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engines. Sectors like healthcare and agriculture struggle with real-time data and IoT, leading to inefficiencies. Current 

research highlights gaps in performance, scalability, and the integration of advanced analytics. Future work should focus on 

improving large dataset handling, real-time processing, and machine learning integration for better decision-making and 

performance. 
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I. INTRODUCTION 

 

Organizations are increasingly facing challenges in 

managing and integrating diverse, large-scale datasets while 

ensuring scalability, efficiency, and data quality. Traditional 

data management architectures, such as data lakes and data 

warehouses, often fail to meet the demands of modern big data 

environments, leading to inefficiencies and limited support for 
data-driven decision-making [1] .The Lakehouse architecture 

has emerged as a promising solution, unifying the capabilities 

of both data warehouses and data lakes. However, its 

implementation in cloud-based environments presents 

complexities, including the need for optimized data ingestion, 

efficient storage mechanisms, and seamless integration of 

multiple data processing engines [8]. Sectors such as 

healthcare and agriculture struggle with managing real-time 

data, IoT devices, and diverse data sources, leading to 

inefficiencies in decision-making and operations [5][7]. 

Further, traditional storage formats in lakehouses do not 
support graph analytics, and federated governance in data 

mesh architectures requires further research [4][6]. Key 

challenges such as performance optimization and query 

execution also remain critical in the implementation of 

Lakehouse systems [13]. The limitations of current research 

highlight the need for further advancements in flexibility, 

scalability, and real-world deployment of lakehouses. Future 

work should focus on improving the handling of large datasets, 

real-time data processing, and the integration of machine 

learning to enhance decision-making [9]. Additionally, 

empirical studies are needed to validate the practical 
effectiveness of these systems across diverse industries, with 

a particular focus on cost optimization, scalability, and 

performance under large-scale deployments [3]. 

 

The limitations of current research highlight the need for 

further advancements in flexibility, scalability, and real-world 

deployment of lakehouses [1]. Future work should focus on 

improving the handling of large datasets, real-time data 

processing, and the integration of machine learning to enhance 

decision-making [8]. Additionally, empirical studies are 

needed to validate the practical effectiveness of these systems 
across diverse industries, with a particular focus on cost 

optimization, scalability, and performance under large-scale 

deployments [9]. 
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Fig 1 From: The Lakehouse: State of the Art on Concepts and Technologies 

 

 Problem Statement: 
Many of the Organizations face growing challenges in 

managing large-scale, diverse datasets as traditional 

architectures like data lakes and warehouses often fall short in 

scalability and efficiency [1]. The Lakehouse architecture 

offers a unified solution, but its cloud-based implementation 

poses complexities such as data ingestion, storage 

optimization, and processing integration [12]. Industries like 

healthcare and agriculture struggle with real-time data and IoT 

devices, highlighting the need for advancements in 

performance, scalability, and machine learning integration 

[5][7]. Future research must address these gaps to optimize 
cost, enhance decision-making, and validate Lakehouse 

systems in diverse, large-scale deployments [9]. 

 

Organizations struggle to manage large, diverse datasets 

due to the inefficiencies of traditional data architectures like 

warehouses and lakes [1]. While the Lakehouse architecture 

offers a unified solution, challenges persist in cloud-based 

implementations, including data ingestion, storage 

optimization, governance, and query performance [13]. 

Sectors like healthcare and agriculture face additional hurdles 

with real-time and graph data, necessitating innovative 

solutions to enhance scalability, integration, and decision-
making [5][6][7]. 

 

II. LITERATURE REVIEW 

 

Organizations today face significant challenges in 

managing and integrating diverse, large-scale datasets while 

ensuring scalability, efficiency, and data quality. Traditional 

centralized architectures, such as data warehouses and data 

lakes, often fail to meet the demands of modern big data 
landscapes. The lack of integration between these 

architectures results in inefficiencies, operational bottlenecks, 

and limited support for data-driven decision-making [1][2]. 

 

The emerging "Lakehouse" architecture offers a unified 

solution that combines the advanced analytics capabilities of 

data warehouses with the scalability and flexibility of data 

lakes. However, implementing lakehouses in cloud-based 

environments introduces complexities, including the need for 

optimized data ingestion, efficient storage mechanisms, and 

seamless sintegration of multiple data processing 
engines.[4][10]. 

