
Volume 10, Issue 2, February – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.5281/zenodo.14915594

IJISRT25FEB493 www.ijisrt.com 360

Evaluating the Computational Efficiency and

Precision of Pathfinding Algorithms

Atharv Patil1

1University of North Carolina at Charlotte

Publication Date: 2025/02/24

Abstract: AI pathfinding is essential for autonomous transport and many other industries, for example, bot movement inside

video games, navigation, and logistics in mapping applications. This paper compares DFS (depth-first search), BFS

(breadth-first search), Dijkstra, and A* (A-star) algorithms. A* uses adaptive training to locate the direction needed to

move from the start point to the endpoint, and proceeds to move only in that direction. Dijkstra and BFS expand in all

directions, updating the least recent node in the case of BFS, or at random with Dijkstra. Lastly, DFS has a set algorithm

with a priority of directions that update on the most recent node. The objective of pathfinding is to help the algorithm

navigate from point A to point B in a manner where it does not cross obstacles, but still in the fastest time. Results are still

ongoing in this ever-changing field; however, in conclusion, A* has proved to be the most efficient at balancing speed with

results. Results from the analysis prove that A* was the fastest at completing the computing and traversing while loading

the fewest number of nodes. DFS took the longest and Dijkstra loaded the most nodes and took the longest to compute.

How to Cite: Atharv Patil. (2025). Evaluating the Computational Efficiency and Precision of Pathfinding Algorithms. International

Journal of Innovative Science and Research Technology, 10(2), 360-367.

https://doi.org/10.5281/zenodo.14915594.

I. INTRODUCTION

It is fascinating to consider the methods with which

autonomous vehicles navigate the same complexity that a

human may operate with. AI pathfinding involves getting

from one point to another and using the shortest route to get

there to a location while avoiding programmed hazards and

obstacles. A model is a process that is trained using data to

run a task. Models are promoted to perform pathfinding by

reward-based systems that give tokens to incentive behavior

that matches what the user desires¹. Models are also based on

algorithms that are the base for dictating what to do. In the

case of A*, for example, the model is trained using
parameters that are given by the algorithm. Programs such as

DFS, BFS, Dijkstra, and A* all help onboard systems traverse

mazes or new maps using step-by-step algorithms. Nodes are

one point used in a pathfinding map that serves as a base

location an algorithm can check. Nodes are core elements for

exploring new terrain with autonomous vehicles and viewing

their surroundings since they rely on nodes to plot points and

designate a value for them for models to apply³. They are also

essential in things like delivery, video game¹⁴ bot movement,

shipping, and logistics. It is also a prevalent part of prominent

fields including robotics such as drone routes¹⁵. How do
different pathfinding algorithms compare in speed of

computing and pathfinding efficiency? Pathfinding is

important as it improves the efficiency of users of its products

such as robot taxis⁸. Making it efficient not only saves time

but also resources, freeing up more assets to do other work

and also saving on fuel or battery charge in the case of

autonomous cars². Having fast computing also is important

with an algorithm, as it will take much less processing power
when scaled up, and will work faster for much larger

processes⁶. Make faster decisions and will use knowledge

from their surroundings to look ahead and see variables

such as the traffic around the car and make the decision

that would save the most time while still being safe and

making that call faster than a human driver. Pathfinding can

also improve the accuracy of GPS systems that have already

been established by updating and improving upon previously

recorded data for example monitoring traffic levels for future

reference daily by using sensors. We created a row-first

search algorithm that linearly checks cells in a rectangular

shape. Additionally, in the empirical section of this paper, we
are comparing the speed of pathfinding a particular route is

traversed with the percentage of nodes checked and the speed

at which they are computed. There will be 3 sets of trials in

the empirical analysis that determine the efficiency of each

program on a randomly generated maze, using differing

amounts of traffic.

II. PATHFINDING MODELS

History of previous key pathfinding models. Several

pathfinding models have been used to complete tasks
throughout history. These first started for basic logistics, but

have adapted to work with the world we know today. This is

important as it provides context for how each of these

programs works and the importance of where they should be

used.

https://doi.org/10.5281/zenodo.14915594
http://www.ijisrt.com/
https://doi.org/10.5281/zenodo.14915594

Volume 10, Issue 2, February – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.5281/zenodo.14915594

IJISRT25FEB493 www.ijisrt.com 361

BFS (breadth first search) was first explored in 1959 by

E.F. Moore, as it found the shortest path inside a maze. BFS⁹
is one of the oldest algorithms that use fundamental

principles. BFS searches for the nodes bordering those that

have already been searched with a function of V+E, V

demonstrated with the number of bordering vertices, and E

being the edges between those vertices. Since in an open area,

most of the exposed vertices are equivalent, it is still

commonly used as the basis for tree structures which will then

select a selection of the greater BFS area to search for the

fastest path.

