
Volume 10, Issue 2, February – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.5281/zenodo.14965864

IJISRT25FEB1151 www.ijisrt.com 1652

Evaluating Development Velocity: A

Systematic Comparison of Monorepo and

Polyrepo Architectures

Labba Awwabi1*; Siti Rochimah2

1,2Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia

Corresponding Author: Labba Awwabi1*

Publication Date:2025/03/08

Abstract: In the dynamic realm of software development, efficient management of source code is pivotal for maintaining

productivity and expediting release cycles. Version control systems, essential in this process, offer structured management

of code changes. Among the various strategies for organizing repositories, Monorepo and Polyrepo configurations are

particularly notable due to their distinct approaches to source code management. Despite their widespread adoption by

leading technology enterprises, a definitive academic consensus on which configuration yields superior efficiency remains

elusive. This research paper aims to address this gap by conducting a detailed comparative analysis of these configurations

within the software development lifecycle, emphasizing development speed and operational efficiency. The study engaged

10 developers, divided into two groups, each alternating between Monorepo and Polyrepo setups. The tasks involved

intricate updates to the logic determining maximum credit limits for students post-study leave, reflecting real-world software

development challenges. Our empirical findings reveal that Monorepo configurations significantly outperform Polyrepo in

terms of development speed, with Monorepo setups completing updates faster by an average of 14.3 minutes. This efficiency

is attributed to the integrated structure of Monorepo, which facilitates simultaneous updates across services and minimizes

the complexities associated with sequential deployments typical in Polyrepo setups. Moreover, the involvement of a

researcher with direct experience in the project from its inception to the writing of this paper provided deep insights into

the practical implications of each setup. This study not only underscores the operational efficiencies of Monorepo over

Polyrepo but also highlights how familiarity with the project can influence development speed. These findings provide

crucial insights for organizations looking to optimize their software development practices through strategic repository

management and suggest areas for future research, including the long-term impacts on team collaboration, code quality,

and maintenance overhead.

Keywords: Monorepo, Polyrepo, Software Development Lifecycle, Development Speed , Repository Management.

How to Cite: Labba Awwabi; Siti Rochimah. (2025). Evaluating Development Velocity: A Systematic Comparison of Monorepo

and Polyrepo Architectures. International Journal of Innovative Science and Research Technology,

10(2), 1652-1659. https://doi.org/10.5281/zenodo.14965864.

I. INTRODUCTION

Modern software development faces significant

challenges in producing high-quality applications within

efficient development timelines [15]. Throughout the

Software Development Life Cycle (SDLC), from planning to

deployment and maintenance, teams strive to optimize their
development processes to enhance productivity and code

quality [11][16]. The structure of source code storage

represents a significant consideration that may influence the

speed and effectiveness of the development process [12][14].

In this context, two primary approaches have been

extensively implemented: the monorepo, which consolidates

all code in a single central repository, and the polyrepo, which

distributes code across multiple separate repositories [1][4].

Despite the widespread adoption of these approaches in

various organizations, there remains a significant gap in the

academic literature [3][20]. This study aims to conduct a

comprehensive comparative analysis of development time

efficiency between monorepo and polyrepo implementations

in the context of small to medium-scale applications using a

microservices architecture (MSA). The research examines a
case study of an academic application at the Institut

Teknologi Sepuluh Nopember (ITS) namely myITS

Academics (MIA) developed using Golang and NextJS

technologies. As an added value, the researcher has direct

involvement from project initiation to the writing of this

paper. The research methodology involves 10 experienced

developers with a deep understanding of the company

https://doi.org/10.5281/zenodo.14965864
http://www.ijisrt.com/
https://doi.org/10.5281/zenodo.14965864

Volume 10, Issue 2, February – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.5281/zenodo.14965864

IJISRT25FEB1151 www.ijisrt.com 1653

standard application architecture, from initial code

modifications through deployment.

The fundamental contribution of this research is the

provision of comprehensive empirical data regarding the

comparative development efficiency between monorepo and

polyrepo for implementations in small to medium-scale
applications. The analysis results are projected to serve as a

scientific reference for development teams and startups in

determining the optimal repository structure according to

their specific needs, particularly in accelerating the

development process.