 

In particular, the healthcare and agriculture sectors 

illustrate the challenges of managing diverse data sources, 

such as IoT devices, sensors, and real-time monitoring 

systems. Existing systems struggle to handle the velocity and 

variety of data, leading to inefficiencies in clinical decision-

making and precision farming applications [5] 

 

Additionally, managing graph data in lakehouse 

environments poses unique challenges, as traditional columnar 

storage formats like Parquet and ORC are not optimized for 
graph analytics. This limitation hinders performance for 

operations such as neighbor retrieval and label filtering, 

necessitating novel storage solutions tailored for graph 

data[6]. 

 

Organizations also encounter difficulties in 

implementing federated governance and ensuring data quality 

within distributed architectures like data meshes. Effective 
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data governance and quality management are critical for 

supporting complex big data landscapes and enhancing 

decision-making processes [3] 

 

Furthermore, optimizing query execution and 

performance remains a key challenge in Lakehouse systems. 

The concept of a unified Query Optimizer as a Service 

(QOaaS) has been proposed to address these issues, ensuring 
efficient data processing across diverse engines[11][13]. 

 

To overcome these limitations, the development of 

scalable, efficient, and unified architectures is crucial. By 

addressing the gaps in data integration, governance, and 

performance, the Lakehouse paradigm can unlock the 

potential for enhanced data strategies and innovation across 

industries [11][8]. 

 

 Data Used : 

The following summarizes the types of data used in the 

referenced studies, highlighting their relevance to evaluating 
or validating proposed cloud data lakehouse architectures. 

 

 Publicly Available and Synthetic Datasets 

Studies frequently utilized synthetic datasets, publicly 

available datasets, or data from specific use cases to evaluate 

the performance and scalability of lakehouse systems. These 

datasets are often employed to test key architectural 

improvements in scalability, query optimization, and data 

processing performance[1][8]. 

 

 Organizational Data (Structured, Semi-Structured, and 
Unstructured) 

Several studies focused on real-world organizational 

data, encompassing diverse formats and structures derived 

from various departments and systems. These studies 

evaluated lakehouse architectures for their capability to unify 

data management and enable decision-making[3][2]. 

 

 Agricultural Data (Agriculture 4.0) 

Studies centered on data relevant to precision agriculture, 

including IoT sensor data, satellite imagery, and weather data. 

These datasets demonstrated the integration and processing 
capabilities of lakehouse systems in agriculture[5]. 

 

 Graph Data 

Research into graph data focused on the Labeled 

Property Graph (LPG) model, evaluating how effectively 

lakehouse architectures could manage graph-specific 

operations, such as neighbor retrieval and label filtering[6]. 

 

 Healthcare Data 

The studies explored structured and unstructured 

healthcare datasets, including Electronic Health Records 

(EHRs), imaging data, sensor data, and patient-generated data, 
to evaluate real-time processing capabilities in healthcare data 

lakes[7]. 

 

 Open Data Formats and TPC-DS Benchmark 

Open data formats, such as Apache Parquet and ORC, 

were emphasized, along with the TPC-DS benchmark, a 

standard for decision support systems, to assess system 

performance[10][13]. 

 

 Conceptual Focus on Architectures 

Certain studies concentrated on architectural discussions, 
without using specific datasets, highlighting integration, query 

optimization, and ingestion challenges in lakehouse 

systems[9][11][12]. 

 

 
Fig 2 Mono-Zone Architecture. 
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 Research Data in CRIS 

Studies focused on Current Research Information 

Systems (CRIS) data, covering projects, personnel, 

organizational units, funding programs, research outputs 

(publications, patents), facilities, and events[3][14]. 

 

 

A. Methods and Technologies : 

 

 Architectural Frameworks for Data Lakehouses 

Utilized cloud services like AWS, Azure, and Google 

Cloud for data lakehouses. Data processing frameworks 

(Apache Spark, Hadoop) and storage solutions (S3, Delta 

Lake) are discussed as key components for solving data 

integration challenges.[1][2][8][9]. 
 

 
Fig 3 High-level Framework for Building a Data Lake on AWS. 

 

 Integration of OLAP and OLTP Systems 

Novel approaches to managing data consistency and 

schema enforcement by integrating OLAP and OLTP within 
lakehouse architectures were proposed.[8][9][10]. 

 

 Data Mesh Architecture 

Emphasized a domain-oriented decentralized approach, 

treating data as a product, assigning ownership to domain 

teams, and implementing self-serve data platforms for 

enhanced accessibility and management.[3] 

 

 Federated Governance in Data Mesh 

Proposed federated computational governance, which 

ensures consistent policies across domains while granting 

local autonomy.[4] 
 

 Cloud and Distributed Computing for Agriculture 

Reviewed centralized and distributed cloud architectures 

for agriculture. These strategies optimize data storage, 

processing, and analysis for Agriculture 4.0.[5] 

 

 GraphAr for Graph Data in Data Lakes 

Introduced GraphAr as a specialized storage scheme 

leveraging Parquet for graph data management in data lakes. 

