
Volume 10, Issue 2, February – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.5281/zenodo.14964344

IJISRT25FEB1148 www.ijisrt.com 1421

Enhancing Regression Diagnostics: Automated

Residual Analysis Using Computer Vision and

Statistical Insights

Niraj Patel1

1ST. Clair College

Publication Date: 2025/03/05

Abstract: Residual analysis plays a pivotal role in validating regression models by identifying potential issues such as

heteroscedasticity, non-linearity, and model misspecification. This study introduces a novel automated framework for

residual diagnostics, integrating computer vision techniques with statistical inference. The proposed system evaluates residual

plots, detects irregularities, and performs hypothesis testing to ensure model robustness. By combining image recog- nition

algorithms with a user-friendly Shiny application, the approach eliminates subjective biases inherent in manual plot

evaluation. The resulting tool enhances the scalability and reliability of regression diagnostics, offering data scientists a

powerful resource for building accurate and interpretable models.

How to Cite: Niraj Patel (2025). Enhancing Regression Diagnostics: Automated Residual Analysis Using Computer Vision and

Statistical Insights. International Journal of Innovative Science and Research Technology, 10(2), 1421-1430.
https://doi.org/10.5281/zenodo.14964344

I. INTRODUCTION

Regression analysis is a widely used statistical

modeling technique for data in many fields. There is a vast

array of software for conducting regression modeling and

generating diagnostics. The package lmtest [1] provides a
suite of conventional tests. The stats package [2] offers

standard diagnostic plots such as residuals vs. fitted values,

quantile- quantile (Q-Q) plots, and residuals vs. leverage

plots. Packages like j tools [3], olsrr [4], rockchalk [5], and gg

Residpane l [6] provide similar graphical diagnostics, of- ten

with alternative aesthetics or interactive features. All of these

tools deliver the types of diagnostic plots outlined in the

classical text by [7]. The Eco stats package [8] incorporate-

rates simulation envelopes into residual plots, while Dharma [9]

compares empirical quantiles (0.25, 0.5, and 0.75) of scaled

residuals to their theoretical counterparts. Dharma is
particularly focused on detecting model violations such as

heteroscedasticity, incorrect functional forms, and issues

specific to generalized linear and mixed-effect models, like

over/under-dispersion. It also includes conventional test

annotations to help avoid misinterpretation.

However, relying solely on subjective assessments of

these plots can lead to issues such as over-interpreting

random patterns as model violations. [10] demonstrated that

visual methods using the lineup protocol [11] for assessing

reside- duals are more useful, and also perform more
practically than conventional tests due to their reduced

sensitivity to minor departures. Packages such as null Abor

[12], HLMdiag [13], and regressinator [14], enable users to

compare observed residual plots with plots of samples from

null distributions, helping to quantify the significance of any

detected patterns.

However, as discussed in [15], the lineup protocol has

significant limitations in large-scale applications due to

dependence on human labor. Thus, a computer vision model
was developed with an associated statistical testing

procedure to automate the assessment of residual plots. This

model takes a residual plot and a vector of auxiliary

variables (such as the number of observations) as inputs and

outputs the predicted visual signal strength (VSS). This

strength estimates the distance between the residual

distribution of the fitted regression model and the reference

distribution assumed under correct model specification.

To make the statistical testing procedure and trained

computer vision model widely accessible, we developed the R
package autovi, and a web interface, autovi.web to make it

easy for users to automatically read their residual plots with

the trained computer vision model.

The remainder of this paper is structured as follows:

Section II introduces the definition and computation of

visual signal strength. Section III provides a detailed

documentation of the autovi package, including its usage and

infrastructure. Section IV focuses on the autovi.web interface,

describing its design and usage, along with illustrative

examples. Finally, Section V presents the main conclusions
of this work.

https://doi.org/10.5281/zenodo.14964344
http://www.ijisrt.com/
https://doi.org/10.5281/zenodo.14964344

Volume 10, Issue 2, February – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.5281/zenodo.14964344

IJISRT25FEB1148 www.ijisrt.com 1422

II. DEFINITION AND COMPUTATION

OF VISUAL SIGNAL STRENGTH

To train a computer vision model, a measure of the

visible pattern in a plot is needed. We call this the visual

signal strength (VSS), which measures how prominently a

specific set of visual patterns appears in an image. This can

be computed for a training set of data, and plots, where the

generating distributions are specified.