The structure of this paper is organized as follows:

Section 2 presents a comprehensive literature review related

to microservices architecture, repository management, and

software development life cycle (SDLC). Section 3 describes

the research methodology in detail. Section 4 discusses the

experimental results and in-depth analysis. Section 5
concludes with findings and recommendations for further

research.

II. LITERATURE REVIEW

A. Software Development Life Cycle

Ghumatkar & Date stated the coding phase is crucial in

the SDLC as it directly affects how fast and effectively

applications are developed and delivered [2][8]. This phase

involves turning design concepts into working software.
Efficient coding practices are key [17]. This means writing

clear code, using modular design to simplify complex

systems, and following established coding standards to ensure

quality and ease of maintenance [9][19]. Using tools like

Continuous Integration and Continuous Deployment (CI/CD)

can speed up the process. These tools automate testing and

deployment, which helps catch and fix errors quickly and

improves the overall quality of the software [5][18].

B. Repository Architecture Approaches

The software development community has primarily

settled on two distinct approaches to organizing source code:
the monolithic repository (monorepo) and distributed

repositories (polyrepo). While both approaches aim to solve

similar problems, they take fundamentally different paths to

achieve their goals [10][13].

Fig 1: Architectural Comparison of (A) Monolith Modular, (B) MSA Monorepo, and (C) MSA Polyrepo

https://doi.org/10.5281/zenodo.14965864
http://www.ijisrt.com/

Volume 10, Issue 2, February – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.5281/zenodo.14965864

IJISRT25FEB1151 www.ijisrt.com 1654

Figure 1 illustrates MIA project with three distinct

approaches to software architecture: Monolith Modular

Architecture, Microservices Architecture (MSA) using a

Monorepo, and MSA using a Polyrepo. Monolith Modular

Architecture (panel A) presents a unified application divided

into specific modules such as Authentication (Auth), Study

Plan (FRS), Leave, among others. Although these modules
are part of a single system, they operate under shared

configurations and dependencies, managed through a central

CI/CD pipeline and a unified version control system (Git).

The dotted line represents a direct dependency, whereas the

MSA lacks such direct dependencies, as the communication

among services is facilitated through Application

Programming Interface (API). Furthermore, the CI/CD

processes are executed solely on the Git platform. Thus MIA

project is originate from monolith modular architecture which

rebuilt to MSA with modified config and CI/CD to adapt with

new repository architecture using the simplest decomposition

method [6][7].

 Monolithic Repository Architecture

The monorepo approach represents a philosophy of

centralization, where teams maintain all their project's code

in a single repository [3]. Figure 1 panel B shows how each

services are developed independently but stored within the

same repository. This setup allows each microservice its own

configurations, promoting independence while maintaining a

single pipeline for integration and deployment.

 Distributed Repository Architecture
In contrast, the polyrepo approach embraces

distribution, with separate repositories for different projects

or components [3]. Figure 1 panel C shows the polyrepo takes

decentralization further by allocating each microservice its

own repository, this separation ensures that each service is

completely independent, with its own CI/CD processes.

C. Industry Implementation Patterns

According to Brousse's research [4], the technology

industry's adoption of repository architectures such as

monorepo and polyrepo demonstrates varied patterns among

leading companies. Notably, firms like Meta and Google have
opted for monorepo strategies, whereas Amazon and Netflix

have chosen polyrepos. These strategic decisions are closely

aligned with each organization’s unique development culture,

team structure, and technical requirements, illustrating the

critical importance of tailoring repository strategies to meet

specific organizational needs.

D. Current Research Landscape

Our review of the existing research landscape identifies

several critical areas that warrant further exploration:

 While there is ample documentation on large-scale

implementations, the performance of these repository

architectures in smaller-scale environments remains

poorly understood [4].

 There is a scarcity of studies that quantitatively assess the

development speed differences between monorepo and

polyrepo approaches [3].

 There is a need for more comprehensive documentation

on the real-world efficiency impacts of these architectures

[20].