It focuses on labeled property graphs (LPG) and employs 

innovative encoding/decoding techniques.[6] 

 
 Healthcare Data Lakes 

Explored technologies for real-time data processing in 

healthcare data lakes, including: 

 

 Data Ingestion: Platforms like Apache Kafka and Apache 

Flink. 

 Data Storage: Scalable solutions such as HDFS and cloud 

storage. 

 Data Processing: Real-time analytics frameworks. 

 Data Mining: Machine learning for predictive analytics 

and personalized care.[7] 
 

 Lakehouse Architecture Innovations 

Built on open, direct-access data formats and 

incorporates features like ACID transactions, data versioning, 

and indexing. Supports machine learning workloads 

effectively.[8] 

 

 Comparative Reviews 

Analyzed strengths and weaknesses of existing DW and 

DL technologies, highlighting desired features for Lakehouse 

systems.[9] 
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 Query Optimizer as a Service (QOaaS) 

Proposed QOaaS architecture using Substrait to 

standardize plan specifications, integrated with Microsoft’s 

Fabric ecosystem.[10] 

 

 Data Ingestion Patterns 

Suggested a design pattern tailored for cloud-based 

architectures to improve big data ingestion processes.[11] 
 

 Photon: A Fast Query Engine 

Introduced Photon, a C++ vectorized query engine by 

Databricks, optimized for SQL and Apache Spark's DataFrame 

API in Lakehouse environments.[13] 

 

 Combining Data Lakes and Data Wrangling 

Presented a combined approach to use data lakes for 

central storage and data wrangling techniques to ensure data 
quality.[14] 

 

 
Fig 4 Modern Data Warehouse Architecture 

 

B. Accuracy Evaluation Methods : 

Aravind Nuthalapati (2024), This paper primarily 
focuses on best practices and future directions for data lake-

houses but does not specify a formal method for accuracy 

evaluation.[1] 

 

Jan Schneider et al. (2024) Evaluates the performance 

of the lakehouse model using the TPC-DS benchmark, 

comparing query execution times, data ingestion rates, and 

resource utilization. 

 

The results show that the Lakehouse system built on 

Parquet is competitive with popular cloud data warehouses.[2] 

 

Otmane Azeroual and Radka Nacheva (2023), 

Conceptual discussion on data mesh and its architectural 

benefits; however, no formal accuracy evaluation or 

performance benchmarks are included.[3] 

 

Anton Dolhopolov et al. (2024), Discusses federated 

governance in data mesh architecture but does not provide 

empirical accuracy evaluations.[4] 

 

Olivier Debauche et al. (2021), Reviews cloud and 

distributed architectures for agriculture data management but 
lacks empirical accuracy benchmarks.[5] 

 

Xue Li et al. (2024), Evaluates GraphAr's performance 

by benchmarking against conventional Parquet and Acero-

based methods. Key metrics include speedup in neighbor 

retrieval, label filtering, and end-to-end workload 
efficiency[6]. 

 

Mitul Tilala et al. (2022), Explores healthcare data lakes 

but does not provide formal accuracy evaluation methods.[7] 

 

Michael Armbrust et al. (2021), Performance of the 

Lakehouse system is benchmarked using TPC-DS, 

demonstrating advanced query performance comparable to 

cloud data warehouses.[8] 

 

Dipankar Mazumdar et al. (2023), Provides conceptual 
discussions on the benefits of lakehouses without presenting 

formal accuracy evaluations.[9] 

 

Ahmed Harby and Farhana Zulkernine (2022), A 

comparative review of data warehouse and lakehouse 

technologies, but no empirical evaluations are reported.[10] 

 

Rana Alotaibi et al. (2024), Discusses the potential 

performance optimizations of Query Optimizer as a Service 

(QOaaS) but lacks empirical accuracy benchmarks.[11] 

 

Chiara Rucco et al. (2024), Proposes a cloud-based 
design pattern for optimizing data ingestion but does not 

specify accuracy evaluation methods.[12] 
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Alexander Behm et al. (2022), Benchmarks Photon, a 

query engine for lakehouses, against cloud data warehouses 

and engines. Performance metrics include query execution 

times and resource efficiency.[13] 

 

Otmane Azeroual et al. (2022), Combines data lakes 

with wrangling techniques but does not provide empirical 

performance or    accuracy benchmarks.[14] 
 

 Validation and Verification of Proposed Models: 

Focuses on best practices and architectural principles for 

cloud-based lakehouses but does not provide experimental 

validation or verification[1]. Validates the proposed lakehouse 

architecture through a comparative analysis with existing 

data warehouse (DW) and data lake (DL) systems, 

demonstrating how the lakehouse addresses their 

limitations[2]. 

