation. A paper from Trilogi 

University16 found similar results when comparing BFS, A*, 

and Dijkstra. On their second level of pathfinding on a 2d 

grid, A* scanned the least nodes, less than 23 than that of BFS 

and Dijkstra and was the fastest to compute while still finding 
the optimal solution. “A* is the best algorithm in pathfinding, 

especially in Maze game/grids. This is supported by the 

minimal computing process needed and a relatively short 

searching time” (6, Permana). 

 

The results also demonstrate RFS to be a viable 

contender for a linear searching algorithm. This is because it 

checks the area of the nodes completely between the two 

points rather than A* which uses an adaptive path. This is 

useful for applications in areas where mistakes can afford to 

be made, such as probe surgery. RFS also had the best 
traveling time with the exclusion of A* and would be closer 

to it in speed given more training with the node network. On 

average, it was noticed to have a slower learning curve than 

the other models with the node network. This was probably 

due to the large amounts of nodes it would repetitively scan 

each time, most of which were irrelevant to the solution. 

 

VI. CONCLUSION 

 

Pathfinding algorithms contrast in speed of computing 

and pathfinding efficiency. They use many different models 
and training sets to realize what they are. They also each have 

designated uses tailored to what they are required for. The 

algorithms of DFS, BFS, Dijkstra, and A* have allowed many 

advancements in the field of pathfinding and the applications 

they are suited to. The results show that A* was the fastest 

algorithm with DFS and Dijkstra having elements of the 

slowest. They also displayed how RFS could be a viable 

algorithm to expand on for thorough linear search purposes. 

RFS could be expanded upon by making the algorithm use 

elements of A* to not search nodes that were straying too far 

from the endpoint, while still maintaining a row-by-row 

linear search for fast computing. These results highlighted the 
navigation of traffic changing the pace of computing and 

traversing time. This was applicable as it could highlight the 

need for different pathfinding models for different regions, as 

this empirical analysis was mostly testing an environment 
similar to that of a city. Testing also showed how all 

algorithms met previous expectations outlined for their uses, 

reinforcing their importance in their sectors. In the future, 

these algorithms could be advanced by searching fewer 

nodes, which would reduce computation time, and this could 

be implemented with more node network training data to have 

more experienced programs. Additionally, punishments and 

rewards during training could be increased to have the 

programs only search the proper nodes necessary for the 

optimal path. Moreover, in different scenarios, such as in 3d 

and in cases where nodes are arranged in various angles. 
There could be more emphasis placed on the grid-like 

training, to have programs familiar with basic pathfinding 

which can be applied to different scenarios, possibly through 

machine learning. How will these algorithms be advanced in 

the future⁶ and how might they shape our understanding of 

how to best navigate from point A to B? How will the 

introduction of new software such as enhanced machine 

learning affect the needs for these algorithms to fulfill in the 

forthcoming years? 
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