These gaps underscore the necessity for more focused

research, especially in scenarios that extend beyond large-

scale enterprise applications. The most closely related study
by Shakikhanli et al [20]. determined that the structure of

repositories does not have a significant impact on

development timelines; however, this research was conducted

using public projects on GitHub without direct involvement

from the research team. Our study seeks to build upon

Shakikhanli's work by examining the impacts of monorepo

and polyrepo architectures on development efficiency within

a controlled environment involving an actual project. This

approach allows for a more nuanced understanding of how

repository configurations influence software development

processes in real-world settings.

III. METHODOLOGY

A. Project Reconstruction

This study utilizes the Management of Individual

Academic (MIA) project as our experimental platform. The

original MIA project was built with a monolithic modular

architecture, implementing Domain-Driven Design (DDD)

principles and Command and Query Responsibility

Segregation (CQRS) pattern. For this experiment, we

reconstructed the application into two versions using

Microservice Architecture (MSA): one using monorepo and
another using polyrepo architecture. Both versions maintain

the original architectural patterns, business logic, and domain

rules to ensure comparable functionality.

B. Scenario Task

This task involves updating the maximum course credits

(SKS) that can be applied to students after study leave. If the

leave is for one semester, there will be a four-point increase

in their maximum SKS. For leaves that extend beyond one

semester, the maximum SKS will be set at 24 points. This

calculation is managed through three distinct services:

 FRS (Study Plan): This service handles the logic related

to students' study plans and sets the limits on how many

total credit points a student can accumulate.

 Evaluation: This service manages the grading of students.

Existing logics are: if Grade Point Semester (GPS) >= 3.5

then student can take maximum 24 SKS for next semester,

maximum SKS for GPS >= 3.0is 22, where GPS >= 2.5

will give 20 SKS, GPS < 2.5 will get 18 SKS.

 Leave: This service oversees the management of student

leave.

Each service plays a crucial role in ensuring that the

credit score is calculated accurately and reflects the student’s

academic journey, particularly during periods of study leave.

With this scenario, participant need to modify all of the three

services, create new API for Evaluation and Leave service,

then consume those API in FRS service.

https://doi.org/10.5281/zenodo.14965864
http://www.ijisrt.com/

Volume 10, Issue 2, February – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.5281/zenodo.14965864

IJISRT25FEB1151 www.ijisrt.com 1655

C. Participant Selection and Preparation

We selected 10 software developers for this study,

comprising four developers with direct experience in the

original MIA project and six developers new to the codebase.

All participants possess working knowledge of Microservice

Architecture, Domain-Driven Design, and CQRS patterns,

ensuring baseline technical competency for the experiment.
Prior to the implementation phase, we conducted

comprehensive briefing sessions to familiarize participants

with:

 The MIA project domain and its core functionalities

 The specific business requirement: existing logic and

what should be update

 The development environment setup and workflow

 Hubstaff configuration

 Automation testing scenario need to be implemented

D. Development Environment Setup

To ensure experimental consistency, we meticulously

prepared standardized development environments for all

participants. Both repository versions—monorepo and

polyrepo—were pre-installed and meticulously configured on

the developers' machines. This setup included a fully

functional development database accessible to all

participants, ensuring that each had identical starting

conditions. Such standardization is crucial as it minimizes

environmental variables that could potentially impact the

development efficiency, allowing participants to focus

exclusively on the task at hand.

Moreover, the communication between services was

facilitated using an API-centric approach rather than a service

mesh or other complex inter-service communication

methods. This decision was made to simplify the setup and

reduce potential complications that could arise from more

complex configurations [21], thereby streamlining the

development process and focusing on the core experimental

objectives.

E. Time Tracking Implementation
For measuring development time, we employed

Hubstaff as our time-tracking tool, this system has been

implemented by ITS which participants already familiar with.

Unlike automated tracking, we implemented a manual

tracking approach where:

 Participants manually initiate time tracking when they

begin working with the code editor

 Time tracking continues throughout the implementation

process

 Tracking ends after participants successfully push their

changes to the development server and verify the correct

credit score calculation in the development

environment

This manual tracking approach allows participants to

focus on their development tasks while maintaining accurate

timing data. The completion criteria include both the

successful implementation of the business logic and proper

integration with existing services.