In the context of regression model diagnostics, VSS

de- scribes the clarity of visual patterns on a diagnostic plot

that may indicate model violations. Violations can be

categorized as weak, moderate, or strong, but here we treat it

as a continuous positive real variable. Importantly, its
interpretation depends on how it is linked to a function of the

data or the underlying data generating process

Consequently, the calculation of VSS can be vary across

different model classes or within the same model, depending on

the generating function.

VSS is an estimate of the distance between the residual

distribution of a fitted classical normal linear regression

model and a reference distribution; more details can be

found in [15]. The distance measure is based on the

Kullback-Leibler (KL) divergence:

Where DKL is given by:

Where, p(.) and q(.) are the probability density

functions of the reference residual distribution P and the true

residual distribution Q, respectively.

This distance measure depends on knowledge of the

true residual distribution, which is unknown in practice. To

compute DKL for the training samples, Equation 1 takes

different forms depending on the specific model violations.

For instance, where necessary higher-order predictors, Z,

and their corresponding parameter, βZ, are omitted from the

fitted linear model, the distance measure can be expanded as

follows:

Where µz = RZβz , R = In X(X ⊤X) −1X ⊤ and X is
the design matrix of the regression model.

The computer vision model approximates this mapping

from a set of residuals to its corresponding distance

measure. It is trained on a large number of synthetic

regression models, where the data-generating process is

known, allowing the distance measure to be explicitly

calculated. The model takes a residual plot as input and
outputs the corresponding distance measure. Additional

details are provided in [15].

III. R PACKAGE: AUTOVI

The main purpose of autovi is to provide rejection

decisions and p-values for testing the null hypothesis (H0)

that the regression model is correctly specified. The package

provides automated interpretation of residual plots using

computer vision. The name autovi stands for automated

visual inference. This functionality can be accessed through

the R package autovi, or through a web interface,

autovi.web, which allows use without the full installation of

R, Python, and package dependencies on the user’s system.

locally.

 Motivation

Figure 1 shows three sets of plots of residuals against
fitted values. The simulated example in (a) might be

interpreted as a heteroscedastic pattern, however the

automated reading would predict this to have a visual signal

strength (VSS) of 1.53, with a corresponding p-value of

0.25. This means it would be interpreted as a good residual

plot, that there is nothing in the data to indicate a violation of

model assumptions. Skewness in the predictor variables is

generating the apparent heteroscedasticity, where the

smaller variance in residuals at larger fitted values is due to

smaller sample size only. The Breusch-Pagan test [16] for

heteroscedasticity would also not reject this as good residual

plot.

The data in (b) is generated by fitting a linear model

predicting mpg based on hp using the datasets: :mtcars.It is a

small data set, and there is a hint of nonlinear structure not

captured by the model. The automated plot reading would

predict a VSS of 3.57, which has a p-value less than 0.05.

That is, the nonlinear structure is most likely real, and

indicates a problem with the model. The conventional test, a

Ramsey Regression Equation Specification Error Test

(RESET) [17] would also strongly detect the nonlinearity.

The third example is generated using the surreal

package [18] where structured residuals are hidden in data,

to be revealed if the correct model is specified. Here a quote

based on Tukey is used as the residual structure “visual

summaries focus on unexpected values”. The automated plot

reading predicts the VSS to be 5.87, with a p-value less

than0.05This structure isblindinglyobvious visually, but a

RESET test for nonlinear structure would not report a

problem. (It would be detected by a Breusch-Pagan for

heteroscedasticity and also Shapiro-Wilk test [19] for

nonnormality.)

https://doi.org/10.5281/zenodo.14964344
http://www.ijisrt.com/

Volume 10, Issue 2, February – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.5281/zenodo.14964344

IJISRT25FEB1148 www.ijisrt.com 1423

Fig 1 Simulated Mtcars Surereal

Figure 1: Reading residual plots can be a difficult task,

particularly for students new to statistical modeling. The

autovi package makes it easier. Here are three examples of
residual plots, which may appear to have structure.

According to autovi, the visual signal strengths (VSS) of

these three examples are approximately (a) 1.53, (b) 3.57,

(c) 5.87, resulting in (b), (c) being significant violations of

good residuals, but (a) is consistent with a good residual

plot.

 Implementation

The autovi package is built on the bandicoot object-

oriented programming (OOP) system [20], marking a

departure from R’s traditional S3 generic system. This OOP

architecture enhances flexibility and modularity, allowing
users to redefine key functions through method overriding.