 

Discusses the effectiveness of the data mesh approach for 

enhancing scalability, data integration, and decision-making 
but does not include empirical validation or real-world 

testing[3]. Proposes integrating federated governance into data 

mesh architectures for improved data management but lacks 

empirical validation or verification[4]. Analyzes cloud and 

distributed architectures in agriculture data management but 

does not present validation or verification methodologies[5] 

 

Validates GraphAr's effectiveness through 

performance benchmarks, achieving a 3,283× speedup for 

neighbor retrieval, 6.0× for label filtering, and 29.5× for end-

to-end workloads compared to traditional methods[6]. 
Discusses the potential of real-time data processing in 

healthcare data lakes to enhance clinical decision-making but 

does not include empirical validation or testing[7]. 

 

Validates the lakehouse concept through industry 

trends and logical reasoning, comparing it to existing data 

management architectures but without real-world empirical 

testing[8]. Provides conceptual insights into lakehouse 

systems but does not include experimental validation or real-

world testing[9]. Compares lakehouse architectures with data 

warehouses and data lakes but does not include formal 

validation methodologies[10]. Validates the QOaaS concept 
using prototypes and its integration within the Fabric 

ecosystem but does not detail specific validation 

techniques[11]. Proposes a cloud-based design pattern for 

optimizing data ingestion but does not provide validation or 

empirical testing details[12].Validates Photon's performance 

through benchmarks, demonstrating significant speed 

improvements over existing cloud data warehouses in SQL 

workloads [13]. Suggests that integrating data lakes and data 

wrangling processes enhances data quality but does not 

include empirical validation.[14]. 

 

III. RESULTS AND FINDINGS OF THE STUDIES 

 

The studies highlight advancements in data management 

and architecture, focusing on scalable solutions like 

lakehouses and data meshes. Aravind Nuthalapati (2024) 

demonstrates the scalability and cost-efficiency of cloud-

based lakehouse architectures. Jan Schneider et al. (2024) 

address challenges in traditional systems and enhance 

performance by unifying analytics and warehousing. Otmane 

Azeroual & Radka Nacheva (2023) advocate for decentralized 

data ownership through data mesh architecture. Anton 

Dolhopolov et al. (2024) emphasize federated governance to 

improve data management. In agriculture, Olivier Debauche et 

al. (2021) find cloud integration enhances centralized data 

management. Xue Li et al. (2024) improve graph data 
management in data lakes with GraphAr, while Mitul Tilala et 

al. (2022) explore real-time data processing in healthcare. 

Michael Armbrust et al. (2021) present lakehouses as solutions 

to data staleness and reliability. Dipankar Mazumdar et al. 

(2023) show lakehouses support structured and unstructured 

data workloads. Ahmed Harby & Farhana Zulkernine (2022) 

discuss lakehouse strengths in efficient data processing. Rana 

Alotaibi et al. (2024) propose QOaaS to optimize query 

execution. Chiara Rucco et al. (2024) explore a cloud-based 

design pattern for data ingestion. Alexander Behm et al. (2022) 

report up to 12x query performance improvements with 

Photon. Otmane Azeroualet al. (2022) combine data wrangling 
with data lakes to enhance data quality. 

 

IV. LIMITATION, AND FUTURE WORK 

 

 Aravind Nuthalapati (2024) 

 

 Limitations: The paper discusses the general advantages 

of cloud-based lakehouse architectures but does not delve 

deeply into challenges such as handling massive datasets 

and real-time data processing. 

 

 Future Work: Further research should focus on improving 

system flexibility, handling more complex data types, 

and integrating AI or machine learning to enhance data 

insights.[1] 

 

 Jan Schneider et al. (2024) 

 

 Limitations: While the lakehouse model addresses key 

challenges, the paper does not explicitly discuss 

performance degradation under large-scale data or the 

integration of machine learning workflows. 
 

 Future Work: Research should focus on scalability 

challenges, real-time data handling, and enhancing 

integration with machine learning systems to improve 

decision-making.[2] 

 

 Otmane Azeroual and Radka Nacheva (2023) 

 

 Limitations: The paper does not explicitly identify 

specific limitations but suggests the need for empirical 

validation of the data mesh approach in real-world 

environments. 
 