F. Data Collection and Analysis

Our data collection primarily measures the total

development time for each participant using both monorepo

and polyrepo architectures. Additionally, we analyse the

specific applications and tools used during the development

sessions, as recorded by Hubstaff. This detailed tracking

helps us understand the participants' workflow and tool usage,

providing insights into how different repository architectures

might influence development practices. For our analysis, we

calculate the average development durations for each

architecture and compare them to identify any significant

differences using Quantitative Analysis. Then we review the
application usage logs to examine patterns and discuss their

potential impact on development efficiency using Qualitative

Analysis. This streamlined approach allows us to focus on

key metrics and findings, ensuring clarity and relevance in

our analysis. Through this structured methodology, we aim to

provide empirical evidence regarding the impact of repository

architecture choice on development efficiency in a

microservices context. The results will contribute to

understanding how repository architecture influences

development velocity, particularly when maintaining and

updating existing business logic in a microservices
environment.

IV. RESULT AND DISCUSSION

The results of this experiment is summarized in Table 1.

Team A began the experiment working with the monorepo

architecture and subsequently switched to the polyrepo

architecture, whereas Team B followed the reverse sequence.

Each team was composed of two developers with prior

experience in the MIA project and three developers without

such experience. Table 2 provides a detailed breakdown of

the time spent in the code editor and other applications, as
well as the duration of CI/CD processes. To assess the impact

of project familiarity on development velocity, participants

were also grouped into MIA (four participants whose

experienced with MIA project) and non-MIA (not

experienced with MIA project) teams, as shown in Table 3.

This grouping helps to highlight how prior experience with

the project influences the efficiency of development across

different repository architectures.

Table 1: Summary Time Tracking

Team Team MIA? Monorepo (sec) Polyrepo (sec)

A No 5262 5784

Yes 4684 4835

No 5769 6172

Yes 4877 4928

https://doi.org/10.5281/zenodo.14965864
http://www.ijisrt.com/

Volume 10, Issue 2, February – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.5281/zenodo.14965864

IJISRT25FEB1151 www.ijisrt.com 1656

No 5487 5996

B Yes 4587 5807

No 4996 6554

No 5481 6947

No 4779 6382

Yes 4224 5334

Average 5014.6 5873.9

Table 2: Detailed Time Tracking and Total CI/CD Duration

Team Team MIA? Monorepo Time Spent Polyrepo Time Spent

Code Editor

(sec)

Other Apps

(sec)

CI/CD

(sec)

Code Editor

(sec)

Other Apps

(sec)

CI/CD

(sec)

A No 4105 1157 888 4934 850 1242

Yes 3613 1071 891 4215 620 1256

No 4613 1156 897 5222 950 1230

Yes 3852 1025 882 4171 757 1293

No 4372 1115 891 5110 886 1302

B Yes 3703 884 887 4614 1193 1275

No 4117 879 893 5129 1425 1226

No 4615 866 884 5716 1231 1289

No 3953 826 886 4911 1471 1266

Yes 3429 795 892 4293 1041 1220

Average 4037.2 977.4 889.1 4831.5 1042.4 1259.9

Table 3: Total Average Duration Time by Groups

Development Time Team A

(sec)

Team B

(sec)

Team MIA

(sec)

Team non-MIA

(sec)

Average Monorepo 5215.8 4813.4 4593.0 5295.7

Average Polyrepo 5543.0 6204.8 5226.0 6305.8

Total 10758.8 10838.2 9819.0 11601.5

The experimental data presents a clear distinction in

total development time between the monorepo and polyrepo
architectures as illustrated in Table 1. Participants spent an

average of 5014.6 seconds (approximately 83.6 minutes) with

the monorepo setup, contrasted with 5873.9 seconds

(approximately 97.9 minutes) in the polyrepo setup, resulting

in an average difference of 859.3 seconds (approximately

14.3 minutes).