The autovi infrastructure effectively integrates multiple

programming languages and libraries into a comprehensive

analytical tool. It relies on five core libraries from Python

and R, each playing a critical role in the analysis pipeline. In

Python, pillow [21] handles image processing tasks such as

reading and resizing PNG files of residual plots, then

converting them into input tensors for further analysis.

TensorFlow [22], a key component of modern machine

learning, is used to predict the VSS of these plots using a
pre-trained convolutional neural network.

In the R environment, autovi utilizes several libraries.

ggplot2 [23] generates the initial residual plots, saved as

PNG files for visual input. cassowaryr [24] computes

scagnostics (scatter plot diagnostics), providing numerical

features that capture statistical properties of the plots. These

scagnostics complement the visual analysis by offering

quantitative metrics as secondary input to the computer

vision model. reticulate [25] enables seamless communication

between R and Python.

 Installation

The autovi package is available on CRAN. It is

actively developed and maintained, with the latest updates

accessi- ble on GitHub. This paper uses autovi version 0.4.1.

The package includes internal functions to check the current

Python environment used by the reticulate package. If the

necessary Python packages are not installed in the Python
interpreter, an error will be raised. If you want to select a

specific Python environment, you can do so by calling the

reticulate::usepython() function before using the autovi package.

We recommend using the Shiny app autovi. web if users

encounter installation problems.

 Usage

 Numerical summary: Three steps are needed to get an

automated assessment of a set of residuals and fitted

values:

 Load the autovi package using the library () function.

 Create a checker object with a linear regression model.
 Call the check () method of the checker, which, by

default, predicts the VSS for the true residual plot,100
null plots, and 100 bootstrapped plots. The methodstores
the predictions internally and prints a concise results
report.

 The code to do this is:

Listing 1: Residual Checking using AutoVI in R

It produces the following summary:

Table 1 Summary of AUTO_VI object status and results.

https://doi.org/10.5281/zenodo.14964344
http://www.ijisrt.com/

Volume 10, Issue 2, February – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.5281/zenodo.14964344

IJISRT25FEB1148 www.ijisrt.com 1424

The summary includes observed VSS of the true

residual plot and associated p-value of the automated visual

test. The p-value is the proportion of null plots (out of the
total100) that have VSS greater than or equal to that of the

true residual plot. The report also provides sample quantiles

of VSS for null samples and bootstrapped data plots,

providing more information about the sampling variability

and a likelihood of model violations. The likelihood is

computed from the proportion of values greater than the

observed VSS in both the bootstrapped data values and the

simulated null values.

 Visual Summary:

Users can visually inspect the orig- inal residual plot

alongside a sample null plot using plot_pair() or a lineup of
null plot plot_lineup(). This visual comparison can clarify why

H0 is either rejected or not, and help identify potential

remedies.

Fig 2 True Plot Alongside One Null Plot, for Quick Comparison.

The plot pair() method (Figure 2) displays the true
residual plot on the left and a single null plot on the right.

If a full lineup was shown, the true residual plot would

be embedded in a page of null plots. Users should look for any

distinct visual patterns in the true residual plot that are

absent in the null plot. Running these functions multiple

times can help any visual suspicions, as each execution
generates new random null plots for comparison.

The package offers a straightforward visualization of

the assessment result through the summary_plot() function.

Fig 3 Summary of Check Result

Figure 3: Summary plot comparing the densities of

VSS for bootstrapped residual samples (red) relative to VSS
for null plots (blue).

In the result, shown in Figure 3, the blue area

represents the density of VSS for null residual plots, while

the red area shows the density for bootstrapped residual plots.

The dashed line indicates the VSS of the true residual plot,

and the solid line marks the critical value at a 95%

significance level. The p-value and the likelihood ratio are

displayed in the subtitle. The likelihood ratio represents the

ratio of the likelihood of observing the VSS of the true

residual plot from the bootstrapped distribution compared to

the null distribution.

https://doi.org/10.5281/zenodo.14964344
http://www.ijisrt.com/

Volume 10, Issue 2, February – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.5281/zenodo.14964344

IJISRT25FEB1148 www.ijisrt.com 1425

Interpreting the plot involves several key aspects. If the

dashed line falls to the right of the solid line, it suggests

rejecting the null hypothesis. The degree of overlap between
the red and blue areas indicates similarity between the true

residual plot and null plots; greater overlap suggests more

similarity. Lastly, the portion of the red area to the right of

the solid line represents the percentage of bootstrapped

models considered to have model violations.

