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Abstract: Hydroponics is a soilless farming technique in which the plants are irrigated with a nutrient solution consisting 

of water and compounds necessary to provide all the essential elements for normal mineral nutrition. Increase in 

population, industrialization which has lead to pollution and change in climatic condition has pose a serious threat to food 

security. This paper therefore explores the integration of Deep Learning (DL) and Business Intelligence (BI) in smart 

hydroponic greenhouse systems, aiming to optimize cultivation through data-driven automation. A conceptual 

architecture is presented, highlighting the flow of information from sensor inputs and cameras, through a Raspberry Pi 

and IoT gateway, to a central database. ANNs, including classification and prediction models, process this data, enabling 

automated control of actuators and providing actionable insights through a BI dashboard. The discussion of findings, 

based on reviewed literature and the proposed architecture, reveals a strong trend towards leveraging advanced 

technologies for improved efficiency, accuracy, and productivity in hydroponic agriculture. The integration of deep 

learning for tasks like disease detection and yield prediction, coupled with BI for data visualization and decision support, 

underscores the potential of these technologies to revolutionize hydroponic practices. This research emphasizes the 

importance of data-driven approaches, IoT infrastructure, and closed-loop control systems in creating intelligent and 

sustainable greenhouse environments. 
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I. INTRODUCTION 

 
Hydroponic greenhouses, enclosed structures typically 

made of plastic or glass (Baras, 2018; Singh et al., 2016), 

represent a revolutionary approach to plant cultivation. 

Unlike traditional agriculture that relies on soil, hydroponics 

involves growing plants in a nutrient-rich water solution. 

This soilless method offers significant advantages, 

particularly in regions where climate, soil quality, or land 

availability pose challenges to conventional farming (Son et 

al., 2020; Ifechukwude et al., 2022). By meticulously 

controlling environmental factors such as temperature, 

humidity, and nutrient levels, hydroponics enables the 
cultivation of a wide variety of crops in diverse locations, 

including urban areas. 

 

Nigeria, like many developing nations, faces a growing 

food security crisis. A confluence of factors, including rapid 

population growth, the encroachment of oil exploration and 

industrialization, and the impacts of climate change, has led 

to a significant decline in arable land, soil fertility, and 

access to clean water resources (UN, 2016; Bardi & Palazzi, 

2022). These challenges threaten agricultural productivity 

and exacerbate food shortages. Hydroponics emerges as a 

viable solution by offering a sustainable and efficient 
alternative to conventional farming, enabling food 

production in areas where traditional agriculture is no longer 

feasible. 

 

While hydroponics presents a promising solution, 

effectively managing a hydroponic system requires 

meticulous attention to detail. Monitoring and controlling 

environmental factors such as water pH, temperature, 

nutrient levels, and dissolved solids are crucial for optimal 

plant growth. Manual monitoring and control can be labor-

intensive, time-consuming, and prone to human error. To 
address these limitations, the development of "smart" 

hydroponic systems that incorporate advanced technologies 

is essential (Panwar et al., 2011; Bardi & Palazzi, 2022). 

 

This paper therefore explores the integration of Deep 

Learning (DL) and Business Intelligence (BI) in smart 

hydroponic greenhouse systems, aiming to optimize 

cultivation through data-driven automation. 
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 Overview of a Smart Hydroponic System 

Soil plays a crucial role in traditional agriculture 

(Baras, 2018), providing plants with essential support, 

nutrients, and a habitat for beneficial microorganisms. 

However, hydroponics, a soilless cultivation technique, 

offers an alternative approach (Baras, 2018; Singh et al., 

2016). As defined by Bardi & Palazzi (2022), hydroponic 

farming involves cultivating plants in a nutrient-rich water 
solution, providing all the essential elements for plant 

growth without the use of soil. 

 

Hydroponics, while often perceived as a modern 

innovation, has ancient roots, with evidence found in 

Egyptian wall paintings (Raviv & Lieth, 2007). The term 

"hydroponics" itself originates from Greek words: "hydro" 

meaning water and "ponos" meaning labor (Khan et al., 

2018). Essentially, it is a modern agricultural technique that 

replaces soil with a nutrient solution for crop production 

(Bridgewood, 2003; Hochmuth & Hochmuth, 2001). 

 
Soil, typically the most favorable medium for crop 

growth, provides essential nutrients, air, and water for plant 

development (Khan et al., 2018). However, limitations of 

soil-based agriculture include the presence of disease-

causing microorganisms, inappropriate soil responses, poor 

drainage, soil compaction, and soil degradation. 