Further analysis detailed in Table 2 shows that

participants working with the monorepo spent significantly

less time in the code editor, averaging 4037.2 seconds,

compared to those in the polyrepo configuration, who

averaged 4831.5 seconds. This efficiency in the monorepo
setup may be attributed to the ability of participants to

navigate seamlessly between services within a single code

editor, whereas the polyrepo required switching between

multiple editor windows to access different services. The time

spent on other applications was slightly lower in the

monorepo setup (977.4 seconds) than in the polyrepo (1042.4

seconds), though this difference is not indicative of any

specific trend due to the lack of restrictions on application

usage during the experiment.

CI/CD processes, as shown in Table 2, also varied
significantly, with monorepo setups averaging 889.1 seconds

compared to 1259.5 seconds for polyrepo setups. This

substantial difference underscores the efficiency of CI/CD

operations in a monorepo environment, facilitated by the

centralized nature of the codebase which simplifies the build

and deployment processes. Despite initial assumptions that
the monorepo might experience longer CI/CD durations due

to the complexity of multiple services in a single repository,

it was observed that the CI/CD pipeline could be configured

to test and deploy only the updated services. This contrasts

with the polyrepo setup, where each updated service required

a separate deployment. For example, updating interdependent

services like Evaluation, FRS, and Leave necessitated

individual deployments for each service in the polyrepo,

whereas the monorepo required only a single deployment

process, thus reducing overall CI/CD time. The CI/CD

duration might align more closely when only a single service

is updated.

Table 3 provides a detailed comparison of development

times across different teams, illustrating how experience with

the MIA project influences development speed. Notably,

Team MIA, which is more familiar with the project,

consistently showed faster development times than Team

non-MIA in both monorepo and polyrepo configurations.

Interestingly, Team A, which started with the monorepo

architecture, recorded higher development times for the

monorepo than Team B, which started with polyrepo;

conversely, Team B showed higher times for polyrepo than
Team A. These observations suggest that factors such as team

composition, prior familiarity with the project, and the

sequence in which the architectures were used could

https://doi.org/10.5281/zenodo.14965864
http://www.ijisrt.com/

Volume 10, Issue 2, February – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.5281/zenodo.14965864

IJISRT25FEB1151 www.ijisrt.com 1657

significantly affect how effectively each architecture is

utilized.

V. CONCLUSION

This study has demonstrated that monorepo

architectures can significantly reduce total development time
compared to polyrepo architectures, primarily due to more

efficient CI/CD processes and reduced time spent navigating

between services. The centralized nature of monorepo

simplifies many aspects of the development process,

including build and deployment, which can lead to substantial

efficiency gains. Additionally, the experience of the

development team plays a critical role in maximizing these

efficiencies. Teams with prior familiarity with the project or

the monorepo architecture can leverage these setups more

effectively, as evidenced by the faster development times of

Team MIA compared to Team non-MIA.

Organizations considering the adoption of monorepo or

polyrepo architectures should weigh these factors carefully.

The choice between these architectures should not only

consider the raw metrics of development time but also the

specific needs of the project and the composition and

experience of the development team. Furthermore, this study

suggests that the transition between different architectures

can influence team performance, highlighting the importance

of considering how changes in tools and processes might

affect existing development workflows.

Future research should continue to explore the broader

impacts of repository architectures on software development,

including aspects such as code quality, team collaboration,

and long-term maintenance. Longitudinal studies could

provide additional insights into how these architectures affect

project sustainability and adaptability over time, offering

valuable guidelines for organizations evolving their

development practices.

REFERENCES

[1]. Aleksandrov, M., & Petrova, M. (2021). Multi-
Website Single-Repository Architecture for E-Journal

Web Platform. 2021 IEEE 8th International

Conference on Problems of Infocommunications,

Science and Technology, PIC S and T 2021 -

Proceedings.

https://doi.org/10.1109/PICST54195.2021.9772108.

[2]. Alzayed, A., & Khalfan, A. (2022). Understanding

Top Management Involvement in SDLC Phases.

Journal of Software.

https://doi.org/10.17706/jsw.17.3.87-120.