This visual summary provides an intuitive way to

assess the model’s fit and potential violations, allowing

users to quickly grasp the results of the automated analysis.

 Modularized Infrastructure

The initial motivation for developing autovi was to create

a convenient interface for sharing the models described and
trained in [15]. However, recognizing that the classical normal

linear regression model represents a restricted class of models,

we sought to avoid limiting the potential for future

extensions, whether by the original developers or other

developers. As a result, the package was designed to

function seamlessly with linear regression models with

minimal modification and few required arguments, while

also accommodating other classes of models through partial

infrastructure substitution. This modular and customizable

design allows autovi to handle a wide range of residual

diagnostics tasks.

Fig 4 Diagram Illustrating the Workflow of Autovi

Figure 4: Diagram illustrating the infrastructure of the

R package autovi. The modules in green are primary inputs

provided by users. Modules in blue are overridable methods

that can be modified to accommodate users’ specific needs.

The module in yellow is a pre-defined non-overridable

method. The modules in red are primary outputs of the

package. future extensions, whether by the original

developers or other developers. As a result, the package.

The infrastructure of autovi consists of ten core modules:

data extraction, bootstrapping and model refitting, fitted

values and residuals extraction, auxiliary computation, null

residual simulation, plotting, plot saving, image reading and

resizing, VSS prediction, and p-value computation. Each

module is designed with minimal dependency on the

preceding modules, allowing users to customize parts of the

infrastructure without affecting its overall integrity. An

overview of this infrastructure is illustrated in Figure 4.

The modules for VSS prediction and p-value
computation are predefined and cannot be overridden,

although users can interact with them directly through function

arguments. Similarly, the image reading and resizing module

is fixed but will adapt to different Keras models by checking

their input shapes. The remaining seven modules are designed

to be overridable, enabling users to tailor the infrastructure to

their specific needs. These modules are discussed in detail in

the package documentation.

IV. WEB INTERFACE: AUTOVI.WEB

The autovi.web shiny application extends the functional-
ity of autovi by offering a user-friendly web interface for

automated residual plot assessment. This eliminates the

common challenges associated with software installation, so

users can avoid managing Python environments or handling

version requirements for R libraries. The platform is cross-

platform and accessible on various devices and operating

systems, making it suitable even for users without R

programming experience. Additionally, updates are managed

centrally, ensuring that users always have access to the latest

features. This section discusses the implementation based on

autovi.web version 0.1.0.

 Implementation

The interface autovi.web is built using the shiny [26]

and shiny dashboard [27] R packages. Hosted on the

shinyapps.io domain, the application is accessible through

https://doi.org/10.5281/zenodo.14964344
http://www.ijisrt.com/
https://www.shinyapps.io/

Volume 10, Issue 2, February – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.5281/zenodo.14964344

IJISRT25FEB1148 www.ijisrt.com 1426

any modern web browser. The R packages htmltools [28] and

shinycssloaders [29] are used to render markdown

documentation in shiny application, and for loading ani-
mations for shiny widgets, respectively.

Determining the best way to implement the backend

was difficult. In our initial planning for autovi.web, we

considered implementing the entire web application using the

webr framework [30], which would have allowed the entire

application to run directly in the user’s browser. However,

webr does not support packages which use compiled fortran

code, which is required by splancs [31], a dependency of

autovi. In the future, it is possible that a working Emscripten

[32] version of this package may allow full web r support.

We also explored the possibility of implementing the

web interface using frameworks built on other languages,

such as Python. However, server hosting domains that

natively support Python servers typically do not have the

latest version of R installed. Additionally, calling R from

Python is typically done using the rpy2 Python library [33],

but this approach can be awkward when dealing with

language syntax related to non-standard evaluation. Another

option we considered was renting a server where we could

have full control, such as those provided by cloud platforms

like Google Cloud Platform (GCP) or Amazon Web Services
(AWS). However, deploying and maintaining the server

securely requires some expertise. Ultimately, the most

practical solution was to use the shiny and shinydashboard

frameworks, which are well-established in the R community

and offer a solid foundation for web application development.

The server-side configuration of autovi.web is carefully

designed to support its functionality. Most required Python

libraries, including pillow and numpy, are pre-installed on the

server. These libraries are integrated into the Shiny

application using the reticulate package, which provides an

interface between R and Python.