DFS (depth-first search) was originally developed in the
19th century by the French and was later implemented in

1957 by Polish computer scientist Kazimierz Zarankiewicz,

who used it to search graphs. It always expands the most

recent nodes in the order of, left, down, right, and top. This is

due to the directions being the reverse of the order they were

added in. If not able to expand in one direction, DFS looks at

the next one in the order until the solution is, filled¹⁷. DFS

does not always return the fastest result and typically will

have to check a large, wide range if the point is not to the left

of it. “It is assumed that a Depth First search starts at A, the

left edges in the given graph are chosen before right edges,

and the search remembers previously-visited nodes, and it
does not repeat them” (2, Kaur). Since edges and vertices are

searched in one path, DFS’s time to compute can be

simplified to E+V, where E is equivalent to the number of

edges and V, the number of vertices.

Dijkstra's algorithm was initially discovered by the

Dutch computer scientist, Edsger Dijkstra, in 1959. It assigns

a value to each node at random as well as a value for the

connection to a new node which dictates which path will be

selected. This requires viewing fewer areas than BFS and

DFS in most areas. Dijkstra's time to compute can be
simplified to E log(V), where E is the number of edges and V

is the number of vertices. It branches out from a point of

origin in all neighboring directions at the same pace,

determined by the number of nodes. It is used to find the

shortest path for many technology hardware components such

as routers and sync connections between them.

A* (A—star) was created during the Shakey project¹⁰ —

a project that aimed to create a mobile robot that could

navigate its surroundings. Essentially, A* is the same as

Dijkstra in the way that it expands its search in all paths;
however, it is different regarding how it rewards the

movement of certain pathways. A* lengthens paths going

away from the endpoint and lowers those going towards it (up

until the point that no length is equivalent to 0 from any node)

which helps the program find relevant pathways toward the

end faster. This can be represented with the function f(n) =

g(n) + h(n) where n is the next node g is the length of the node

from the previous point (also known as the cost), h is the

preferred reward that incentives paths going towards the start

point. In conclusion, all of these show a varying degree of use

and function as pathfinding models. This is shown by each

having their technique and principle catered to a specific
category.

Fig 1: DFS Node Search Mapped on Grid

Fig 2: Dijkstra node search mapped on grid

Fig 3: BFS Node Search Mapped on Grid

https://doi.org/10.5281/zenodo.14915594
http://www.ijisrt.com/

Volume 10, Issue 2, February – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.5281/zenodo.14915594

IJISRT25FEB493 www.ijisrt.com 362

Fig 4: A* Node Search Mapped on Grid

III. APPLICATIONS

Different pathfinding algorithms developed over time

have varying uses. These can include from software to raw

hardware purposes.

BFS is an algorithm that serves many uses, especially

for programs that require a detailed search of the targeted

area. This is because it searches a larger radius than

something like A* which only searches towards the end

destination. It is also used in web crawlers which are models

of websites laid out by web pages that the program can then

sort through with pathfinding to find the easiest way to

navigate within two points⁹; this is used commonly in social

media algorithms to find the distance. BFS is also used to

traverse unweighted graphs and map data in the same way. It

is also used for routing to create a redundant system, as many
outlets are identified. It is also used for basic video game

pathfinding. BFS is a varied pathfinding algorithm.

DFS pathfinding⁷ is used to search all points and find a

route with minimal computing. It is used in mazes and

topography, mapping altitudes as well. It has been used in

areas where a whole plane needs to be filled such as planting

crops. Moreover, DFS is also capable of solving sudoku and

network topography, similar to BFS routing. Additionally, it

can use topography to sort and determine various regions. It

is also used to traverse tree models and section them¹³. This
is used in forests in some cases to monitor health and reduce

the risk of fires by identifying dry or dead trees. DFS has a

use for finding redundant algorithms, and for identifying

areas with certain characteristics within a provided sample.