Hydroponics offers a solution by eliminating these soil-

related constraints, enabling more efficient and controlled 

plant growth. 

 

One of the major advantages of hydroponic greenhouse 

cultivation is the efficient utilization of natural light. Light 

plays a crucial role in fruit development. In a hydroponic 

greenhouse, light falls evenly on both the upper and lower 

parts of the plant, leading to more uniform fruit 
development (Despommier, 2009). Hydroponics is 

particularly well-suited for cultivating high-value crops such 

as leafy greens, fruits, flowers, and fodder (RIRDC, 2001). 

Research has consistently demonstrated the benefits of 

hydroponic systems, including minimal pesticide use, 

increased yields, and water conservation (Resh & Howard, 

2012; Arias et al., 2000; Buchanan et al., 2013; Koyama et 

al., 2013). 

 

Hydroponics offers several advantages over traditional 

farming. It is soil-independent, making it flexible and 

portable. Cultivation is faster compared to traditional 
methods. Hydroponic systems require less space and can be 

grown in various locations, including urban areas. They are 

less susceptible to seasonal variations and require minimal 

pesticide and herbicide use. Furthermore, hydroponically 

grown crops are protected from soil-borne diseases and 

pests, facilitating easier isolation during experiments (Ke & 

Xiong, 2008; Wang et al., 2011; Suzui et al., 2009; Liu et 

al., 2012). 

 

 
Fig 1 Components of Hydroponic System (Modu et al, 2020 and Alam et al, 2023) 
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Hydroponic fertilizers typically contain six essential 

nutrients: N, P, S, K, Ca, and Mg, which are fed to the plants 

in balanced ratios (Kaewwiset & Yooyativong, 2017). 

Various growing media, such as wood chips, can be used in 

conjunction with water to create a hydroponic system (Muro 

et al., 2004). In closed or indoor hydroponic systems, light-

emitting diodes (LEDs) and other artificial light sources are 

used to provide the necessary light for photosynthesis. Other 
critical factors to consider include ambient temperature, 

nutrient solution temperature, photoperiod, and air humidity 

(Gupta, 2004). 

 

Components of a hydroponic system include the 

growing area/location, the specific crop being cultivated, the 

growing medium, nutrient solution, a reservoir for the 

nutrient solution, and a lighting system (Mudo et al, 2020). 

These systems can be operated automatically, with 

automated systems controlling factors such as temperature, 

pH level of the water, nutrient delivery, air conditioning, 

and humidity. Figure 1 shows the components of a 
hydroponic system. 

 

Smart hydroponic systems represent a significant 

advancement in this field. Mudo et al. (2020) classified 

smart hydroponic systems into four main categories based 

on their level of automation, the tasks they automate, the 

type of automation, and the mode of control. These systems 

range from semi-automated systems, where only some 

components are automated, to fully-automated systems that 

handle all aspects of the growing process. 

 
Smart hydroponic systems can be designed to perform 

various tasks, including system maintenance (hardware, 

consumables, security), crop cultivation (nutrient delivery, 

lighting, seedling management, harvesting), and system 

monitoring and reporting. By integrating advanced 

technologies such as sensors, automation, and artificial 

intelligence, smart hydroponic systems can optimize plant 

growth, improve resource utilization, and enhance the 

overall efficiency and sustainability of agricultural 

production. 

 

 Business Intelligence in Smart Hydroponic Greenhouse 
Business intelligence (BI) has the potentials of 

revolutionizing hydroponics, transforming it from a 

traditional cultivation method into a data-driven, high-

performance agricultural practice. BI essentially automates 

data collection, analysis, and visualization, empowering 

growers with actionable insights for informed decision-

making. This translates to enhanced operational efficiency 

and maximized profitability. (Bussa, 2023; Syed and 

Nampally, 2021; Solanki et al, 2024) 

 

The core of BI in hydroponics involves collecting real-
time data on critical parameters like temperature, humidity, 

nutrient levels, pH, and light intensity. Sensor networks and 

monitoring devices gather this data, providing a 

comprehensive picture of the growing environment. BI tools 

can then be used to analyze this data to identify trends, 

patterns, and potential issues (Ikegwu et al, 2022; Bussa, 

2023). For example, historical data on environmental 

conditions and crop yields can be analyzed to determine 

optimal growing conditions for specific plants, leading to 

increased productivity and reduced resource waste. 