Due to the resource allocation policy of shinyapps.io,

the server enters a sleep mode during periods of inactivity,

resulting in the clearing of the local Python virtual

environment. Consequently, when the application “wakes

up” for a new user session, these libraries need to be

reinstalled. While this ensures a clean environment for each

session, it may lead to slightly longer loading times for the

first user after a period of inactivity.

In contrast to autovi, autovi.web leverages Tensor
Flow .js, a JavaScript library that allows the execution of

machine learning models directly in the browser. This

choice enables native browser execution, enhancing

compatibility across different user environments, and shiftsthe

computational load from the server to the client-side.

TensorFlow.js also offers better scalability and performance,

especially when dealing with resource-intensive computer

vision models on the web.

While autovi requires downloading the pre-trained com-

puter vision models from GitHub, these models i “.keras” file

format are incompatible with TensorFlow.js. There- fore, we

extract and store the model weights in JSON files and

include them as extra resources in the Shiny appli- cation.

When the application initializes, TensorFlow.js rebuilds the

computer vision model using these pre-stored weights.

To allow communication between TensorFlow.js and

other components of the Shiny application, the shinyjs R

package [34] is used. This package allows calling cus- tom
JavaScript code within the Shiny framework. The specialized

JavaScript code for initializing TensorFlow.js and calling

TensorFlow.js for VSS prediction is deployed alongside the

Shiny application as additional resources.

 Usage

The workflow of autovi.web is designed to be straight

for- ward, with numbered steps displayed in each panel.

There are two example datasets provided by the web

application. The single residual plot example uses the dino

dataset from the R package datasauRus [35]. The lineup
example uses residuals from a simulated regression model that

has a non-linearity issue. We walk through the lineup example

to further demonstrate the workflow of the web application.

 Reading data and setting parameters:

 The user can select to upload data as either a single set

of residuals and fitted values in a two (or more) column

CSV file or a pre-computed lineup of residuals and null

datasets in a three (or more) column CSV file (i.e. multiple

sets of residuals and fitted values with a column indicating

the set label). Here we illustrate use with lineup example data

sets (Figure 5). To use the lineup example data, click the
“Use Lineup Example” button. The data status will then

update to show the number of rows and columns in the

dataset, and the CSV type will automatically be selected to

the correct option. Since the example dataset follows the

variable naming conventions assumed by the web

application, the columns for fitted values, residuals, and

labels of residual plots are automatically mapped such that the

column named as.fitted is mapped to fitted values, .resid is

mapped to residuals and if applicable, sample to labels of the

residual set (middle image). If the user is working with a

custom dataset, these options must be set accordingly.
Whenever a data containing a lineup, the user must manually

select the label for the true residual plot, otherwise the web

application does not provide all the results. The last step is

to click the play button (right image) to start the assessment.

https://doi.org/10.5281/zenodo.14964344
http://www.ijisrt.com/

Volume 10, Issue 2, February – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.5281/zenodo.14964344

IJISRT25FEB1148 www.ijisrt.com 1427

Fig 5 Workflow

Figure 5: To begin the workflow for auto vi using the
lineup example dataset, the user clicks the “Use Lineup

Example” button (left) to load the example dataset, during

which the data status and CSV type will be automatically

updated. The user must manually select the label for the true

residual plot (middle) to compute further results. The user

initiates the assessment of the lineup example data by

clicking the run button (right).

 Results Provided

Results are provided in multiple panels. The first row of

the table Figure 6 is the most crucial to check, as it provides

the VSS and the rank of the true residual plot among the
other plots. The summary text beneath the table provides the

p-value, which can be used for quick decision-making. The

lineup is for manual inspection, and the user should see if the

true residual plot is visually distinguishable from the other

plots, to confirm if the model violation is serious.

The density plot in Figure 7 offers a more robust result,

al- lowing the user to compare the distribution of bootstrapped

VSS with the distribution of null VSS. Finally, the grayscale

attention map (right image) can be used to check if the target
visual features, like the non-linearity present in the lineup

example, are captured by the computer vision model, ensuring

the quality of the assessment.

V. CONCLUSIONS

This paper presents new regression diagnostics

software, the R package autovi and its accompanying web

interface, autovi.web. It addresses a critical gap in the

current landscape of statistical software. While regression

tools are widely available, effective and efficient diagnostic

methods have lagged behind, particularly in the field of
residual plot interpretation.