Dijkstra is used for many applications in pathfinding of

all directions. It is used in GPS navigation for paths between

maps. Furthermore, it is used for network routing to search in

all directions and similarly in traffic management. Dijkstra is

also very commonly used in game pathfinding⁴, as its circular

search radius is important to locate where to go. This is

effective as the simple pathfinding method requires fewer
checks for node contact for larger distances, as the circular

checking radius expands in all directions with distance.

Dijkstra is an algorithm that is widely used to search for all

directions. This application is specifically useful for

monitoring distances between pre-disclosed routes such as
with public roads¹⁸, railways¹², or flight paths to find the

fastest distance between points. “Bachri et al. used the

Dijkstra algorithm and node combination to find the shortest

path in Geographical Information Systems where the result is

with node combination and Dijkstra algorithm was succeeded

in finding the optimal route in the case study route in Taman

Sub-district, Sidoarjo Regency, East Java, Indonesia” (51,

Pardede)

A* is an application that has an increasing amount of

uses in the present day. It is used in many programs such as
mapping apps now to save space that is checked and factor in

traffic. It is also considered in space exploration to calculate

the orbit of planets during flight paths. A* is also used in

many everyday uses and up-and-coming technology¹¹, being

the standard for new autonomous vehicles and robots. A*

Manhattan and A* Euclidean are two different popular

algorithms of A* for specified tasks. A* Manhattan is a

heuristic based on the sum of absolute differences of

coordinates making it best suited for grids and city layout

pathfinding. Conversely, A* Euclidean is a heuristic based on

straight line distances between two points used in cases for 2d

and 3d open environments, which allow diagonal movement.
This indicates A* is a newer pathfinding algorithm with

expanding possibilities.

IV. ROW FIRST SEARCH

RFS (row first search) is a linear pathfinding algorithm

that we developed. It differs from other algorithms in terms

of its linear search across rows over the whole select area

even after locating the endpoint, for a thorough analysis of

the possible paths. The program searches in rows across in

this direction of the endpoint until it passes the x-axis point of
the endpoint. Then, it moves either up or down in the

direction of the endpoint until passing the y-axis of the

endpoint. The results of these scanned pixels are then

computed to find the route, similar to BFS. Concurrently, it is

only able to analyze paths that have a straightforward

approach toward the endpoint, not ones that go past it as those

nodes are not scanned. RFS could be useful in scenarios with

set rectangle-like shapes where every node can quickly be

checked, such as in crop fields.

Fig 5: RFS node search mapped on grid

https://doi.org/10.5281/zenodo.14915594
http://www.ijisrt.com/

Volume 10, Issue 2, February – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.5281/zenodo.14915594

IJISRT25FEB493 www.ijisrt.com 363

In the future, RFS could be expanded on by adding a

radius around the starting and ending points. Any path going
behind these coordinates would be checked and therefore may

not be solvable with the current model that was run. This

radius could adapt depending on the length between the set

points. Additionally, more focus could be put on prioritizing

nodes toward the point, in an algorithm combining more

through linear search with an adaptive algorithm such as A,

allowing fewer nodes to be checked, which could enable RFS

used in various applications.

V. EMPIRICAL ANALYSIS

Table 1 consists of 5 runs per trial, each with different

conditions⁵. The conditions for the trial involve a trial area

where the user begins starting at the bottom left and making

their way to the top right. The user can move in all four

directions as well as diagonally to the top right, top left,

bottom right, and bottom left. Trial 1 consists of only barrier

blocks that inhibit the path of movement through them. Trial

2 has blocks that slow down the path of the user to a speed of

50% normal when they are in contact. Trial 3 has on top of
blocks that slow down the user by 55% also blocks that

reduce the speed of movement by 75% when in contact. All

the blocks are procedurally generated using noise rounded to

a 0 or 1 value to around ¼ of the total pixel area each. The

nodes modifier is trained to be punished for going

onto slower tiled squares.

Additionally, all trials were run on the same computer

for computing consistency. The setup of noise allows for

random variation, allowing for fair results across all

algorithms. This allows the trials to mimic a random 2d grid
of obstacles and varying traffic. This is applicable to

navigation within a large city, where some areas can not be

traversed such as buildings, and others such as intersections,

have high traffic slowing down the time of crossing between

points. The results depicted below were performed by each

algorithm on a grid.

