
Volume 10, Issue 2, February – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.5281/zenodo.14959407

IJISRT25FEB1631 www.ijisrt.com 1206

Modern Full Stack Development

Practices for Scalable and Maintainable

Cloud-Native Applications

Mohit Menghnani1

1Independent Researcher

Publication Date: 2025/03/04

Abstract: The widespread acceptance of the cloud-native concept and the emergence of several specialized cloud-native apps

have focused industry attention on the web stacks of cloud-native apps. The integration of cloud-native and full-stack

development tools allows for the rapid and smooth deployment, scaling, and maintenance of web applications. Full stack

development today in the cloud native era is a hybrid of its technologies and ways of working to bring about scalability,

efficiency and maintainability. Built in tools like AWS Amplify, Google Firebase, Heroku can be used for a smooth

deployment; serverless computing (AWS Lambda, Google Cloud Functions) also cuts out all the overhead from

infrastructure management. Moving applications to Dockerized containers that are supervised in Kubernetes leads to

portability and consistency of applications across environments. The whole stack presents include different front-end

frameworks (React, Angular), back-end technologies (Node.js, Django), and cloud-based databases (MongoDB, AWS

DynamoDB) for making robust web applications. Furthermore, DevOps practices, CI/CD pipelines, and Infrastructure as

Code (IaC) help with deployment, monitoring and scaling which makes the operation more efficient. Because cloud-native

architecture is modularity and resilience-oriented, it provides some microservices and API-driven interactions. Despite the

problems of emerge, such as security vulnerabilities and performance bottlenecks, best practices like containerization,

serverless computing, and also the database optimization make possible reliable, scalable and secure cloud applications. In

this paper, a modern full stack development approach is explored, including key technologies, challenges and solutions to

increase the performance and maintenance in cloud-based environment.

Keywords: Full-Stack Development, Cloud-Native Applications, Front-End Development, Back-End Development. Databases, Web

Application.

How to Cite: Mohit Menghnani. (2025). Modern Full Stack Development Practices for Scalable and Maintainable Cloud-Native

Applications. International Journal of Innovative Science and Research Technology,

10(2), 1206-1216. https://doi.org/10.5281/zenodo.14959407.

I. INTRODUCTION

Cloud native applications are on the scene because of

the sharp rise of the technological advancement in cloud
computing infrastructures. Previously, applications are

packed with services that operate in a container as

microservices and are controlled on elastic infrastructure;

cloud-native applications operate in a container-based

environment[1][2]. Administration of the cloud

infrastructure has never been easy. Also, orchestration is

becoming an essential component of these cloud native apps

to perform a lot of things like scheduling, scaling, anomaly

detection, resource management, etc. [3]. Cloud platform

migration of enterprise applications became possible due to

business digital transformation. The process of creating and
executing apps that fully use cloud computing's benefits is

known as cloud native software development[4]. Developing

web applications in software development exceeds basic

source code creation to demand a structured environment

that promotes collaborative work automation capabilities

and elite scalability[5]. Modern stack developers design

complete applications which require them to assemble the

entire web application infrastructure from front end to back
end systems. In order to guarantee that the program runs

smoothly, developers must integrate many technologies[6].

A development environment should provide three

components for efficient collaboration: a shared version

control system and project management through a ticket

system with automated testing and deployment

frameworks[7].

The rapid expansion of web applications has

transformed the IT sector through three key technology

advantages, which include independent platform capabilities
and hardware delivery with a standardized digital data

processing system through cloud-based solutions[8]. Big

data analyses through these platforms join big data analytics

to improve the user experience and decision making in the

https://doi.org/10.5281/zenodo.14959407
http://www.ijisrt.com/
https://doi.org/10.5281/zenodo.14959407

Volume 10, Issue 2, February – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.5281/zenodo.14959407

IJISRT25FEB1631 www.ijisrt.com 1207

large scale information sharing. Technology stacks are the

foundation of modern web applications and are based on the
principle that replacing any one of the components is feasible

and provides flexibility by replacing the individual

components on a given application with new frameworks,

APIs and database solutions to ensure application

efficiency[9][10]. However, technological advancement and

the growing need for response, scalable apps have made full-

stack development more complex [11]. In response, Agile

development approaches like Scrum, Kanban and Extreme

Programming (XP) have come into practice. These

approaches are flexible and foster development, adaptation,

and cooperation, which help teams to quickly adjust to
changing needs and technical breakthroughs. Agile

strategies play a crucial role in managing the complexities of

full-stack development, ensuring efficient software delivery

while maintaining scalability and maintainability[12].

This paper explores full-stack development in the

cloud-native era, focusing on technologies that enhance

scalability, efficiency, and maintainability. It covers cloud

platforms (AWS Amplify, Google Firebase), serverless

computing (AWS Lambda, Google Cloud Functions), and

containerization (Docker, Kubernetes) for seamless

deployment. Key components like front-end (React,
Angular), back-end (Node.js, Django), and cloud databases

(MongoDB, AWS DynamoDB) are examined alongside

DevOps practices, CI/CD pipelines, and IaC for automation.

A challenge described in the study is security and

performance bottlenecks and solutions of the form best

practices such as microservices and API-driven

development. These approaches make clouds more flexible,

more scalable, and also cheaper so that you can have better,

robust and scalable cloud native applications.

 Organization of the Study

This paper is structured to provide a comprehensive
understanding of modern full-stack development in cloud-

native environments. Section II offers an overview of

software full-stack development. Section III explores the

technologies used in full-stack development. Section IV

delves into the fundamentals of cloud-native development.

Section V presents a literature review, analyzing existing

research and advancements in full-stack development.