The autovi r package, introduced in this paper, automates

the assessment of residual plots by incorporating a computer

vision model, reducing reliance on time-consuming and

potentially inconsistent human interpretation. This

automation improves the efficiency of the diagnostic process

and promotes consistency in model evaluation across

different users and studies.

Fig 6 Visual Signal Strength

https://doi.org/10.5281/zenodo.14964344
http://www.ijisrt.com/

Volume 10, Issue 2, February – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.5281/zenodo.14964344

IJISRT25FEB1148 www.ijisrt.com 1428

Figure 6: Results for the lineup. The VSS of the true

residual plot is displayed in the first row of the table of

VSS values for all the null plots (left image), with a

summary text beneath the table providing the p-value to aid

in decision-making. A lineup of residual plots allows for

manual inspection (right image).

Fig 7 Bootstrapped Visual Signal Strength

Figure 7: Summaries assessing the strength of the

pattern and which elements of the plot contribute. The density

plot helps verify if the bootstrapped distribution differs from

the null distribution (left image). The attention map (right

image) offers insights into whether the computer vision

model has captured the intended visual features of the true

residual plot.

The development of the accompanying Shiny app,
autovi.web, expands access to these advanced diagnostic tools,

by providing a user-friendly interface. It makes automated

residual plot assessment accessible to a broader audience,

including those who may not have extensive programming

experience. This web-based solution effec- tively addresses

the potential barriers to adoption, such as complex

dependencies and installation requirements, that are often

associated with advanced statistical software.

The combination of autovi and autovi.web offers a

comprehensive solution to the challenges of residual plot
interpretation in regression analysis. These tools have the

potential to significantly improve the quality and consistency

of model diagnostics across various fields, from academic

research to industry applications. By automating a critical

aspect of model evaluation, they allow researchers and

analysts to focus more on interpreting results and refining

models, rather than grappling with the intricacies of plot

assessment.

The framework established by autovi and autovi.web

opens up exciting possibilities for further research and

development. Future work could explore the extension of

these automated assessment techniques to other types of

diagnostic plots and statistical models, potentially

revolutionizing how we approach statistical inference using

visual displays more broadly.

VI. RESOURCES AND SUPPLEMENTARY

MATERIAL

The current version of autovi can be installed
from CRAN, and source code for both packages are

available at github.com/TengMCing/autovi and

github.com/TengMCing/autovi_web respectively. The web

interface is available from autoviweb.netlify.app.

This paper is reproducibly written using Quarto [36]

powered by Pandoc [37] and pdfTeX.

These R packages were used for the work: tidyverse

[38], lmtest [1], kableExtra [39], patchwork [40], rcartocolor

[41], glue [42], here [43], magick [44], yardstick [45] and
reticulate [25].

REFERENCES

[1]. A. Zeileis and T. Hothorn, “Diagnostic checking in

regression relationships,” R News, vol. 2, no. 3, pp.

7–10, 2002.

[2]. R Core Team, R: A Language and Environment for

Statistical Computing, R Foundation for Statistical

Computing, Vienna,

[3]. Austria, 2022. [Online]. Available: https://www.R-

project.org/

https://doi.org/10.5281/zenodo.14964344
http://www.ijisrt.com/
https://github.com/TengMCing/autovi
https://github.com/TengMCing/autovi_web
https://autoviweb.netlify.app/

Volume 10, Issue 2, February – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.5281/zenodo.14964344

IJISRT25FEB1148 www.ijisrt.com 1429

[4]. J. A. Long, jtools: Analysis and Presentation of

Social Scientific Data, 2022, r package version 2.2.0.

[Online]. Available: https://cran.r-
project.org/package=jtools

[5]. A. Hebbali, olsrr: Tools for Building OLS Regression

Models, 2024, r package version 0.6.0. [Online].

Available: https://CRAN.R-project.org/package=olsrr

[6]. P. E. Johnson, rockchalk: Regression Estimation and

Presentation, 2022, r package version 1.8.157.

[Online]. Available: https://CRAN.R-

project.org/package=rockchalk

[7]. K. Goode and K. Rey, ggResidpanel: Panels and

Interactive Versions of Diagnostic Plots using

’ggplot2’, 2019, r package version 0.3.0. [Online].

Available: https://CRAN.R-
project.org/package=ggResidpanel

[8]. R. D. Cook and S. Weisberg, Residuals and influence

in regres- sion. New York: Chapman and Hall,

1982.