Table 1: Results of Empirical Analysis
 Computing Time (sec) Traversing Time (sec) Scanned Nodes (%) Nodes Checked (#)

 T1 T2 T3 Avg T1 T2 T3 Avg T1 T2 T3 Avg T1 T2 T3 Avg

A*

Man.

0.022 0.026 0.028 0.025 5.62 6.25 8.76 6.88 4.13 4.35 4.61 4.36 536 649 681 622

A* Ecu. 0.024 0.027 0.028 0.026 6.23 7.34 9.18 7.58 5.34 6.08 6.49 5.97 842 972 1045 953

Dijkstra 0.127 0.130 0.129 0.129 8.56 9.27 10.52 9.45 76.13 76.83 76.59 76.52 11486 11588 11490 11521

RFS 0.062 0.063 0.063 0.063 7.43 8.18 9.64 8.42 33.88 34.97 34.62 34.49 5562 5682 5624 5623

BFS 0.042 0.041 0.042 0.042 7.74 8.26 9.82 8.61 76.19 74.26 76.23 75.56 11262 10865 11306 11144

DFS 0.027 0.027 0.027 0.027 126.52 152.78 173.85 151.05 30.26 31.05 30.85 30.72 4613 4686 4628 4642

 Average results rounded to the thousandths for computing

 Average results rounded to hundredths for traversing

 Average results rounded to the hundredths of a percent for

scanned nodes

 Average results rounded to the nearest node

Fig 6: Computing Time of Algorithms (Sec)

https://doi.org/10.5281/zenodo.14915594
http://www.ijisrt.com/

Volume 10, Issue 2, February – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.5281/zenodo.14915594

IJISRT25FEB493 www.ijisrt.com 364

Fig 7: Avg Number of Nodes vs % Scanned of Algorithms

The computing time shows algorithms that searched

more nodes that were irrelevant towards the position of the

ending node took longer to compute. The computing time

shows that Dijkstra took the longest along across all the

algorithms, with an average of 0.129 seconds. This is because,

on a rectangular grid, Dijkstra searches mostly towards the

axes of the starting node, farthest from an end path node

that is Orthodiagonal, and had to search all nodes to find

the ending path. RFS took the second longest as it had to

compute many terms in an ordered list before checking every
time if it had exceeded the limit past the endpoint. This was

contrasted by BFS which searched with an arc toward the

end node and did not have to frequently check leading to

faster computing time. DFS was faster than BFS as it was able

to not have to continuously check for position while scanning

nodes, and had to continue on a linear path. Both A*

algorithm variations were the fastest, with A* Manhattan

being the fastest with an average of 0.025 seconds. A* in

particular was able to adapt to the slower nodes that were

added as it was able to factor them into its distancing height

map and was trained to avoid them, making computing faster.

This also meant the breadth of the A* path was wider, due to

the interruptions discouraging certain paths of the path; it was

therefore more branched out. This led to A* having a

significantly varying number of nodes checked, from 536 to

1045. Furthermore, accounting for the speed of the node in
A* made its computing speed slower than DFS (due to

calculations having to be made using the height map) on the

third trial even though DFS searched more than 4500 nodes

compared to the two A* algorithms searching less than 1000

nodes on average.

Fig 8: Traversing Time of Algorithms (sec)

https://doi.org/10.5281/zenodo.14915594
http://www.ijisrt.com/

Volume 10, Issue 2, February – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.5281/zenodo.14915594

IJISRT25FEB493 www.ijisrt.com 365

The traversing time was largely impacted by the amount

of traffic, with each consecutive trial having more traffic and
therefore taking longer to traverse. The amount of time it took

to navigate the grid was highest for DFS by a large margin

due to the linear pattern of its search going through every

possible path to the left of the shortest one. Dijkstra took an

average of 9.45 seconds per path, due to it not scanning all

the nodes around the finishing node, only allowing it to

find paths that approached in one direction to the final

node. Likewise, this was seen with RFS and BFS which

scanned a similar set of nodes approaching primarily from

one expected path, leading to close results in terms of speed.