 Future Work: Further research could include empirical 

studies to evaluate the practical effectiveness of the 

proposed model in diverse organizational contexts.[3] 
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 Anton Dolhopolov et al. (2024) 

 

 Limitations: The paper does not provide extensive real-

world examples or data to support the federated 

governance model in practice. 

 

 Future Work: Future research should focus on scalability 

issues and validating the effectiveness of federated 

governance across larger datasets in various domains.[4] 

 

 Olivier Debauche et al. (2021) 

 

 Limitations: The paper highlights the benefits of cloud 

and distributed architectures in agriculture but does not 

delve into the scalability of these solutions under large-

scale deployments or integration challenges. 

 

 Future Work: Future studies could include empirical 

evaluations of these architectures in real agricultural 
settings, focusing on scalability and integration with 

other technologies.[5] 

 

 Xue Li et al. (2024) 

 

 Limitations: Graph data storage schemes in data lakes 

need further refinement for larger datasets, and the 

approach does not discuss performance issues when 

scaling. 

 

 Future Work: Future research should explore the 

scalability of GraphAr, especially with very large 
datasets, and enhance integration with distributed 

systems.[6] 

 

 Mitul Tilala et al. (2022) 

 

 Limitations: The paper focuses on real-time data 

processing in healthcare but does not address challenges in 

scaling real-time systems or integration with legacy 

healthcare systems. 

 

 Future Work: Future research should examine scalability 
in large healthcare systems and explore integration with 

AI-driven diagnostic tools.[7] 

 

 Michael Armbrust et al. (2021) 

 

 Limitations: The paper presents the lakehouse as a 

solution but acknowledges that real-world performance 

and the practicality of large-scale implementation 

require further evaluation. 

 

 Future Work: Future research should explore additional 

features, optimize performance for various data 

workloads, and address challenges faced during 

implementation.[8] 

 

 Dipankar Mazumdar et al. (2023) 

 

 Limitations: The article highlights benefits but does not 

explore the specific challenges in real-world 

deployments or the cost implications of lakehouses at 

scale. 

 

 Future Work: Future work should involve empirical 

validation of the lakehouse model in diverse industries and 

focus on cost optimization and real-world scalability.[9] 

 

 Ahmed Harby and Farhana Zulkernine (2022) 

 

 Limitations: The paper does not provide detailed case 

studies or empirical evidence regarding the actual 

deployment of lakehouses in large-scale systems. 

 

 Future Work: Future studies should implement the 

architecture in real-world scenarios to assess scalability 

and performance across industries.[10] 

 

 Rana Alotaibi et al. (2024) 

 

 Limitations: While QOaaS is promising, the paper 

acknowledges the challenge of implementing flexible 

cardinality estimation and adapting it to different cost 

models. 

 

 Future Work: Research should focus on prototyping 

QOaaS, refining its approach, and evaluating its real-

world performance in large systems.[11] 

 

 Chiara Rucco et al. (2024) 

 

 Limitations: The paper suggests using a cloud-based 

design pattern for data ingestion but does not explore the 

limitations in processing speed or data variety under 

high-load scenarios. 

 

 Future Work: Future research should address the 

scalability of the ingestion pattern and integrate AI-driven 

optimizations for processing diverse data types.[12] 

 

 Alexander Behm et al. (2022) 

 

 Limitations: The study focuses on Photon’s query engine 
performance but does not discuss its scalability issues or 

its effectiveness across different data workloads. 

 

 Future Work: Future research could focus on optimizing 

Photon for a broader range of workloads and exploring 

integration with other data processing frameworks.[13] 

 

 Otmane Azeroual et al. (2022) 

 

 Limitations: The paper focuses on combining data lakes 

with wrangling but does not deeply analyze real-time 

processing challenges or large-scale implementation 

constraints. 

 

 Future Work: Future work could involve empirical 

validation of the proposed model in real-world CRIS 

implementations.[14]. 
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V. CONCLUSION 

 

The studies collectively highlight advancements in data 

architecture, emphasizing scalability, integration, and 

performance improvements. Lakehouses unify data lakes and 

warehouses, addressing challenges like data staleness, cost, 

and diverse workloads. Innovations such as data mesh 

architecture, federated governance, GraphAr, and QOaaS 
enhance data management, decision-making, and query 

optimization. Applications in healthcare, agriculture, and big 

data scenarios demonstrate improvements in real-time 

processing, data quality, and ingestion efficiency. These 

findings underscore the transformative potential of modern 

data systems in addressing diverse industry needs. 
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