Section VI ends with several important takeaways and

suggestions for further investigation.

II. SOFTWARE FULL-STACK DEVELOPMENT:

AN OVERVIEW

The term "web development," which includes "full

stack development," is used to describe the process of

creating websites that may be hosted on either an intranet or

the internet. It entails creating an app from the ground up,

including the front end (often called a client-side) and the

back end (sometimes called a server-side). The advent of

cloud computing has brought about tremendous shifts in the

Full Stack Development industry and its impact on software

development[13][14]. Figure 1 illustrates the core

components of full-stack development, each weighted
equally at 20%, highlighting their collective importance.

Scalability & Maintenance underscores the need for robust

systems that can grow and adapt, while System Architecture

emphasizes the foundational design crucial for a project's

success. These skills are necessary to perform Frontend

Development to create user interfaces and Backend

Development or Support to handle server-side logic and data

management. Finally, Team Leadership is necessary to

coordinate work from the team members and provide the

services and help one another. It indicates that this balance

distribution is indicative of the fact that you have to be
proficient in all of these areas to be regarded a successful full

stack developer[15].

Fig 1: Key Components of Full Stack Development in Practice[15]

https://doi.org/10.5281/zenodo.14959407
http://www.ijisrt.com/

Volume 10, Issue 2, February – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.5281/zenodo.14959407

IJISRT25FEB1631 www.ijisrt.com 1208

Development staff must design scalable methods to

accommodate complex internal requirements after writing
code. Leading development teams requires full technical

proficiency as well as superior people skills in this

environment. Full-stack developers manage developmental

systems by directing teams on the creation of system

architecture and agile processes as well as technological

stack decisions when working in leadership roles. Their

responsibility includes technical alignment with

organizational targets and fostering teamwork together with

active communication between frontend and backend teams.

Modern development practices primarily depend on

scalability together with flexibility capabilities. The
expanding user base demands systems that full-stack

developers must build for their applications to maintain

optimal performance during changes in technology

platforms.

A. Full-Stack Development Frameworks

A framework is a group of software elements that may

be reused to speed up the process of creating new

applications. It contains tools like debuggers, compilers,

code libraries, and APIs. It is easier to conform to software

security standards, save development time, and increase

code quality when using frameworks. All full-stack
developers use the following frameworks[16]. The list is

only an overview of well-known frameworks and is not

exhaustive.

 Ruby on Rails (RoR): Rails is a Ruby-based framework

for building web applications; it's sometimes called RoR.

Web development ideas such as DRY and CoC were

popularized by it. As it simplifies development of both

the front end and the back end, Rails qualifies as a full-

stack framework. To make it more versatile, it comes

with a plethora of jewels or libraries.

 Django: A sophisticated Python web framework, Django

encourages rapid development and clean, uncomplicated

design. Complying with the batteries-included principle,

Django offers almost all the features developers may

desire "out of the box." Integrating it with other Python

libraries is simple since it is developed in Python. The

majority of the setting is managed by Django, freeing

developers to concentrate entirely on creating

applications. Building dependable and scalable web apps

is one of its many uses.

 Spring Boot: An addition to the Spring framework,
Spring Boot aims to streamline the initial setup and

development process. Spring Boot, which is written in

Java, aims to reduce the amount of boilerplate code and

setup that is typical of Java development in order to

rapidly create production-ready applications. Building

enterprise-level applications is a suitable match for it

because of its great flexibility and compatibility with

almost all application needs.

 Laravel: Laravel is a beautiful and well documented

framework for PHP web applications. A number of

features, including an ORM, routing, caching, and

authentication, are available in Laravel, which is
comparable to Ruby on Rails. It makes creating and

maintaining web applications faster with its extensive

library and built-in techniques.

B. Several Tools and Technologies Connect Full-Stack

Development in Cloud Native:

 Cloud Development Platforms: These platforms offer

a comprehensive environment for Full-Stack

Development, including integrated development tools,

continuous integration and deployment services, and

access to cloud resources. Examples include Heroku,

AWS Amplify, and Google Firebase.

 Serverless Computing: Full-Stack Developers can build
and deploy applications without managing servers,

thanks to serverless computing. AWS Lambda, Google

Cloud Functions, and Azure Functions enable event-

driven, auto-scaling code execution.

 Containers: Containers offer a way to package and

deploy applications consistently across different

environments. Tools like Docker and Kubernetes enable

Full-Stack Developers to easily deploy and scale their

applications on cloud infrastructure.

 Cloud-based Databases: Scalable cloud databases like

AWS DynamoDB, Google Cloud Fire Store, and
Microsoft Azure CosmosDB simplify Full-Stack

Development by providing managed databases.

 Cloud IDEs: Full-Stack Devs can code anywhere with

cloud IDEs like AWS Cloud9 and Repl, no local software

required.

These tools and technologies make it easier for Full-

Stack Developers to take advantage of the benefits of Cloud

Computing, leading to increased efficiency and faster time-

to-market for applications.

III. TECHNOLOGIES USED IN FULL STACK

DEVELOPMENT

An assortment of front-end and back-end technologies

are used by the best full-stack apps[17][18]. Figure 2

illustrates the breadth of technologies encompassed within

full-stack development. It breaks down the field into five key

areas: Front-end, Back-end, Database, DevOps, and Mobile

App Development. Each area further branches into specific

technologies and concepts [19]. Examples of front-end

technologies include Angular and React, in addition to

standard languages like JavaScript and CSS. Node.js and
Python are examples of back-end languages, whereas

Django and Express are examples of frameworks. Database

options range from relational databases like MySQL to

NoSQL databases like MongoDB. DevOps highlights

automation tools like CI/CD and cloud platforms like AWS.