A* Manhattan was fastest with an average time of 6.88 and
trial 1 had the fastest time of 5.26 seconds. A* Euclidean had

an average of 7.58 seconds due to less punishment in the

model for diverting routes compared to Manhattan. The

height map-like reward systems for the A* allowed them to

have the fastest traversing speeds by searching the most

crucial nodes to the fastest path. A* was generally able to

perform the best in all categories as it was best suited for a

grid-like pathfinding simulation. A paper from Trilogi

University16 found similar results when comparing BFS, A*,

and Dijkstra. On their second level of pathfinding on a 2d

grid, A* scanned the least nodes, less than 23 than that of BFS

and Dijkstra and was the fastest to compute while still finding
the optimal solution. “A* is the best algorithm in pathfinding,

especially in Maze game/grids. This is supported by the

minimal computing process needed and a relatively short

searching time” (6, Permana).

The results also demonstrate RFS to be a viable

contender for a linear searching algorithm. This is because it

checks the area of the nodes completely between the two

points rather than A* which uses an adaptive path. This is

useful for applications in areas where mistakes can afford to

be made, such as probe surgery. RFS also had the best
traveling time with the exclusion of A* and would be closer

to it in speed given more training with the node network. On

average, it was noticed to have a slower learning curve than

the other models with the node network. This was probably

due to the large amounts of nodes it would repetitively scan

each time, most of which were irrelevant to the solution.

VI. CONCLUSION

Pathfinding algorithms contrast in speed of computing

and pathfinding efficiency. They use many different models
and training sets to realize what they are. They also each have

designated uses tailored to what they are required for. The

algorithms of DFS, BFS, Dijkstra, and A* have allowed many

advancements in the field of pathfinding and the applications

they are suited to. The results show that A* was the fastest

algorithm with DFS and Dijkstra having elements of the

slowest. They also displayed how RFS could be a viable

algorithm to expand on for thorough linear search purposes.

RFS could be expanded upon by making the algorithm use

elements of A* to not search nodes that were straying too far

from the endpoint, while still maintaining a row-by-row

linear search for fast computing. These results highlighted the
navigation of traffic changing the pace of computing and

traversing time. This was applicable as it could highlight the

need for different pathfinding models for different regions, as

this empirical analysis was mostly testing an environment
similar to that of a city. Testing also showed how all

algorithms met previous expectations outlined for their uses,

reinforcing their importance in their sectors. In the future,

these algorithms could be advanced by searching fewer

nodes, which would reduce computation time, and this could

be implemented with more node network training data to have

more experienced programs. Additionally, punishments and

rewards during training could be increased to have the

programs only search the proper nodes necessary for the

optimal path. Moreover, in different scenarios, such as in 3d

and in cases where nodes are arranged in various angles.
There could be more emphasis placed on the grid-like

training, to have programs familiar with basic pathfinding

which can be applied to different scenarios, possibly through

machine learning. How will these algorithms be advanced in

the future⁶ and how might they shape our understanding of

how to best navigate from point A to B? How will the

introduction of new software such as enhanced machine

learning affect the needs for these algorithms to fulfill in the

forthcoming years?

ACKNOWLEDGMENTS

We would like to thank Dr. Srikanth Krishnan for his

help on this project as well as Billy Gao.

REFERENCES

[1]. Morgan, Graham, et al. “Game Engineering -

Newcastle University.” 2: Pathfinding; Game

Engineering;, Newcastle University,

research.ncl.ac.uk/game/mastersdegree/gamete

chnologies/aitutorials/2pathfinding/. Accessed 2 Aug.

2024.
https://research.ncl.ac.uk/game/mastersdegree/gamet

echnologies/aitutorials/2pathfinding/AI%2020Simple

%20Pathfinding.pdf

[2]. Team, Lark Editorial. “Some Common Pathfinding

Algorithms.” Lark, Lark Suite, 26 Dec. 2023,

www.larksuite.com/en_us/topics/ai-glossary/some-

common-pathfinding-algorithms.

https://www.larksuite.com/en_us/topics/ai-glos

sary/some-common-pathfinding-algorithms AI,

Pathfinding, algorithms This article talked about the

history and use of pathfinding programs. It also
mentioned how they work with the pros and cons

provided.

[3]. Botea, Adi, et al. “Pathfinding in Games.” DROPS,

drops.dagstuhl.de/entities/document/10.4230/D

FU.Vol6.12191.21. Accessed 25 July 2024.

https://drops.dagstuhl.de/entities/document/10.