[9]. D. I. Warton, “Global simulation envelopes for

diagnostic plots in regression models,” The American

Statistician, vol. 77, no. 4, pp. 425–431, 2023.

[10]. F. Hartig, DHARMa: Residual Diagnostics for

Hierarchical (Multi-Level / Mixed) Regression

Models, 2022, r package version 0.4.6. [Online].

Available: https://CRAN.R-
project.org/package=DHARMa

[11]. W. Li, D. Cook, E. Tanaka, and S. VanderPlas, “A

plot is worth a thousand tests: Assessing residual

diagnostics with the lineup protocol,” Journal of

Computational and Graphical Statistics, vol. 33, pp.

1497–1511, 2024.

[12]. A. Buja, D. Cook, H. Hofmann, M. Lawrence, E.-K.

Lee, D. F. Swayne, and H. Wickham, “Statistical

inference for exploratory data analysis and model

diagnostics,” Philosophical Transactions of the Royal

Society A: Mathematical, Physical and Engineering

Sciences, vol. 367, no. 1906, pp. 4361–4383, 2009.
[13]. H. Wickham, N. R. Chowdhury, D. Cook, and H.

Hofmann, nullabor: Tools for Graphical Inference,

2020, r package version 0.3.9. [Online]. Available:

https://CRAN.R-project.org/package=nullabor

[14]. A. Loy and H. Hofmann, “Hlmdiag: A suite of

diagnostics for hierarchical linear models in r,”

Journal of Statistical Software, vol. 56, pp. 1–28,

2014.

[15]. A. Reinhart, regressinator: Simulate and Diagnose

(Generalized) Linear Models, 2024, r package version

0.2.0. [Online]. Available: https://CRAN.R-
project.org/package=regressinator

[16]. W. Li, D. Cook, E. Tanaka, S. VanderPlas, and K.

Ackermann, “Automated assessment of residual plots

with computer vision models,” arXiv preprint

arXiv:2411.01001, 2024.

[17]. T. S. Breusch and A. R. Pagan, “A simple test for

heteroscedas- ticity and random coefficient

variation,” Econometrica: Journal of the Econometric

Society, pp. 1287–1294, 1979.

[18]. J. B. Ramsey, “Tests for specification errors in

classical linear least-squares regression analysis,”
Journal of the Royal Statistical Society: Series B

(Methodological), vol. 31, no. 2, pp. 350–371, 1969.

[19]. J. J. Balamuta, surreal: Create Datasets with Hidden

Images in Residual Plots, 2024, r package version

0.0.1. [Online]. Available: https://CRAN.R-
project.org/package=surreal

[20]. S. S. Shapiro and M. B. Wilk, “An analysis of

variance test for normality (complete samples),”

Biometrika, vol. 52, no. 3/4, pp. 591–611, 1965.

[21]. W. Li, “bandicoot: Light-weight python-like object-

oriented system,” 2024. [Online]. Available:

https://CRAN.R-project.org/package=bandicoot A.

Clark et al., “Pillow (pil fork) documentation,”

readthedocs, 2015.

[22]. M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z.

Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M.

Devin et al., “Tensor- flow: Large-scale machine
learning on heterogeneous distributed systems,”

arXiv preprint arXiv:1603.04467, 2016.

[23]. H. Wickham, ggplot2: Elegant graphics for data

analysis. Springer-Verlag New York, 2016.

[Online]. Available: https://ggplot2.tidyverse.org

[24]. H. Mason, S. Lee, U. Laa, and D. Cook, cassowaryr:

Compute Scagnostics on Pairs of Numeric Variables

in a Data Set, 2022, r package version 2.0.0. [Online].

Available: https://CRAN.R-

project.org/package=cassowary

[25]. K. Ushey, J. Allaire, and Y. Tang, reticulate:
Interface to ’Python’, 2024, r package version 1.35.0.

[Online]. Available: https://CRAN.R-

project.org/package=reticulate

[26]. W. Chang, J. Cheng, J. Allaire, C. Sievert, B.

Schloerke, Y. Xie, J. Allen, J. McPherson, A. Dipert,

and B. Borges, shiny: Web Application Framework

for R, 2022, r package version 1.7.3. [Online].