Finally, Mobile App Development includes cross-platform

frameworks like React Native and Ionic.

https://doi.org/10.5281/zenodo.14959407
http://www.ijisrt.com/

Volume 10, Issue 2, February – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.5281/zenodo.14959407

IJISRT25FEB1631 www.ijisrt.com 1209

Fig 2: Technologies of Full Stack Development

The Figure effectively demonstrates the diverse skill

set required for a full-stack developer, encompassing

everything from user interface design to server-side logic

and deployment.

A. Front-End

The portion that people view when i visit websites and

online apps is known as the front end [20]. The term "front-

end development" describes the steps used to bring a design

to life on a website. Structure, data, design, content, and

functionality are the many layers that make up a website's

pages. A website's design, navigation menus, messages,

images, videos, and more make up what is known as the front

end, which is where visitors may see and interact with the

GUI and command line. All the usual suspects like HTML,

CSS, and JavaScript are included, along with popular front-

end frameworks and libraries like AngularJS, React.js,
jQuery, and SASS. In terms of front-end design, the two

primary categories are:

 User Experience (UX)

 User Interface (UI)

Despite their seeming similarities, some things are

different as we learn more about them. Visual components,

animations, images, videos, and other items that seem

beautiful on a website but are challenging to build are

examples of strong UI but poor user experience (UX); a
well-designed website should offer an intuitive experience

that doesn't need the user to think too much.

 HTML & CSS: HTML (HyperText Markup Language)

structures web pages using elements defined by tags,

while CSS styles these elements by controlling colors,

fonts, backgrounds, and spacing. Frameworks like

Bootstrap enhance HTML and CSS management for
efficient web design.

 JavaScript: A widely used programming language for

both frontend and backend development, JavaScript

makes web pages interactive. Frameworks like jQuery,

React.js, Angular, and Vue simplify development,

enabling dynamic and responsive web applications.

B. Back-End

The back end of a website is the unseen component that

developers must take into account[21]. Developers working

on the back end of a system do things like create libraries,

write APIs, and communicate directly with the system's
components. Node.js, JavaScript, Python, C++, Java, and

PHP are among the many back-end languages and

frameworks available. Numerous back-end frameworks are

available, including Express, Django, Rails, Laravel, Spring,

and many more. Few of the most well-known languages for

back-end development and scripting include C#, Ruby,

REST, GO, and others. There are two main categories for the

back-end component.

 The server

 The application

https://doi.org/10.5281/zenodo.14959407
http://www.ijisrt.com/

Volume 10, Issue 2, February – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.5281/zenodo.14959407

IJISRT25FEB1631 www.ijisrt.com 1210

The server responds to every request made by the

application's code. The server maintains code
synchronization with applications on a regular basis due to

the many links between application source code and server

requests. Code blocks like async-wait, try-catch, and sync

are excellent instances of this language pattern. In response

to these requests, the server handles them either on the client

side or on the server side, depending on the kind of callbacks

included in the code pertaining to the request type. The

requests-responses tier is an integral part of the server

architecture that facilitates communication for effective

synchronization and application smooth running.

 Node.js: To enable JavaScript code execution outside of

the browser, Node.js was developed. It is an open-source,

backend runtime that is based on Chrome's V8 engine. It

supports both frontend and backend execution, making it

popular for developers using JavaScript as a backend

language.

 Express.js: A free, open-source Node.js framework used

for building web applications and APIs. It simplifies

backend development by handling requests and

responses efficiently, making it one of the most widely

used frameworks for JavaScript-based backend
development.

C. Database

The database is an essential part of full-stack web

development because it stores all the data in tables with rows

(tuples) and columns (attributes). When the application

needs to access this data, it sends it through a secure

transmission channel, which allows it to handle large

amounts of data dynamically and receive and send it all at

once[22][23]. Databases include things like MY-SQL,

MongoDB, CouchDB, MS-SQL, and so on. while

developing robust apps that rely on solid backend
infrastructure[24].

 Relational Database: A structured database based on

the relational model, storing data in tables with rows and

columns. Managed by RDBMS using SQL, it maintains

predefined relationships between data. Common

examples include Oracle, MySQL, and SQL Server[23].

 Non-Relational Database: Unlike relational databases,

it stores data in flexible formats like JSON instead of

tables. Optimized for specific requirements, it provides

more scalability and is commonly used for unstructured
or semi-structured data[25].

D. Version Control

An integral part of full stack web development, version

control (or source control) allows developers to track and

manage the evolution of their code. A version control system

may be broadly classified into three categories:

 Local Version Control System

 Centralized Version Control System

 Distributed Version Control System

E. Deployment

The process of installing and configuring software on a
server allows it to run applications. If everyone else is using

our application online, then it must be great. Additionally,

having an app deployed involves getting it operating on a

particular device, whether it a production environment, a test

server, or even simply the user's PC or mobile phone.

F. Web Stack

Web application stacks, or simply web stacks, are

collections of software components designed to run websites

and online applications. The term "stack" describes the

arrangement of adjacent layers. "Stack" describes the way
the parts of the system are assembled from different parts. A

script interpreter, a database, an operating system, and a web

server are the fundamental components of a web stack.

Along with the right server hardware, this package

guarantees that the information that enquiring clients—

typically web browsers—need about comparable web

projects is sent to them[14].

 A Few Types of Web Stacks

A LAMP stack is an example of a web stack; it is a

collection of open-source tools for building online apps and

web pages. The LAMP stack came first, and then a number
of additional stacks. As a result of this technology's constant

advancement and the creation of new software, other LAMP

stack variants have emerged. Several well-known instances

are as follows:

 WAMP (Windows as an OS)

 MAMP (Mac OS X as an OS)

 XAMPP (platform-agnostic FTP server; any OS, Perl,

and PHP script interpreters)

 The web stack that is most often used is XAMPP. Linux

formerly worked with MySQL databases but has since
switched to MariaDB, which is incompatible with

DVWA-based SQL Injection attacks.