4230/DFU.Vol6.12191.21. Pathfinding, Games, AI

Talks about the use of pathfinding for bot characters

in commercial games. Also mentions the main

elements of a basic approach to pathfinding which

includes having a map, ways to sense surroundings,

and an algorithm to be the brain and evaluate the
action.

https://doi.org/10.5281/zenodo.14915594
http://www.ijisrt.com/
http://www.larksuite.com/en_us/topics/ai-glossary/so
http://www.larksuite.com/en_us/topics/ai-glos
https://drops.dagstuhl.de/entities/document/10.%204230/DFU.Vol6.12191.21
https://drops.dagstuhl.de/entities/document/10.%204230/DFU.Vol6.12191.21

Volume 10, Issue 2, February – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.5281/zenodo.14915594

IJISRT25FEB493 www.ijisrt.com 366

[4]. Graham, Ross, et al. “Pathfinding in Computer

Games.” ARROW@TU Dublin,
arrow.tudublin.ie/itbj/vol4/iss2/6/. Accessed 2. Aug.

2024. https://arrow.tudublin.ie/itbj/vol4/iss2/6/

Computer, Pathfinding This article is about the design

of AI pathfinding technologies concerning game

design. Use of top-down simulations similar to my part

of the secondary data analysis.

[5]. “Pathfinding Using AI Algorithms.” Baza Wiedzy

Politechniki Warszawskiej, 1 Jan.

1970,repo.pw.edu.pl/info/bachelor/WUTc1a5c774c8

442e78b129cbde56fc1fa/.

https://www.google.com/url?sa=t&rct=j&q=&e
src=s&source=web&cd=&ved=2ahUKEwj47J

SAxNWHAxV2STABHauKEX0QFnoECBUQAQ&

url=https%3A%2F%2Frepo.pw.edu.pl%2Fdocstore

%2Fdownload%2FWUT8aeb20bbb6

964b7da1cfefbf2e370139%2F1-s2.0-

S0952197617301227-

main.pdf&usg=AOvVaw15nWVV

ZFQgr6W7gB91Mc7s&opi=89978449 Neural

Network, AI Talks about the detection of body parts

which is useful in being able to differentiate different

objects when pathfinding. It also provides a graph on

the tree of detection.
[6]. Stout, Bryan. “Smart Moves: Intelligent Pathfinding.”

Gamasutra - Smart Moves: Intelligent Pathfinding,

Game Developer Magazine, July 1997,

folk.idi.ntnu.no/agnar/it272/pekere/local/pathfi

nding.htm. Pathfinding, Algorithms Shows the

differences in training costs for maneuvering models

around obstacles. Demonstrates how pathfinding logic

of punishments and incentives work to change.

[7]. Anisyah, Ani Siti, et al. “Route Optimization

Movement of Tugboat with A∗ Tactical Pathfinding in
Spin 3D Simulation | Request PDF.”

Researchgate.Net, research gate, Dec. 2015,

www.researchgate.net/publication/307802157_Route

_optimization_movement_of_tugboat_with_A_tactic

al_pathfinding_in_SPIN_3D_simulation.

Pathfinding, Reward Systems, Simulation

Demonstrates the optimization of a tugboat using A*.

This is shown by using fuel as a punishment to

influence the tugboat to choose the shortest path.

[8]. “View of Cooperative Pathfinding.” Aaai.org, 2024,

ojs.aaai.org/index.php/AIIDE/article/view/1872

6/18503. Accessed 10 Aug. 2024. Pathfinding,
Collective This paper shows the difference in different

pathfinding algorithms of A*. Demonstrates the

difference within variations of incentive models,

including Manhattan and Elucid.

[9]. Geeks for Geeks. “Breadth First Search or BFS for a

Graph.” Geeks for Geeks, Geeks for Geeks, 20 Mar.

2012, www.geeksforgeeks.org/breadth-first-search-

or-bfs-for-a-graph/. Accessed 10 Aug. 2024.

Algorithms, Pathfinding Shows the time necessity as

a punishment/reward for BFS. Also provides code in

various languages for BFS to disclose how the reward
system works while using a node map to simplify the

algorithm.

[10]. Wikipedia Contributors. “A* Search Algorithm.”

Wikipedia, Wikimedia Foundation, 28 June 2024,
en.wikipedia.org/wiki/A*_search_algorithm#:~:text=

13%20External%20links-,Histo

ry,algorithm%20for%20Shakey’s%20path%2

0planning. Accessed 10 Aug. 2024. Algorithm,

Formula Gives the mathematical equation for A* and

the history of the development. Also provides more

understanding of path trees and the reward and search

system of A*.