Available: https://CRAN.R-project.org/package=shi

ny

[27]. W. Chang and B. Borges Ribeiro, shinydashboard:

Create Dashboards with ’Shiny’, 2021, r package

version 0.7.2. [Online]. Available: https://CRAN.R-
project.org/package=shinydashbo ard

[28]. J. Cheng, C. Sievert, B. Schloerke, W. Chang, Y. Xie,

and J. Allen, htmltools: Tools for HTML, 2024, r

package version 0.5.8. [Online]. Available:

https://CRAN.R-project.org/package=htmltools

[29]. A. Sali and D. Attali, shinycssloaders: Add Loading

Animations to a ’shiny’ Output While It’s

Recalculating, 2020, r package version 1.0.0.

[Online]. Available: https://CRAN.R-

project.org/package=shinycssloaders

[30]. K.-W. Moon, webr: Data and Functions for Web-
Based Analysis, 2020, r package version 0.1.5.

[Online]. Available: https://CRAN.R-

project.org/package=webr

[31]. B. Rowlingson and P. Diggle, splancs: Spatial and

Space-Time Point Pattern Analysis, 2023, r package

version 2.01-44. [Online]. Available:

https://CRAN.R-project.org/package=splancs

[32]. A. Zakai, “Emscripten: an llvm-to-javascript

compiler,” in Proceedings of the ACM international

conference companion on Object oriented

programming systems languages and applications
companion, 2011, pp. 301–312.

[33]. L. Gautier, Python interface to the R language

https://doi.org/10.5281/zenodo.14964344
http://www.ijisrt.com/

Volume 10, Issue 2, February – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.5281/zenodo.14964344

IJISRT25FEB1148 www.ijisrt.com 1430

(embedded R), 2024, version 3.5.16. [Online].

Available: https://pypi.org/proje ct/rpy2/

[34]. D. Attali, shinyjs: Easily Improve the User
Experience of Your Shiny Apps in Seconds, 2021, r

package version 2.1.0. [Online]. Available:

https://CRAN.R-project.org/package=shinyjs

[35]. R. Davies, S. Locke, and L. D’Agostino McGowan,

datasauRus: Datasets from the Datasaurus Dozen,

2022, re package version 0.1.6. [Online]. Available:

https://CRAN.R-project.org/package=datasauRus

[36]. J. Allaire, C. Teague, C. Scheidegger, Y. Xie, and C.

Dervieux, “Quarto,” Feb. 2024. [Online]. Available:

https://github.com/q uarto-dev/quarto-cli

[37]. J. MacFarlane, A. Krewinkel, and J. Rosenthal,

“Pandoc,” 2024. [Online]. Available:
https://github.com/jgm/pandoc

[38]. H. Wickham, M. Averick, J. Bryan, W. Chang, L. D.

McGowan,R. François, G. Grolemund, A. Hayes, L.

Henry, J. Hester, M. Kuhn, T. L. Pedersen, E.

Miller, S. M. Bache, K. Müller,J. Ooms, D.

Robinson, D. P. Seidel, V. Spinu, K. Takahashi, D.

Vaughan, C. Wilke, K. Woo, and H. Yutani,

“Welcome to the tidyverse,” Journal of Open Source

Software, vol. 4, no. 43, p. 1686, 2019.

[39]. H. Zhu, kableExtra: Construct complex table with

kable and pipe syntax, 2021, r package version 1.3.4.
[Online]. Available: https://CRAN.R-

project.org/package=kableExtra

[40]. T. L. Pedersen, patchwork: The composer of plots,

2022, rpackage version 1.1.2. [Online]. Available:

https://CRAN.R-pro ject.org/package=patchwork

[41]. J. Nowosad, ’CARTOColors’ palettes, 2018, r

package version 1.0. [Online]. Available:

https://nowosad.github.io/rcartocolor

[42]. J. Hester and J. Bryan, glue: Interpreted String

Literals, 2022, r package version 1.6.2. [Online].

Available: https://CRAN.R-

project.org/package=glue
[43]. K. Müller, here: A simpler way to find your files,

2020, r package version 1.0.1. [Online]. Available:

https://CRAN.R-project.org/package=here

[44]. J. Ooms, magick: Advanced Graphics and Image-

Processing in R, 2023, r package version 2.7.4.

[Online]. Available: https://CRAN.R-

project.org/package=magick

[45]. M. Kuhn, D. Vaughan, and E. Hvitfeldt, yardstick:

Tidy Characterizations of Model Performance, 2024,

r package version 1.3.1. [Online]. Available:

https://CRAN.R-project.org/package=yardstick

https://doi.org/10.5281/zenodo.14964344
http://www.ijisrt.com/