 Deployment

The process of starting a program on a server is known

as software deployment. It indicates that everyone else is

using our program online. Application deployment is the

process of getting an application up and running on a

particular device, such as a test server, a production

environment, or even simply the user's personal computer or

smartphone.

IV. FUNDAMENTALS OF CLOUD-NATIVE

DEVELOPMENT IN WEB APPLICATIONS

As software development, operation, and maintenance

technologies have advanced in recent years, cloud-native

architecture has gained appeal due to its special qualities,

such as enabling developers to build adaptable, scalable, and

modular applications[26][27]. The process of creating and

executing apps that fully use cloud computing's benefits is

known as cloud native application development. The

practice of creating apps that are meant to be utilized in the
cloud by the start is known as cloud native development.

Cloud native applications are built using cloud technologies

https://doi.org/10.5281/zenodo.14959407
http://www.ijisrt.com/

Volume 10, Issue 2, February – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.5281/zenodo.14959407

IJISRT25FEB1631 www.ijisrt.com 1211

like container orchestrators, microservices etc.[28]. These

applications are typically built using modern cloud
technologies like container orchestrators (e.g., Kubernetes),

microservices architectures, and serverless computing,

enabling seamless deployment and management across

distributed environments. Cloud-native applications are

characterized by their ability to adapt automatically to

changing workloads, ensuring optimal performance and cost

efficiency. CI/CD pipelines, which promote a culture of

cooperation and fast iteration, are also often used in

development process[29]. The following programs were

developed specifically for use in the cloud, as shown in

Figure 3:

Fig 3: A Pyramid Of Modern Cloud-Native

Applications[30].

The layers of cloud-native development. At the base is

cloud infrastructure, enabling scalability and flexibility.
Figure 3 mentions the containers for portability and resource

efficiency, followed by microservices, which ensure

modular, independent development. At the top is DevOps,

integrating development and operations for streamlined,

continuous delivery. The characteristics of cloud-native are

discussed below:

 Microservices Architecture: The majority of cloud-

native apps are constructed as a collection of loosely

linked microservices. Each microservice handles a

particular task and uses well-defined APIs to interact
with other microservices[31].

 Containerization: A program and all of its dependencies

may be safely housed inside a lightweight and portable

container. Developers may guarantee that their apps

work consistently across development, production, and

other environments by using containers[32].

 Serverless Computing: Serverless computing, also

known as Function as a Service (FaaS), is a promising

new approach to deploying applications in the cloud,

spurred by the present trend in corporate application

architecture towards microservices and containers. An

analysis of cloud computing's serverless designs, namely

Function as a Service (FaaS).

 DevOps: DevOps is a methodology that combines agile

and lean principles with software development. This

method encourages the development and operations

teams to work together to continuously build high-

quality software.

A. Cloud-Native Application Characteristics

 These Following are the Main Characteristics of

Cloud-Native Applications:

 Service-based Architectures: The building blocks of

cloud-native apps are collections of independent

(micro)services. Independent creation and operation of

each service is made possible since each service in an

application exists in its own right. Concurrently, services

often communicate with one another and with other

services inside an application; these services are found

by making use of capabilities offered by the application

runtime[33].

 API-based Interactions: API-based service-to-service

connections are used in cloud-native applications. Each
service in an application exposes its capabilities via an

API, and each service, in turn, connects to and uses the

APIs of the other services in the application.

 Infrastructure as Code: Every aspect of cloud-native

apps, including deployment, administration, scaling, and

monitoring, is highly automated. Infrastructure as code

or machine-readable files that enable the specification of

the intended configuration for an application and its

components is usually used to accomplish such

automation.

B. Best Practices for Building Scalable Cloud-Native Web
Applications

 The Following are Best Practices for Building Scalable

Cloud-Native Web Applications:

 Continuous Integration and Continuous Deployment

(CI/CD)

Automatic software integration is a crucial aspect of

Continuous Integration (CI), involving frequent construction

and testing of modified source code, often triggered by each

commit to version control. CI ensures that software remains
changeable and deployable, forming a foundation for

Continuous Delivery (CD), which automates the release

process up to the staging environment.

https://doi.org/10.5281/zenodo.14959407
http://www.ijisrt.com/

Volume 10, Issue 2, February – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.5281/zenodo.14959407

IJISRT25FEB1631 www.ijisrt.com 1212

Fig 4: Relations of Continuous Integration, Delivery and Deployment

Continuous Deployment (CDp) takes this further by

deploying software directly to production once it passes

automated tests. While CI, CD, and CDp are closely linked,

they serve distinct purposes, with CI and CD being

prerequisites for CDp. Organizations must implement robust
CI/CD pipelines to achieve seamless and reliable software

deployment, as illustrated in Figure 4.

 Infrastructure as Code

Infrastructure as code makes it possible to distribute

software components continuously and automatically

throughout their whole lifespan, including installation,

starting, stopping, and terminating. Repeatable end-to-end

deployment automation may be created by specifying an

application's infrastructure and components in deployable

models that are reusable and maintained[34].

 Monitoring and Logging

An important part of cloud-native development is

monitoring and logging, which allow developers to keep tabs

on the availability, performance, and dependability of

infrastructure and apps.

 Orchestration

There are security considerations with orchestration

tools that are native to the cloud, such as Kubernetes. As part

of this, we will secure the Kubernetes control plane, set up

secure configuration procedures, and protect critical
components like the data store.