[11]. Aglubagerry. “A* Search Real-Life Application.”

Medium, Medium, 10 Oct. 2023,

medium.com/@aglubagerry/a-search-re al-life-
application-2bd175624952. Algorithm, Applications

Provides examples of the real-life applications of A*.

Also depicts how A* is used in specific cases and how

it is essential to those tasks.

[12]. Schulz, Frank & Wagner, Dorothea & Weihe, Karsten.

(1999). Dijkstra’s Algorithm On-Line: An Empirical

Case Study from Public Railroad Transport.

Algorithm Engineering. 1668. 110-123. 10.1007/3-

540-48318-7_11. Algorithm, Applications,

Pathfinding Compare the distances with the

pathfinding of German public railroads. Describes the

application of Dijkstra's algorithm in this use case.
[13]. Burger, Alewyn & de Villiers, Anton & Vuuren, J.H..

(2013). Two algorithms for secure graph domination.

JCMCC. The Journal of Combinatorial Mathematics

and Combinatorial Computing. 85. Algorithm,

Applications Uses DFS to differentiate parts of a

search tree. Checks for specific categories using DFS

and provides the results of the tree with symbols.

[14]. Abd Algfoor, Zeyad & Sunar, Mohd Shahrizal &

Kolivand, Hoshang. (2015). A Comprehensive Study

on Pathfinding Techniques for Robotics and Video

Games. International Journal of Computer Games
Technology. 2015. 1-11. 10.1155/2015/736138.

Pathfinding, Simulation, Reward Systems Reviews the

last 10 years of pathfinding algorithms and their

development. Gives areas for future growth and

current areas being explored. Delves into real-life

examples in robotics and video games.

[15]. Kilic, Kemal & Mostarda, Leonardo. (2021). Heuristic

Drone Pathfinding Over Optimized Charging Station

Grid. IEEE Access. 1-1.

10.1109/ACCESS.2021.3134459. Pathfinding,

Applications Uses a grid of nodes on a 2d field as
pathfinding heuristics for the indoor drone. Calculates

charging times factored in for the overall speed of the

indoor drone path. Additionally, this paper provides

information on having multiple heuristics monitored

at once using various metrics. algorithm results, as

well as a history of all algorithms and their

applications.

[16]. Permana, Silvester & Bintoro, Ketut & Arifitama,

Budi & Syahputra, Ade. (2018). Comparative

Analysis of Pathfinding Algorithms A *, Dijkstra, and

BFS on Maze Runner Game. IJISTECH (International

Journal Of Information System & Technology). 1. 1.
10.30645/ijistech.v1i2.7. Algorithms, Collective

Compares A*, Dijkstra, and BFS to find what

https://doi.org/10.5281/zenodo.14915594
http://www.ijisrt.com/
http://www.google.com/url?sa=t&rct=j&q&e
http://www.researchgate.net/publication/307802157_
http://www.geeksforgeeks.org/breadth-first-search-or
http://www.geeksforgeeks.org/breadth-first-search-or

Volume 10, Issue 2, February – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.5281/zenodo.14915594

IJISRT25FEB493 www.ijisrt.com 367

performed best in a grid format. Analyzes the number

of nodes searched compared to traveling speed on
average.

[17]. Kaur, Navneet, and Deepak Garg. “Analysis of the

Depth First Search Algorithms.” Gdeepak.Com,

Thapar University, www.gdeepak.com/pubs/Analysis

of the Depth First Search Algorithms.pdf. Accessed 28

Jan. 2025. Algorithms, Analysis Analyzes DFS

algorithms using visual graphs to explain the methods

DFS searches by Highlights areas for the algorithm’s

improvement, while mentioning how it works.

Provides code for DFS that was used to base the paper

off.
[18]. Pardede, Sara Lutami. “A Review of Pathfinding in

Game Development.” Cloudfront.Net, CEPAT

Journal of Computer Engineering, May 2022,

d1wqtxts1xzle7.cloudfront.net/91399669 Accessed

28 Jan. 2025. Algorithms, Analysis, Pathfinding

Depicts several algorithms using a 2d grid-based node

network to visually simplify them. Explains the use of

Dijkstra for finding the shortest path in Japanese

districts using the public road system.

https://doi.org/10.5281/zenodo.14915594
http://www.ijisrt.com/
http://www.gdeepak.com/pubs/Analysis