[3]. Brito, G., Terra, R., & Valente, M. T. (2018).
Monorepos: A Multivocal Literature Review.

http://scholar.google.com/

[4]. Brousse, N. (2019). The issue of monorepo and

polyrepo in large enterprises. ACM International

Conference Proceeding Series.

https://doi.org/10.1145/3328433.3328435.

[5]. Byrne, K., & Cevenini, A. (2023). Aligning DevOps

Concepts with Agile Models of the Software

Development Life Cycle (SLDC) in Pursuit of

Continuous Regulatory Compliance. Lecture Notes in

Electrical Engineering, 1029 LNEE.

https://doi.org/10.1007/978-3-031-29078-7_32.

[6]. de Lauretis, L. (2019). From monolithic architecture
to microservices architecture. Proceedings - 2019

IEEE 30th International Symposium on Software

Reliability Engineering Workshops, ISSREW 2019.

https://doi.org/10.1109/ISSREW.2019.00050.

[7]. Fritzsch, J., Bogner, J., Wagner, S., & Zimmermann,

A. (2019). Microservices Migration in Industry:

Intentions, Strategies, and Challenges. Proceedings -

2019 IEEE International Conference on Software

Maintenance and Evolution, ICSME 2019.

https://doi.org/10.1109/ICSME.2019.00081.

[8]. Ghumatkar, R. S., & Date, A. (2023). Software

Development Life Cycle (SDLC). International
Journal for Research in Applied Science and

Engineering Technology, 11(11).

https://doi.org/10.22214/ijraset.2023.56554.

[9]. Haque, S., Eberhart, Z., Bansal, A., & McMillan, C.

(2022). Semantic Similarity Metrics for Evaluating

Source Code Summarization. IEEE International

Conference on Program Comprehension, 2022-

March, 36–47.

https://doi.org/10.1145/nnnnnnn.nnnnnnn.

[10]. Jacob, A. (2019, January 3). Monorepo: please do!.

Medium. https://medium.com/@adamhjk/monorepo-
please-do-3657e08a4b70.

[11]. Jain, P., Sharma, A., & Ahuja, L. (2018). The Impact

of Agile Software Development Process on the

Quality of Software Product. 2018 7th International

Conference on Reliability, Infocom Technologies and

Optimization: Trends and Future Directions, ICRITO

2018. https://doi.org/10.1109/ICRITO.2018.8748529

[12]. Johnson, J., Lubo, S., Yedla, N., Aponte, J., & Sharif,

B. (2019). An Empirical Study Assessing Source Code

Readability in Comprehension. Proceedings - 2019

IEEE International Conference on Software

Maintenance and Evolution, ICSME 2019.
https://doi.org/10.1109/ICSME.2019.00085.

[13]. Klein, M. (2019, January 2). Monorepos: Please

don’t!. Medium.

https://medium.com/@mattklein123/monorepos-

please-dont-e9a279be011b

[14]. Kokrehel, G., & Bilicki, V. (2022). The impact of the

software architecture on the developer productivity.

Pollack Periodica, 17(1).

https://doi.org/10.1556/606.2021.00372.

[15]. Kula, E., Greuter, E., van Deursen, A., & Gousios, G.

(2022). Factors Affecting On-Time Delivery in Large-
Scale Agile Software Development. IEEE

Transactions on Software Engineering, 48(9).

https://doi.org/10.1109/TSE.2021.3101192.

[16]. López, L., Burgués, X., Martínez-Fernández, S.,

Vollmer, A. M., Behutiye, W., Karhapää, P., Franch,

X., Rodríguez, P., & Oivo, M. (2022). Quality

measurement in agile and rapid software development:

A systematic mapping. Journal of Systems and

https://doi.org/10.5281/zenodo.14965864
http://www.ijisrt.com/
https://doi.org/10.1109/PICST54195.2021.9772108
https://doi.org/10.17706/jsw.17.3.87-120
https://doi.org/10.1145/3328433.3328435
https://doi.org/10.1007/978-3-031-29078-7_32
https://doi.org/10.1109/ISSREW.2019.00050
https://doi.org/10.1109/ICSME.2019.00081
https://doi.org/10.22214/ijraset.2023.56554
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://medium.com/@adamhjk/monorepo-please-do-3657e08a4b70
https://medium.com/@adamhjk/monorepo-please-do-3657e08a4b70
https://doi.org/10.1109/ICSME.2019.00085
https://medium.com/@mattklein123/monorepos-please-dont-e9a279be011b
https://medium.com/@mattklein123/monorepos-please-dont-e9a279be011b
https://doi.org/10.1556/606.2021.00372
https://doi.org/10.1109/TSE.2021.3101192