 

BI empowers proactive management through 

predictive analytics (Udeh et al, 2024; Solanki et al, 2024; 

Omol et al, 2024). By analyzing historical data and 

identifying correlations between environmental factors and 
plant health, BI can forecast potential problems like nutrient 

deficiencies, pest infestations, or disease outbreaks. This 

allows growers to take timely interventions, minimizing 

losses and ensuring optimal plant growth. In essence, BI 

fosters data-driven decision-making, enabling growers to 

optimize resource allocation, improve operational 

efficiency, and enhance overall profitability (Abdel-Basset 

et al, 2024). From optimizing nutrient solutions and 

irrigation schedules to predicting market demand and 

identifying areas for improvement, BI plays a crucial role in 

transforming hydroponics into a highly efficient and 

sustainable agricultural practice. 

 

II. REVIEW OF RELATED WORKS 

 

Several studies have explored the application of Deep 

Learning (DL) algorithms and Business Intelligence (BI) 

solutions in smart hydroponic greenhouses, aiming to 

enhance efficiency and productivity. While the direct 

combination of both DL and BI is still emerging, research 

highlights their individual contributions and the potential 

synergy when integrated. 

 
Wongpatikaseree et al (2018) investigated the 

performance of 3 classical machine learning classifiers: 

decision tree, Naive Bayes, Multi-Layer Perception and one 

type of deep neural network in the detecting the freshness of 

vegetation harvested from a smart hydroponic system. The 

proposed system uses image processing and machine 

learning technologies to detect fresh and withered 

vegetables. The experiment shows that the decision tree 

(J48) model was found to have the best accuracy of 98:12%. 

This system can be used in harvesting and/or monitoring the 

health of crops grown in a hydroponic system 

 
Alipio et al. (2017) developed a smart hydroponic 

system using Bayesian Networks (BN) to automate 

environmental control. Their system, which monitored and 

adjusted parameters like light intensity, pH, and electrical 

conductivity, resulted in a 66.67% yield increase compared 

to manual control. However, the system lacked control over 

crucial parameters like CO2 and oxygen, and raised concerns 

regarding data security and transparency. 

 

Asy'ari et al. (2023) utilized an ARIMA model for 

forecasting plant growth in hydroponic farms, demonstrating 
the potential of time series analysis in this domain. Their 

model, based on data collected via IoT and machine-to-

machine communication, showed that the performance of 

ARIMA (2, 2, 1) time series forecasting model in predicting 

hydroponic plants' growth gives the smallest value of 

RMSE, MAE, and MAPE with 0.97, 0.94, and 0.04, 

respectively. 
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Raju et al (2022) implemented a mobile application 

integrated with an AI-based smart hydroponics expert 

system (AI-SHES) using IoT. Their system combined 

hardware for real-time data collection (NPK, sunlight, 

turbidity, pH, temperature, water level, and camera), a deep 

learning CNN model for nutrient level prediction and 

disease detection, and a mobile interface for farmer 

interaction. The obtained simulation results on disease 
detection and classification using proposed AI-SHES with 

IoT disclose superior performance in terms of accuracy, F-

measure, precision and recall with 99.29%, 99.23%, 99.38% 

and 98.58% respectively. While achieving high accuracy 

(99.29%) in disease detection, the system, like Alipio et al. 

(2017), lacked control over key parameters and raised 

concerns about data security and energy consumption. 

 

Rajkumar and Chachadi (2021) developed an 

automated hydroponic system with remote monitoring 

capabilities. Their system, using a sensor network, Arduino, 

Raspberry Pi, and a decision tree algorithm, maintained 
stable pH, EC, temperature, and humidity levels. However, 

they did not address system accuracy or anomaly detection 

for disease prevention. 

 

Bulut and Hacıbeyoğlu (2023) explored the use of 

plant water and wastewater data in conjunction with various 

machine learning and deep learning algorithms (SVM, K-

NN, Naive Bayes, Logistic Regression, Decision Trees, 

DNN, CNN, ANN, RNN) to evaluate plant growth. Their 

research indicated that DNNs achieved the highest success 

rate (99.7%), emphasizing the potential of machine learning 
in optimizing hydroponic agriculture. However, they did not 

consider yield performance, intrusion detection, or disease 

detection. 

