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Abstract: Host-contaminated microbiomes, such as those found in mouse fecal samples, pose challenges for taxonomic 

profiling due to the high abundance of host DNA. Nanopore sequencing, with its long-read capabilities, enhances 

resolution but suffers from higher error rates and host contamination. This study presents a reproducible Galaxy 

workflow for taxonomic profiling of host-contaminated microbiomes using Nanopore sequencing data. The workflow 

integrates preprocessing (FastQC, Porechop, fastp), taxonomic classification (Kraken2 with a custom GTDB + mouse gut 

taxa database), and visualization (Krona pie charts) to provide a scalable and user-friendly analysis pipeline. Using the 

public ENA dataset PRJNA559386, the workflow processed 365,314 raw reads, yielding 267,615 high-quality reads. 

Taxonomic profiling identified Acetobacterium sp. KB-1 (13%) and Acetivibrio clariflavus DSM 19732 (12%) as dominant 

taxa, consistent with their roles as acetogenic and cellulolytic bacteria. Rare taxa, such as Acetobacter senegalensis (0.8%), 

were also detected, demonstrating the workflow’s sensitivity. The proposed workflow provides a robust, reproducible, and 

scalable framework for taxonomic profiling of host-contaminated microbiomes, addressing key challenges in Nanopore-

based microbiome analysis. This approach has significant implications for clinical and environmental studies where host 

contamination is inevitable, enabling more accurate microbial community assessments. 
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I. INTRODUCTION 

 

Host DNA contamination in low-biomass microbiomes 
(e.g., mouse faecal samples, clinical biopsies) complicates 

taxonomic profiling, often obscuring microbial signals and 

reducing sensitivity for rare taxa [1]. Nanopore sequencing 

offers long-read advantages, such as improved resolution of 

repetitive regions and structural variants [2], but its higher 

error rates (~5–15%) [3] and susceptibility to host DNA 

interference necessitate specialized analytical workflows. 

Existing tools like Kraken2 [4] require optimization for host-

contaminated datasets, particularly in balancing sensitivity 

and specificity. 

 

 
 

 

 

 

 

 

Short-read approaches, while accurate, struggle with 

resolving complex microbial communities due to fragmented 

assemblies [5]. Hybrid metagenomic strategies combining 
Illumina and Nanopore data have shown promise [6], but their 

computational complexity limits accessibility. Host read 

removal remains a critical step, as residual host DNA can 

dominate sequencing output, especially in samples with low 

microbial biomass [7]. For example, mouse faecal samples 

often contain >90% host-derived reads, necessitating robust 

filtering pipelines [8]. 

 

This study addresses these challenges by introducing a 

Galaxy-based workflow optimized for Nanopore data, 

integrating preprocessing, host read removal, and taxonomic 

classification. Galaxy’s user-friendly interface and 
reproducibility features make it ideal for researchers lacking 

advanced computational expertise [9]. The workflow was 

validated using the ENA dataset PRJNA559386, focusing on 

mouse faecal microbiomes. By combining a custom GTDB 

(Genome Taxonomy Database) [10] database with mouse-

specific lineages, we improve taxonomic resolution while 

mitigating false positives from host contamination. 
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II. METHODOLOGY 

 

A. Data Acquisition 

The study utilized the publicly available European 

Nucleotide Archive (ENA) dataset PRJNA559386, 

comprising 12 Nanopore-sequenced mouse fecal samples 

[11]. Each sample was sequenced on a MinION Mk1B flow 

cell (R9.4.1 chemistry), with basecalling performed using 
Guppy v5.0.7. 

 

B. Preprocessing 

 Quality Assessment: Initial read quality was assessed 

using FastQC v0.11.9 [12] and Nanoplot v1.38.0 [13], 

focusing on read length distribution and average quality 

scores. 

 Adapter Trimming: Porechop v0.2.4 [14] was used with 

parameters --format auto --threads 8 to remove Oxford 

Nanopore adapters. 