Volume 10, Issue 2, February – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.5281/zenodo.14965864

IJISRT25FEB1151 www.ijisrt.com 1658

Software, 186.

https://doi.org/10.1016/j.jss.2021.111187.

[17]. Olorunshola, O. E., & Ogwueleka, F. N. (2022).

Review of System Development Life Cycle (SDLC)

Models for Effective Application Delivery. In Lecture

Notes in Networks and Systems (Vol. 191).

https://doi.org/10.1007/978-981-16-0739-4_28.
[18]. Piantadosi, V., Fierro, F., Scalabrino, S., Serebrenik,

A., & Oliveto, R. (2020). How does code readability

change during software evolution? Empirical

Software Engineering, 25(6).

https://doi.org/10.1007/s10664-020-09886-9.

[19]. Scalabrino, S., Linares-Vásquez, M., Oliveto, R., &

Poshyvanyk, D. (2018). A comprehensive model for

code readability. Journal of Software: Evolution and

Process, 30(6). https://doi.org/10.1002/smr.1958.

[20]. Shakikhanli, U., & Bilicki, V. (2022). Comparison

between mono and multi repository structures. Pollack

Periodica, 17(3).
https://doi.org/10.1556/606.2022.00526.

[21]. Stocker, M., & Zimmermann, O. (2021). From Code

Refactoring to API Refactoring: Agile Service Design

and Evolution. Communications in Computer and

Information Science, 1429 CCIS.

https://doi.org/10.1007/978-3-030-87568-8_11

https://doi.org/10.5281/zenodo.14965864
http://www.ijisrt.com/
https://doi.org/10.1016/j.jss.2021.111187
https://doi.org/10.1007/978-981-16-0739-4_28
https://doi.org/10.1007/s10664-020-09886-9
https://doi.org/10.1002/smr.1958
https://doi.org/10.1556/606.2022.00526

Volume 10, Issue 2, February – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.5281/zenodo.14965864

IJISRT25FEB1151 www.ijisrt.com 1659

AUTHORS’ INFORMATION FORM

Paper Title
Evaluating Development Velocity: A Systematic Comparison of Monorepo and Polyrepo

Architectures

Corresponding Author

(Author Name & Email)
Labba Awwabi (awwabi@its.ac.id)

First Author – Information

First Name Labba Last Name Awwabi

Designation Student Department Informatics

University ITS Mail ID awwabi@its.ac.id

Contact No. +62851588085897 ORCID ID

Residential Address Sidoarjo

Second Author – Information

First Name Siti Last Name Rochimah

Designation Lecturer Department Informatics

University ITS Mail ID siti@its.ac.id

Contact No. - ORCID ID

Residential Address Surabaya

AUTHOR’S BIOGRAPHY

L. Awwabi (Labba Awwabi) obtained his bachelor’s degree in computer science from EEPIS.

He is a software engineer at Institut Teknologi Sepuluh Nopember (ITS) for 5 years, and

currently studying Informatics master’s degree at ITS. His specializations include Backend

Engineering and Software Architecture. His current research interests are in the field of
Software Engineering, Software Architecture, and DevOps.

S. Rochimah (Siti Rochimah) successfully earned a doctoral degree (PhD) in software

engineering from Universiti Teknologi Malaysia in 2010. Currently, she serves as the head

of the Software Engineering laboratory at the Department of Informatics, ITS. Her work

involves writing more than 100 articles related to software engineering. Her research interests

include aspects of software quality, traceability, and testing. Further information or contact can

be obtained via email at siti@its.ac.id.

https://doi.org/10.5281/zenodo.14965864
http://www.ijisrt.com/
mailto:awwabi@its.ac.id
mailto:siti@its.ac.id