 

Rajkunwar et al. (2024) focused on plant disease and 

nutrient deficiency detection using image scrutiny 

techniques and CNNs. Their model, trained on substantial 

dataset, achieved 96% accuracy for disease detection and 

87% for nutrient deficiency detection, showcasing the 

potential of AI-driven image recognition for real-time 

monitoring and intervention. 

 
Tambakhe and Gulhane (2022) developed an 

intelligent crop growth monitoring system using IoT and 

machine learning. Comparing several regression models 

(SVR, Linear Regression, Lasso Regression, Decision Tree, 

Ridge Regression, Random Forest), they found that Random 

Forest provided the highest accuracy (95%) for predicting 

crop growth. Their system collected real-time data on 

various parameters (pH, EC, TDS, water temperature, 

temperature, and humidity) and stored it on Firebase. 

 

Mashumah et al. (2018) developed a Nutrient Film 
Technique (NFT) hydroponic system using fuzzy logic 

control to regulate electrical conductivity (EC) levels. Their 

system integrated image processing (via webcam) to 

determine plant saturation and adjust EC setpoints, 

demonstrating the potential of combining image-based 

analysis with fuzzy control. While achieving reasonable 

accuracy in EC maintenance, the system's reliance on 

saturation values and the inherent error in water volume 

measurement (15.6%) present limitations. 

 

JSM and Sridevi (2014) also employed fuzzy logic, but 

in conjunction with a genetic algorithm (GA), for pH control 

in a hydroponic system. Their approach aimed to address the 

limitations of traditional PID controllers by using a 

Mamdani fuzzy inference system (FIS) to evaluate nutrient 
solution quality and then employing a GA to optimize valve 

control. While the combined FIS-GA approach showed 

improved performance compared to fuzzy or PID controllers 

alone, the system's use of a drain valve raises concerns 

about nutrient waste. 

 

Ayala-Silva and Beyl (2002) investigated the use of a 

multilayer perceptron (MLP) neural network for classifying 

nutrient deficiencies in wheat using hyperspectral data. 

Their research demonstrated the potential of ANNs for 

automated nutrient management, achieving high 

classification accuracy for deficiencies in nitrogen, 
phosphorus, potassium, and calcium. However, the authors 

acknowledge the challenge of obtaining sufficient training 

data for other crops. 

 

Gartphol et al. (2018) developed predictive models for 

lettuce quality using data from an IoT-based hydroponic 

farm. While their focus was on regression models derived 

from environmental and growth data, the study highlights 

the importance of data collection and analysis in smart 

hydroponics. The challenges they encountered with 

measurement errors underscore the need for robust sensor 
technologies and data processing techniques.. 

 

Pancić et al. (2023) investigated the influence of BI on 

firm performance, considering the mediating roles of big 

data analytics and blockchain adoption. Their finding 

showed that BI has a direct and significant positive 

influence on firm performance. 

 

III. METHODOLOGY 

 

A review of related literature was conducted to explore 

the intersection of smart hydroponic greenhouses, Business 
Intelligence (BI) tools, and Artificial Neural Networks 

(ANNs). Thirty journal articles were initially identified 

through searches in scholarly databases including Google 

Scholar, ScienceDirect, IEEE Xplore, and ResearchGate. 

These sources were queried using keywords related to smart 

hydroponic greenhouse systems, BI solutions, and the 

impact of these technologies on business or firm 

performance. After a preliminary screening, sixteen papers 

were excluded as they did not specifically address smart 

hydroponic greenhouse systems or the application of BI 

solutions in this context.  
 

The remaining fourteen papers, which directly related 

to the research topic, were then selected for a detailed 

review. This focused review examined how these studies 

explored the use of BI and ANNs in optimizing various 

aspects of smart hydroponic greenhouse operations, 

including but not limited to environmental control, resource 
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management, yield prediction, and disease detection, and 

how these technologies contributed to improved 

performance. 

 

IV. RESULTS AND DISCUSSION 

 

A. Results 

Table 1 summarizes the application and performance 
of various machine learning and artificial intelligence 

technologies in smart hydroponic greenhouse systems 

 

Figure 2 illustrates the distribution of research focus 

areas within the domain of smart hydroponic systems, 

highlighting key applications of technology such as image-

based detection, disease and nutrient deficiency detection, 

yield prediction, and automated control/resource 

optimization. 

 

Figure 3 depicts the yearly publication trend relating to 

smart hydroponic greenhouse systems using deep learning 

algorithms from 2014 to 2024. 
 