 DevSecOps Practices

Embracing security principles across the development,

deployment, and operations lifecycle is crucial for cloud-

native service security. It highlights the importance of

security automation[35], As part of the DevSecOps

approach, security monitoring and continuous security

testing are essential components that should be seamlessly

incorporated into the development process.

C. Frameworks and Tools for Cloud-Native Web

Applications

Some of the most important frameworks for developing

cloud-native web applications are Kubernetes and Docker,

which are used for container orchestration and
containerization, respectively, and Spring Boot, which is

used for constructing microservices. These frameworks

streamline scalability, reliability, and efficient resource

management in cloud environments.

 Microservices Frameworks: A wide variety of

frameworks are available for use with various computer

languages. Four separate microservices frameworks

were chosen for the toll system's implementation: Go

Micro (Go), Molecular (JavaScript with Node.js), Spring

Boot/Spring Cloud (Java), and others[36].

 Kubernetes and Container Orchestration
Frameworks: Container orchestration frameworks like

Kubernetes have become essential for deploying and

managing cloud-native applications[37].

 Docker Swarm Mode: Although Docker is mostly used

for creating virtualized containers on individual

computers, it also offers a platform for orchestrating

containers called Docker Swarm Mode. This platform

offers a set of tools for managing a cluster of containers.

As the official clustering solute. For Docker containers,

it benefits from being deeply ingrained in the Docker

ecosystem and making use of its own API.

Table I presents a structured overview of modern full-

stack development practices essential for building scalable

and maintainable cloud-native applications. It categorizes

key technologies, their applications, common challenges

faced, and practical solutions to optimize performance,

security, and efficiency. By leveraging best practices such as

containerization, CI/CD automation, serverless computing,

and database optimization, developers can enhance system

reliability, scalability, and maintainability in cloud

environments.

https://doi.org/10.5281/zenodo.14959407
http://www.ijisrt.com/

Volume 10, Issue 2, February – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.5281/zenodo.14959407

IJISRT25FEB1631 www.ijisrt.com 1213

Table 1: Full-Stack Development: Technologies, Applications, Challenges, and Solutions in Cloud native

Technology Application Challenges Solutions

HTML & CSS Frontend UI design,

responsiveness

Inconsistent design,

browser compatibility

Use frameworks like Bootstrap,

Tailwind, CSS

JavaScript & Frameworks
(React, Angular, Vue)

Interactive frontend, SPA
development

Performance issues,
complex state

management

Implement Virtual DOM, use state
management libraries (Redux,

Vuex)

Node.js & Express.js Backend API development,

server-side logic

High request latency,

memory leaks

Optimize API calls and implement

caching mechanisms

Relational Databases

(MySQL, PostgreSQL)

Structured data storage,

transactional integrity

Scalability limitations,

complex queries

Use indexing, database sharding

Non-Relational Databases

(MongoDB, Firebase)

Unstructured data storage,

flexible schema

Data consistency issues,

lack of ACID

compliance

Implement proper indexing, use

hybrid database models

RESTful & GraphQL APIs Communication between

frontend and backend

Over-fetching/under-

fetching data

Use GraphQL for precise data

fetching

Cloud Computing (AWS,

GCP, Azure)

Scalable infrastructure,

serverless computing

High costs, vendor lock-

in

Optimize resource allocation, use

multi-cloud strategies

Docker & Kubernetes Containerization,

microservices deployment

Orchestration

complexity, scaling

issues

Use automated CI/CD pipeline

monitoring tools like Prometheus

CI/CD (Jenkins, GitHub

Actions, GitLab CI)

Automated testing,

deployment pipelines

Configuration errors,

slow build times

Implement pipeline caching,

optimize test execution

Security Practices (JWT,
OAuth, TLS/SSL)

Authentication, secure data
transmission

Vulnerabilities, data
breaches

Implement strong encryption,
multi-factor authentication

Serverless Computing (AWS

Lambda, Google Cloud

Functions)

Event-driven architecture,

cost efficiency

Cold start latency,

limited execution time

Use warm-up techniques, optimize

function execution

AI & ML Integration Predictive analytics,

chatbots, personalization

Data quality issues, high

computation costs

Use cloud-based AI services,

preprocess data effectively

V. LITERATURE REVIEW

This section presents a study on cloud-native

applications, with a specific focus on full-stack development

for building highly available scalable web applications.

Table II summarizes the key studies reviewed in the survey.

Iqbal (2024) explores the many aspects of full-stack

web development in great detail. The field of full-stack web

development is quickly becoming an important subset of

computer science and engineering, and it is already making

a big impact on how the IT industry will evolve in the future.

Web apps and websites rely heavily on full-stack developers,

who oversee both the front-and back-end development

processes[13].

Perveen and Edward (2024) explore the core principles

and practices associated with cloud-native architectures,
including microservices, containerization, and orchestration,

and examine their role in enhancing application scalability,

resilience, and efficiency. It delves into the benefits of

adopting cloud-native approaches, such as improved

resource utilization, faster time-to-market, and increased

flexibility. The study also addresses the challenges

organizations face when transitioning to cloud-native

architectures, such as managing complex dependencies,

ensuring security, and optimizing performance[38].

Kamau et al. (2024) examine advances in full-stack

development frameworks, emphasizing their security and

compliance models to address modern-day challenges such

as data breaches, unauthorized access, and regulatory non-

compliance. The study explores prominent full-stack

frameworks, including MEAN (MongoDB, Express.js,

Angular, Node.js), MERN (MongoDB, Express.js, React,
Node.js), and Django, highlighting their inherent security

features. These include robust authentication mechanisms,

encryption protocols, and defense against common threats

such as SQL injection, cross-site scripting (XSS), and cross-

site request forgery (CSRF)[39].