 Quality Filtering: fastp v0.23.2 [15] was employed with --
qualified_quality_phred 20 --length_required 100 to retain 

reads ≥100 bp with a median Phred score ≥20, balancing 

data retention and quality [16]. 

 

C. Taxonomic Classification 

 Custom Database Construction: A Kraken2-compatible 

database was built using GTDB release 207 [17], 

augmented with 15 mouse gut-specific genomes from 

NCBI RefSeq to improve resolution of common gut taxa 

[18]. 

 Host Read Removal: Reads aligning to the Mus musculus 

genome (GRCm39) were identified using Bowtie2 v2.4.5 

[19] with --very-sensitive-local and filtered at a 0.1% 

abundance threshold to minimize false positives [20]. 

 Classification: Kraken2 v2.1.2 [4] was run with --

confidence 0.5 to reduce misclassifications from Nanopore 
errors. 

 

D. Postprocessing 

Taxonomic classifications were sorted by abundance 

using Bracken v2.7 [21], and the top 25 taxa were retained for 

visualization to focus on biologically relevant signals. 

 

E. Visualization 

Krona Tools v2.8 [22] generated interactive hierarchical 

pie charts, enabling dynamic exploration of taxonomic 

relationships. 
 

III. RESULTS 

 

A. Preprocessing Metrics 

 Input: 365,314 reads (mean length: 4.2 kb, total bases: 

1.53 Gb). 

 Output: 267,615 high-quality reads (73.3% retention), 

with a mean Phred score improvement from 12 to 24 

(Table 1). 

 

Table 1. Preprocessing Statistics 

Metric Raw Data Processed Data 

Total Reads 365,314 267,615 

Mean Read Length 4.2 kb 3.8 kb 

Avg. Phred Score 12 24 

 
B. Taxonomic Profile 

Dominant taxa included: 

 Acetobacterium sp. KB-1 (13%), an acetogen involved in 

carbohydrate fermentation [23]. 

 Acetivibrio clariflavus (12%), a cellulolytic bacterium 

critical in fiber degradation [24]. 

 Acholeplasma hippikon (8%), a gut-associated mollicute 

[25]. 

 

C. Sensitivity Analysis 

Rare taxa such as Acetobacter senegalensis (0.8%) 

and Bifidobacterium asteroides (0.5%) were detected, 

demonstrating the workflow’s ability to resolve low-

abundance species (Fig. 1). 
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Fig. 1. Krona Visualization of Taxonomic Abundance 

 

IV. DISCUSSION 

                            

A. Advantages 

 Reproducibility: Galaxy’s platform-agnostic architecture 

ensures consistent results across computing environments 

[26], critical for collaborative research. 

 Efficiency: The workflow processes >250k reads in <2 

hours on an AWS t3.medium instance, outperforming 

similar pipelines like WIMP [27]. 

 
B. Limitations 

 Database Gaps: BUSCO analysis revealed 92% bacterial 

completeness but underrepresentation of archaeal and 

fungal lineages [28], potentially missing key gut 

microbiota. 

 Error Propagation: Nanopore’s indel errors (~10%) [3] 

may mislead Kraken2’s k-mer matching, though 

confidence thresholds mitigated this risk [29]. 

 

C. Future Directions 

 Hybrid Metagenomics: Integrating Illumina data for 
hybrid assembly (e.g., using Unicycler [30]) could correct 

Nanopore errors and improve contiguity. 

 Strain-Level Profiling: Long-read assemblers like Flye 

v2.9 [31] could resolve strain heterogeneity, enhancing 

functional insights. 

 

 

 

 

 

V. CONCLUSION 

 

This workflow enables reproducible taxonomic 

profiling of host-contaminated microbiomes, addressing 

critical gaps in Nanopore-based microbiome analysis. By 

integrating robust preprocessing, host read removal, and 

interactive visualization, it provides a scalable framework for 

researchers. Future iterations incorporating hybrid 

sequencing and strain-resolved metagenomics will further 

advance microbiome research in clinical and environmental 
contexts. 
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