Figure 4 presents a proposed conceptual architecture 

for a smart hydroponic greenhouse using business 

intelligence tools and artificial neutral network. 

 

Table 1 Application and Performance of various Deep Learning and AI technologies in Smart Hydroponic Greenhouse Systems 

Authors Year 
Developed System/ 

Model 
Technology Used Findings 

Wongpatikaseree et 

al 

2018 Image-based crop 

freshness detection 

system 

Decision Tree, Naive Bayes, 

Multi-Layer Perception, DNN 

DT has the higest performance with 

98.2% accuracy 

Alipio et al. 2017 Automated control 

system 

Bayesian Networks 66.67% yield increase 

Asy'ari et al. 2023 Plant Growth Prediction ARIMA model RMSE of 97%, MAE of 94%, and 

MAPE of 0.04 

Raju et al 2023 Nutrient level prediction 
and Disease detection 

CNN Model 99.29% accuracy for disease 
detection 

Rajkumar and 

Chachadi 

2021 Automated control 

system 

IoT Sensors and Decision 

Trees 

maintained stable pH, EC, 

temperature, and humidity levels 

Bulut and 

Hacıbeyoğlu 

2023 Plant Growth Prediction SVM, K-NN, Naive Bayes, 

Logistic Regression, Decision 

Trees, DNN, CNN, ANN, 

RNN 

DNNs achieved the highest success 

rate of 99.7% 

Rajkunwar et al 2024 Plant disease  detection 

and nutrient deficiency 

detection 

Image scrutiny techniques and 

CNNs 

96% accuracy for disease detection 

and 87% for nutrient deficiency 

detection, 

Tambakhe and 

Gulhane 

2022 Crop growth monitoring 

system 

SVR, Linear Regression, 

Lasso Regression, Decision 

Tree, Ridge Regression, 

Random Forest 

Automated time series data 

collection stored in Firebase. Also 

Random Forest provided the 

highest accuracy (95%) for 

predicting crop growth 

Mashumah et al 2018 Electrical Conductivity 
(EC) Level Regulation 

image-based analysis with 
fuzzy logic 

EC accuracy limited by saturation 
and volume error. 

JSM and Sridevi 2014 pH control system fuzzy logic with a genetic 

algorithm 

The combined FIS-GA approach 

showed improved performance 

compared to fuzzy or PID 

controllers alone 

Ayala-Silva and 

Beyl 

2002 Nutrient Deficiency 

Classification 

multilayer perceptron (MLP) 

neural network 

Achieved high classification 

accuracy for deficiencies in 

nitrogen, phosphorus, potassium, 

and calcium. 
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Fig 2 Distribution of Research Focus Areas within the Domain of Smart Hydroponic Systems 

 

 
Fig 3 Publication Trend relating to Smart Hydroponic Greenhouse Systems using Deep Learning Algorithms 
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Fig 4 Proposed Conceptual Architecture for a Smart Hydroponic Greenhouse System using  

Deep Learning and Business Intelligence Solution 

 

B. Discussion of Findings 

The collective findings from the reviewed literature, 

encompassing both individual studies and broader trends, 
highlight a significant and evolving landscape in smart 

hydroponic greenhouse systems. A clear direction emerges: 

the integration of advanced technologies, particularly 

machine learning (ML), artificial intelligence (AI), and the 

Internet of Things (IoT), is revolutionizing hydroponic 

agriculture. 

 

 Technological Advancements and their Impact 

The reviewed studies demonstrate the tangible benefits 

of these technologies. Image-based analysis, as evidenced 

by Wongpatikaseree et al. (2018), showcases the potential 
for automated quality assessment, leading to real-time 

monitoring and reduced manual labor. Automated control 

systems, exemplified by Alipio et al. (2017) and Rajkumar 

and Chachadi (2021), significantly enhance yield and 

maintain stable growing conditions. Predictive modeling, 

through time-series analysis (Asy'ari et al., 2023) and deep 

learning (Bulut and Hacıbeyoğlu, 2023), enables optimized 

resource allocation and anticipates future growth patterns. 

Deep learning, notably Convolutional Neural Networks 

(CNNs) in Raju et al. (2023) and Rajkunwar et al. (2024), 

effectively automates disease and nutrient deficiency 

detection, safeguarding plant health. Data-driven crop 

growth monitoring (Tambakhe and Gulhane, 2022) and 
intelligent control systems using fuzzy logic (Mashumah et 

al., 2018; JSM and Sridevi, 2014) further illustrate the 

diverse applications and benefits of these technologies. 