Olasehinde (2024) explores the synergies between

RDMA, Java, and AngularJS in the development of scalable

web applications. We discuss how RDMA enhances the

communication layer in full-stack systems, reducing latency

and improving overall application performance, especially in
distributed environments. By examining the role of Java and

AngularJS in the server and client sides of full-stack

applications, we highlight how these technologies, when

integrated with RDMA, can deliver seamless, scalable web

experiences[40].

Dhanveer Prakash and Sharma (2023) DevOps helps to

upscale the speed, durability, and efficiency of software

development by emphasizing collaboration, automation, and

continuous improvement in the cloud. With the ability to

scale and resource versatility, the cloud is a great platform

https://doi.org/10.5281/zenodo.14959407
http://www.ijisrt.com/

Volume 10, Issue 2, February – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.5281/zenodo.14959407

IJISRT25FEB1631 www.ijisrt.com 1214

for applying DevOps approaches. The CI/CD pipelines,

infrastructure as code (IaC), containerization, orchestration,
and automated testing play a major role in integrating

DevOps in a cloud environment. In the end, the author has

provided an overview of how DevOps and cloud integration

may increase innovation, and efficiency to build a culture of

cooperation[41].

Bharadwaj and Premananda (2022) present a thorough

analysis of the cloud-native approach, contrasts it with the

conventional method of application design, development,

and deployment, and emphasize the need to make the

transition. Containers, continuous delivery, devops, and
microservices make up the four main tenets of cloud native

architecture. A cloud native application's development stack

and the many considerations that should go into its
architecture are also covered extensively. The article delves

into tools like microservices, API-based architecture, and the

12-factor application, all of which are crucial for cloud

native apps. Applications built specifically for the cloud may

help alleviate some of the additional difficulties associated

with cloud computing[1].

Table II highlights the key research contributions in

full-stack development and cloud-native computing,

highlighting their focus areas, findings, challenges, and

contributions.

Table 2: Summary of Related Work on Full Stack Development in Cloud Native Applications

Author(s) &

Year

Focus Area Key Technologies

/Concepts

Benefits Challenges Future

Recommendation

Iqbal

(2024)[13]

Full Stack Web

Development

Front-end and Back-

end Development

Comprehensive

website and

application

management

Keeping up with

emerging

technologies,

managing

complexity

Explore integration

of AI-driven tools in

development

Jelani,

Perveen, &

Edward

(2024)[38]

Cloud-Native

Architectures

Microservices,

Containerization,

Orchestration

Improved

scalability,

resilience,

flexibility, faster
time-to-market

Managing

complex

dependencies,

ensuring security,
optimizing

performance

Develop automated

security solutions for

cloud-native

environments

Kamau et al.

(2024)[39]

Full-Stack

Development

Frameworks and

Security

MEAN, MERN,

Django;

Authentication,

Encryption, XSS,

CSRF defense

Enhanced security,

compliance, and

protection against

data breaches

Addressing

modern security

challenges,

regulatory

compliance

Investigate AI-based

threat detection

methods

Olasehinde

(2024)[40]

Scalable Web

Applications using

RDMA

RDMA, Java,

AngularJS

Reduced latency

improved

performance in

distributed

environments

Integration

complexities

Enhance RDMA

integration with

emerging web

frameworks

Dhanveer

Prakash and

Sharma
(2023)

[41]

DevOps

integration in

cloud computing

CI/CD pipelines,

Infrastructure as

Code (IaC),
Containerization,

Orchestration,

Automated Testing

Increased speed,

durability, and

efficiency of
software

development;

enhanced

collaboration and

automation

Implementation

complexity,

security concerns,
and managing

dependencies

Strengthening

DevOps and cloud

integration to foster
innovation and

cooperation

Bharadwaj

and

Premananda

(2022)[1]

Cloud-native

architecture

Microservices,

DevOps, Continuous

Delivery, Containers,

12-factor application,

API-based design

Scalability, agility,

and flexibility in

application

development;

efficient resource

utilization

Transition

challenges from

traditional to

cloud-native

approaches;

managing

microservices
complexity

Enhancing cloud-

native solutions to

address evolving

cloud computing

challenges

VI. CONCLUSION AND FUTURE WORK

Modern full-stack development in cloud-native

environments empowers developers to build scalable,

efficient, and maintainable applications by leveraging

advanced tools and methodologies. Cloud platforms,

serverless computing, containerization, and microservices

architectures provide flexibility, automation, and cost-

effective solutions for application deployment and

management. DevOps practices, CI/CD pipelines, and

https://doi.org/10.5281/zenodo.14959407
http://www.ijisrt.com/

Volume 10, Issue 2, February – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.5281/zenodo.14959407

IJISRT25FEB1631 www.ijisrt.com 1215

Infrastructure as Code (IaC) further streamline development,

ensuring continuous integration, delivery, and monitoring.
Despite challenges such as security risks, resource

optimization, and complexity in managing distributed

systems, best practices like container orchestration, database

optimization, and proactive security measures enable robust

and resilient applications. By adopting these modern full-

stack development strategies, organizations can enhance

performance, scalability, and maintainability, ensuring

seamless user experiences in dynamic cloud-native

ecosystems. Future research can focus on optimizing

microservices orchestration, enhancing serverless security,

integrating AI-driven DevOps (AIOps), and exploring
blockchain for secure applications. Advancements in edge

computing and sustainable cloud practices will further

improve scalability, efficiency, and resilience in cloud-

native development.