 

 Research Focus and Trends 

Result in figure 2 reveals a strong emphasis on disease 

detection, yield prediction, and automated control/resource 

optimization. This distribution underscores the critical 

importance of these areas in ensuring the success and 

sustainability of hydroponic agriculture. The prevalence of 

research on automated systems indicates a clear trend 
towards minimizing human intervention and maximizing 

efficiency. Furthermore, the integration of image-based 

analysis and advanced sensor technologies across multiple 

research areas highlights the increasing sophistication of 

hydroponic systems. 

 

 Image-Based Analysis and Quality Assessment: 
Wongpatikaseree et al. (2018) effectively showcased the 

power of image-based analysis combined with ML for 

crop quality assessment. Their finding that Decision 
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Trees (DT) achieved 98.2% accuracy in freshness 

detection highlights the feasibility of automating quality 

control processes. This indicates a potential for real-time 

monitoring of crop health and timely harvesting, 

reducing manual labor and ensuring consistent product 

quality. 

 Automated Control and Yield Optimization: Alipio et 

al. (2017) demonstrated the significant impact of 
automated control on yield. Their Bayesian Network-

based system achieved a 66.67% yield increase by 

precisely managing environmental parameters. This 

finding underscores the importance of intelligent control 

systems in optimizing growing conditions and 

maximizing productivity in hydroponic settings. 

Rajkumar and Chachadi (2021) further supported this, 

showing that IoT sensors and decision trees can maintain 

stable environmental parameters, essential for healthy 

plant growth. 

 Predictive Modeling and Time Series Analysis: 
Asy'ari et al. (2023) and Bulut and Hacıbeyoğlu (2023) 
focused on predictive modeling, particularly for plant 

growth. Asy'ari et al. achieved high accuracy in 

predicting plant growth using an ARIMA model, 

demonstrating the potential of time-series analysis for 

forecasting crop development. Bulut and Hacıbeyoğlu 

(2023) expanded on this by comparing various ML and 

deep learning models, finding that Deep Neural 

Networks (DNNs) achieved an impressive 99.7% 

success rate. These studies highlight the potential of 

predictive analytics to optimize resource allocation and 

anticipate future growth patterns. 

 Disease and Nutrient Deficiency Detection using Deep 

Learning: Raju et al. (2023) and Rajkunwar et al. 

(2024) explored the application of Convolutional Neural 

Networks (CNNs) for disease and nutrient deficiency 

detection. Raju et al. achieved 99.29% accuracy in 

disease detection, while Rajkunwar et al. reported 96% 

accuracy for disease detection and 87% for nutrient 

deficiency detection. These findings highlight the 

effectiveness of deep learning in automating plant health 

monitoring. The ability to detect diseases and nutrient 

deficiencies early can prevent crop losses and ensure 
optimal plant health. 

 Data-Driven Crop Growth Monitoring and 

Regression Models: Tambakhe and Gulhane (2022) 

focused on crop growth monitoring using various 

regression models. They found that Random Forest 

achieved the highest accuracy (95%) in predicting crop 

growth. Their system, which stored real-time data in 

Firebase, demonstrates the potential of IoT and cloud-

based data storage for continuous monitoring and 

analysis. 

 Intelligent Control Systems: Mashumah et al. (2018) 

and JSM and Sridevi (2014) explored the use of fuzzy 
logic for intelligent control. Mashumah et al. used fuzzy 

logic for EC level regulation, while JSM and Sridevi 

combined fuzzy logic with a genetic algorithm for pH 

control. Both studies demonstrate the potential of fuzzy 

logic to handle complex and dynamic systems, but also 

highlight the challenges related to sensor accuracy and 

system design. Mashumah et al. showed that EC 

accuracy was limited by saturation and volume error, 

and JSM and Sridevi's approach, while improving upon 

pure fuzzy or PID control, still has potential for 

improvement. 

 Nutrient Deficiency Detection and Classification: 
Ayala-Silva and Beyl (2002) demonstrated the potential 

of Multilayer Perceptron (MLP) neural networks for 

classifying nutrient deficiencies using hyperspectral data. 
Their research showed high classification accuracy, 

highlighting the potential of ANNs for automating 

nutrient management. However, they also noted the 

challenge of obtaining sufficient training data for other 

crops. 

 

 Publication Trends and Research Dynamics 

Result from figure 3 reveals that smart hydroponic 

greenhouse system is a dynamic and evolving field. The 

fluctuating publication rate suggests periods of growth and 

stasis, reflecting the ebbs and flows of research funding, 

technological advancements, and practical applications. The 
significant surge in 2023 indicates a growing recognition of 

ANNs' potential, while the projected decline in 2024 

suggests the need for sustained research and development. 

 

 Conceptual Architecture for a Smart Hydroponic 

Greenhouse System using Deep Learning and Business 

Intelligence Solution 

Figure 4 presents a conceptual architecture for a smart 

hydroponic greenhouse system, demonstrating a clear focus 

on data-driven optimization through the integration of 

Artificial Neural Networks (ANNs) and Business 
Intelligence (BI). The system initiates with a comprehensive 

data acquisition layer, comprising "Input Sensors" and a 

"Camera." These components gather crucial environmental 

and visual data, forming the foundation for subsequent 

analysis. A "Raspberry Pi" acts as the central processing 

unit, processing the incoming data and facilitating 

communication with the "IoT Gateway." This gateway 

ensures seamless data transfer to the "Database," which 

serves as the system's central repository, storing sensor 

readings, images, and processed information. 

 

The core intelligence of the system resides within the 
"ANN" module, which houses "Classification Model" and 

"Prediction Model." The Classification Model, likely a 

Convolutional Neural Network (CNN), analyzes camera 

images for disease detection and plant health assessment. 

The Prediction Model, potentially a Recurrent Neural 

Network (RNN), forecasts yields and environmental 

conditions. The "Mode of Operation" feedback loop 

signifies that the ANN's outputs directly influence the 

system's control. Subsequently, "Output Actuators," 

controlled by the Raspberry Pi, adjust environmental 

parameters based on the ANN's outputs, enabling automated 
optimization. The "Dashboard" serves as the BI component, 

providing a user interface for visualizing data and 

monitoring system performance, translating raw data and 

model outputs into actionable insights for growers. 

 

This architecture emphasizes a data-driven approach, 

utilizing data collected from sensors and cameras to train 

https://doi.org/10.38124/ijisrt/25feb1515
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ANN models and inform decision-making. The integration 

of deep learning enhances automation and precision through 

complex tasks like image analysis and predictive modeling. 

The IoT infrastructure facilitates real-time monitoring and 

control, while the BI dashboard empowers growers with 

actionable insights. The closed-loop control system, 

facilitated by the feedback between the ANN and actuators, 

enables automated adjustments, optimizing growing 
conditions and minimizing human intervention. While the 

architecture provides a strong conceptual framework, it 

could be further enhanced by including details on specific 

ANN models, data preprocessing steps, scalability and 

security considerations, and power management. Overall, 

this architecture demonstrates the potential of integrating 

deep learning and business intelligence, orchestrated 

through an IoT infrastructure, to significantly enhance 

efficiency, productivity, and sustainability in hydroponic 

agriculture. 

 

V. CONCLUSION 
 

This research has demonstrated the significant 

potential of integrating Deep Learning (DL) algorithms and 

Business Intelligence (BI) tools into smart hydroponic 

greenhouse systems. The reviewed literature and the 

proposed conceptual architecture highlight the 

transformative impact of these technologies on modern 

agriculture. By leveraging sensor data, image analysis, and 

predictive modeling, DL algorithms enable automated 

control, disease detection, and yield optimization. BI tools, 

through user-friendly dashboards, provide growers with 
actionable insights for informed decision-making. The 

proposed architecture, utilizing a Raspberry Pi, IoT 

gateway, and a central database, facilitates a data-driven 

approach to hydroponic cultivation. The integration of these 

technologies addresses the growing challenges of food 

security, particularly in regions facing climate change and 

limited arable land. The findings emphasize the importance 

of data-driven approaches, IoT infrastructure, and closed-

loop control systems in creating intelligent and sustainable 

greenhouse environments. 

 

Future endeavors should focus on developing robust 
and scalable Deep Learning models, enhancing Business 

Intelligence dashboards with real-time analytics, and 

investigating advanced sensor technologies. Prioritizing 

energy efficiency, data security, and interdisciplinary 

collaboration is crucial, alongside conducting field trials and 

developing user training programs. Standardizing data 

collection and exploring economic feasibility will further 

facilitate widespread adoption and contribute to global food 

security. 
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