REFERENCES

[1]. D. Bharadwaj and B. S. Premananda, “Transition of

Cloud Computing from Traditional Applications to

the Cloud Native Approach,” in 2022 IEEE North

Karnataka Subsection Flagship International

Conference, NKCon 2022, 2022. doi:
10.1109/NKCon56289.2022.10126871.

[2]. Q. Zeng, M. Kavousi, Y. Luo, L. Jin, and Y. Chen,

“Full-stack vulnerability analysis of the cloud-native

platform,” Comput. Secur., 2023, doi:

10.1016/j.cose.2023.103173.

[3]. N. P. Hirenkumar Mistry Kumar Shukla, “Securing

the Cloud: Strategies and Innovations in Network

Security for Modern Computing Environments,” Int.

Res. J. Eng. Technol., vol. 11, no. 04, p. 11, 2024.

[4]. T. Mattila, “Building a Complete Full-Stack Software

Development,” Turku University, 2018.
[5]. S. Arora and S. R. Thota, “Automated Data Quality

Assessment And Enhancement For Saas Based Data

Applications,” J. Emerg. Technol. Innov. Res., vol.

11, pp. i207–i218, 2024, doi:

10.6084/m9.jetir.JETIR2406822.

[6]. V. S. Thokala, “Improving Data Security and Privacy

in Web Applications : A Study of Serverless

Architecture,” Int. Res. J., vol. 11, no. 12, pp. 74–82,

2024.

[7]. T. K. K. and S. Rongala, “Implementing AI-Driven

Secure Cloud Data Pipelines in Azure with
Databricks,” Nanotechnol. Perceptions, vol. 20, no.

15, pp. 3063–3075, 2024, doi:

https://doi.org/10.62441/nano-ntp.vi.4439.

[8]. E. Nikulchev, D. Ilin, and A. Gusev, “Technology

Stack Selection Model for Software Design of Digital

Platforms,” Mathematics, vol. 9, no. 4, 2021, doi:

10.3390/math9040308.

[9]. A. Ramírez, J. R. Romero, and S. Ventura,

“Interactive Multi-Objective Evolutionary

Optimization of Software Architectures,” Inf. Sci.

(Ny)., vol. 463–464, pp. 92–109, Oct. 2018, doi:

10.1016/j.ins.2018.06.034.

[10]. Y. Yang, B. Yang, S. Wang, T. Jin, and S. Li, “An
Enhanced Multi-Objective Grey Wolf Optimizer for

Service Composition in Cloud Manufacturing,” Appl.

Soft Comput., vol. 87, Feb. 2020, doi:

10.1016/j.asoc.2019.106003.

[11]. H. Cherukuri, R. Gupta, S. Shukla, A. Rajan, and S.

Aravind, “The Impact of Agile Development

Strategies on Team Productivity in Full Stack

Development Projects,” Int. J. Intell. Syst. Appl. Eng.,

pp. 175–184, 2024.

[12]. A. Goyal, “Optimising Cloud-Based CI/CD

Pipelines: Techniques for Rapid Software
Deployment,” Tech. Int. J. Eng. Res., vol. 11, no. 11,

pp. 896–904, 2024.

[13]. K. Iqbal, “Full Stack Web Development: Vision,

Challenges and Future Scope,” Int. J. Sci. Res. Eng.

Manag., vol. 08, no. 04, pp. 1–5, 2024, doi:

10.55041/ijsrem30338.

[14]. Akshat Dalmia and Abhishek Raj Chowdary, “The

New Era of Full Stack Development,” Int. J. Eng.

Res., 2020, doi: 10.17577/ijertv9is040016.

[15]. T. M. C. Venkata Ashok Kumar Boyina, “Fullstack

Development in Practice Leading Teams and

Architecting Scalable Solutions,” Int. Res. J. Mod.
Eng. Technol. Sci., vol. 06, no. 12, pp. 4697–4703,

Jan. 2024, doi: 10.56726/IRJMETS65797.

[16]. Vasudhar Sai Thokala, “Enhancing Test-Driven

Development (TDD) and BDD Methodologies in

Full-Stack Web Applications,” Int. J. Sci. Res. Arch.,

vol. 10, no. 1, pp. 1119–1129, Oct. 2023, doi:

10.30574/ijsra.2023.10.1.0815.

[17]. V. P, “Full Stack Development-A New Horizon in

Technologies,” Int. Res. J. Mod. Eng. Technol. Sci.,

vol. 05, no. 06, pp. 2370–2372, 2023, doi:

10.56726/IRJMETS42018.
[18]. Y. Baiskar, “MERN: A Full-Stack Development,”

Int. J. Res. Appl. Sci. Eng. Technol., vol. 10, no. 1, pp.

1029–1035, 2022.

[19]. D. D. Rao, D. Dhabliya, A. Dhore, M. Sharma, S. S.

Mahat, and A. S. Shah, “Content Delivery Models for

Distributed and Cooperative Media Algorithms in

Mobile Networks,” in 2024 15th International

Conference on Computing Communication and

Networking Technologies (ICCCNT), IEEE, Jun.

2024, pp. 1–6. doi:

10.1109/ICCCNT61001.2024.10724905.
[20]. N. K. Bharali, “Full Stack Web Development Of

Redux-Based Web Applications with Dynamic

Microservices (Case Study - Idea Repository),” Int.

Res. J. Mod. Eng. Technol. Sci., vol. 05, no. 01, Jan.

2023, doi: 10.56726/IRJMETS33219.

[21]. M. Khorasani, M. Abdou, and J. H. Fernández, Web

Application Development with Streamlit: Develop

and Deploy Secure and Scalable Web Applications to

the Cloud Using a Pure Python Framework. 2022.

doi: 10.1007/978-1-4842-8111-6.

[22]. A. G. Milavkumar Shah, “Distributed Query

Optimization forPetabyte-Scale Databases,” Int. J.
Recent Innov. Trends Comput. Commun., vol. 10, no.

10, 2022.

https://doi.org/10.5281/zenodo.14959407
http://www.ijisrt.com/

Volume 10, Issue 2, February – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.5281/zenodo.14959407

IJISRT25FEB1631 www.ijisrt.com 1216

[23]. S. S. S. Neeli, “A Comparative Analysis of SQL and

NoSQL Database Management within Cloud
Architectures for Mission-Critical Business

Systems,” ESP Int. J. Adv. Comput. Technol., vol. 2,

no. 4, pp. 140–149, 2024.

[24]. G. A. Nys and R. Billen, “From consistency to

flexibility: A simplified database schema for the

management of CityJSON 3D city models,” Trans.

GIS, 2021, doi: 10.1111/tgis.12807.

[25]. B. Boddu, “Importance Of Nosql Databases:

Business Strategies With Administration Tactics,”

Int. J. Core Eng. Manag., vol. 7, no. 2, 2022.

[26]. S. Murri, S. Chinta, S. Jain, and T. Adimulam,
“Advancing Cloud Data Architectures: A Deep Dive

into Scalability, Security, and Intelligent Data

Management for Next-Generation Applications,”

Well Test. J., vol. 33, no. 2, pp. 619–644, 2024,

[Online]. Available:

https://welltestingjournal.com/index.php/WT/article/

view/128

[27]. V. Ugwueze, “Cloud Native Application

Development: Best Practices and Challenges,” Int. J.

Res. Publ. Rev., vol. 5, pp. 2399–2412, 2024, doi:

10.55248/gengpi.5.1224.3533.

[28]. S. S. S. Neeli, “Leveraging Docker and Kubernetes
for Enhanced Database Management,” J. Artif. Intell.

Mach. Learn. Data Sci., vol. 1, no. 1, p. 5, 2022.

[29]. Godavari Modalavalasa, “The Role of DevOps in

Streamlining Software Delivery: Key Practices for

Seamless CI/CD,” Int. J. Adv. Res. Sci. Commun.

Technol., vol. 1, no. 12, pp. 258–267, Jan. 2021, doi:

10.48175/IJARSCT-8978C.

[30]. S. Chippagiri and P. Ravula, “Cloud-Native

Development: Review of Best Practices and

Frameworks for Scalable and Resilient Web

Applications,” vol. 8, pp. 13–21, 2021.
[31]. M. Waseem, P. Liang, and M. Shahin, “A Systematic

Mapping Study on Microservices Architecture in

DevOps,” J. Syst. Softw., vol. 170, 2020, doi:

10.1016/j.jss.2020.110798.

[32]. C. Pahl, A. Brogi, J. Soldani, and P. Jamshidi, “Cloud

container technologies: A state-of-the-art review,”

IEEE Trans. Cloud Comput., 2019, doi:

10.1109/TCC.2017.2702586.

[33]. I. Jana and A. Oprea, “AppMine: Behavioral

analytics for web application vulnerability

detection,” in Proceedings of the ACM Conference on
Computer and Communications Security, 2019. doi:

10.1145/3338466.3358923.

[34]. O. C. Oyeniran, O. T. Modupe, A. A. Otitoola, O. O.

Abiona, A. O. Adewusi, and O. J. Oladapo, “A

Comprehensive Review of Leveraging Cloud-Native

Technologies for Scalability and Resilience in

Software Development,” Int. J. Sci. Res. Arch., vol.

11, no. 2, pp. 330–337, Mar. 2024, doi:

10.30574/ijsra.2024.11.2.0432.

[35]. S. S. S. Neeli, “Optimizing Database Management

with DevOps: Strategies and Real-World Examples,”
J. Adv. Dev. Res., vol. 11, no. 1, p. 8, 2020.

[36]. A. Hakli, D. Taibi, and K. Systa, “Towards Cloud

Native Continuous Delivery: An Industrial

Experience Report,” in 2018 IEEE/ACM

International Conference on Utility and Cloud

Computing Companion (UCC Companion), IEEE,

Dec. 2018, pp. 314–320. doi: 10.1109/UCC-

Companion.2018.00074.

[37]. B. Boddu, “Unleashing the Power of Docker and

Kubernetes for Databases,” North Am. J. Eng. Res.,

vol. 3, no. 3, p. 5, 2022.
[38]. U. Jelani, K. Perveen, and E. Edward, “Cloud-Native

Architectures: Building and Managing Applications

at Scale,” Int. J. Mach. Learn. Res. Cybersecurity

Artifcial Intell., vol. 15, no. 1, 2024.

[39]. E. Kamau, A. Collins, G. Babatunde, and A. Alabi,

“Advances in Full-Stack Development Frameworks:

A Comprehensive Review of Security and

Compliance Models,” Int. J. Multidiscip. Res.

Growth Eval., vol. 5, pp. 1172–1185, 2024, doi:

10.54660/.IJMRGE.2024.5.1.1172-1185.

[40]. T. Olasehinde, “Full-Stack Web Development

Trends: Leveraging RDMA, Java, and AngularJS for
Scalable Applications,” 2024.

[41]. M. P. Dhanveer Prakash and N. Sharma, “The

Convergence of DevOps and Cloud Computing: A

Redefining Software Development,” in 2023 Seventh

International Conference on Image Information

Processing (ICIIP), 2023, pp. 800–805. doi:

10.1109/ICIIP61524.2023.10537710.

https://doi.org/10.5281/zenodo.14959407
http://www.ijisrt.com/

