

Electrical Energy Auditing in Electricity Distribution Network of Rwanda

Rurangwa Damas¹

Atlantic International University, Hawai

[ID: UD59060SEN68084]

A Final Thesis Presented to the Academic Department of the School of Science and Engineering in Partial Fulfillment of the Requirements for the Degree of Doctor in Electrical Energy Auditing

Publication Date: 2026/01/19

How to Cite: Rurangwa Damas (2025) Electrical Energy Auditing in Electricity Distribution Network of Rwanda. *International Journal of Innovative Science and Research Technology*, 10(12), 2850-2896. <https://doi.org/10.38124/ijisrt/25dec1647>

ABSTRACT

The developing country like Rwanda faces High Electricity Distribution Losses within its Network. Electricity Power distribution utility in Rwanda is facing many problems like commercial loss due to various reasons including inefficiencies, and high technical losses. This has a very bad effect on the economic growth of our country. Power system losses in Rwanda comprises of technical losses, non-technical losses & revenue losses. So, there is a need of proper energy accounting and audit in the power distribution system that helps the Utility to compute the energy losses. This paper provides the methodologies used to carry out the proper energy audit including deployment of SMART meters at every Network Grid Object, strengthening the Network extensions, N-1,2.... For this, the calculation of technical losses for HT feeders, power transformers, and secondary distribution system using the SMART meter data approaches. **Keywords:** technical losses, non-technical losses, Load Imbalances, power transformers, loss load factor, HT feeder), secondary distribution etc.

TABLE OF CONTENTS

Contents	
ABSTRACT	2851
TABLE OF CONTENTS.....	2852
LIST OF TABLES	2854
LIST OF FIGURES.....	2855
CHAPTER ONE	2856
INTRODUCTION.....	2856
Background Information.....	2856
CHAPTER TWO	2858
DEFINITION OF THE INVESTIGATION (OR ISSUE)	2858
Electricity Distribution System in Rwanda.....	2858
=Distribution Losses.....	2858
Economic Impact of Losses	2859
Losses in Power Transformers	2859
Sample Study on Low Voltage Network Losses	2859
Definition & Objectives of Electrical Energy Audit.....	2860
Need for Energy Audit	2860
Problem of the Statement.....	2860
Description of the Problem	2860
CHAPTER THREE.....	2863
DYNAMICS OF THE ANTICIPATED SOLUTION	2863
Methodology	2863
Typical Tools that will be Used in this Audit and Time Frames for Energy Audits in Various Applications.....	2863
Electrical Energy Audit: Types and Methodology.....	2864
Phase I -Pre-Audit Phase Activities.....	2864
Phase II- Detailed Energy Audit Activities	2865
Desktop Data Collection.....	2865
Field Data Collection.....	2866
Cross Checking of Load Demand Data	2866
CHAPTER FOUR.....	2868
OVERALL OUTCOMES.....	2868
Low Voltage Distribution Losses.....	2868
Methodology	2869
Load Power Factor	2869
Electrical Energy Audit of Public Building Electricity Supply	2870
Tariff and Charges.....	2871
Instantaneous Primary Power Measurements.....	2871
Elevator Instantaneous Power Measurements	2872
End-Use Load Apportioning	2872
Calculated Energy Use vs Billed Energy Use	2873
Operating Schedules.....	2873
Space Utilization and Occupancy Schedule General Operating Hours	2873
Corridor Lighting	2873
Occupancy and Use	2873
Architectural Description.....	2874
Orientation	2874
Walls	2874
Roof.....	2874
Lighting	2874
Heating, Ventilation and Air Conditioning (HVAC).....	2875
Air Conditioning	2875
Space Temperatures.....	2875
Domestic Water and Sewage Systems.....	2875
Sewage Circulation Pump.....	2875
Plug Loads.....	2875
CHAPTER FIVE	2876
ANALYSIS AND IDENTIFICATION OF ENERGY CONSERVATION MEASURES (ECMS)	2876
E.C.Ms for Main Incoming	2876
E.C.Ms for Air Conditioning System	2876

ECMs for Lighting System	2876
ECMs for Other Electrical Equipment.....	2876
Lighting Retrofits.....	2877
Daylighting	2877
Passive Ventilation Air Conditioning Options	2877
Operational Hours	2877
Building Area Estimate:	2879
Lighting Survey Data.....	2879
4th Floor Offices Fixture Densities as described in the followingng table 20 below:.....	2879
4 th Floor Area Consumptions	2880
Air Conditioning	2880
Climate Data & Operating Hours for Air Conditioners	2880
Motor Survey.....	2882
Plug Loads in the 4 th Floor Offices.....	2882
Measurements Taken as the Supply to the Offices.....	2883
CHAPTER SIX.....	2885
CONCLUSION AND RECOMMENDATIONS	2885
REFERENCES.....	2886
ANNEX A: WORKING HRS OF DIFFERENT AREAS	2887
ANNEX B: LIGHT FIXTURES	2892

LIST OF TABLES

Table 1: Customers with their corresponding Power Factor	2862
Table 2: Preliminary Data Collection Form	2865
Table 3: Billing Data Collection Form	2866
Table 4: Lighting Desk Top Data Collection Form	2866
Table 5: Lighting Field Data Collection Form (If any changes/absence of information during desktop data collection)	2866
Table 6: Other Electrical Equipment Data Collection Form	2866
Table 7: Low Voltage Distribution Losses	2869
Table 8: Customers with their Load Power Factor	2870
Table 9: Summarizes the charges and tariffs of electricity supplied.....	2871
Table 10: Utility Billing History	2871
Table 11: Electrical Power Supply to the Public Building.....	2871
Table 12: Electrical Power Supply to the Elevators	2872
Table 13: Calculated Energy Use vs Billed Energy Use.....	2873
Table 14: Operating Schedules.....	2873
Table 15: Light levels in Fifth Floor.....	2874
Table 16: Energy Conservation measures Categories.....	2876
Table 17: The Building Operating Hrs	2878
Table 18: Operating Hrs for Specific Areas	2878
Table 19: Estimated Surface Areas.....	2879
Table 20: Floor Offices Fixture Densities on 4th Floor	2879
Table 21: Number of fixtures in specified areas.....	2880
Table 22: Existing Air Conditioning	2880
Table 23: Climate Data & AC Hours	2881
Table 24: AC Retrofit Scenario.....	2882
Table 25: Elevators Electrical Supply Measurements Electrical Measurements	2882
Table 26: Plug-in Loads	2882
Table 27: Electrical Measurements taken as the Supply to the Offices	2883
Table 28: Building Area Operational Hrs	2883

LIST OF FIGURES

Figure 1: Electricity Generated in year 2017	2856
Figure 2: Electricity Generated in year 2018	2857
Figure 3: Electricity Generated in year 2019	2857
Figure 4: Energy Flow in the Distribution System	2858
Figure 5: Transformer Curve Record.....	2861
Figure 6: Flow chart of a detailed audit process.....	2861
Figure 7: Graphical Power factor presentation	2869
Figure 8: The Building Electricity Billing History	2871
Figure 9: Public Building End-use Load Apportioning	2872
Figure 10: The Building Electricity End Use.....	2872
Figure 11: Average Monthly Temperature of Rwanda up to 2016.....	2881

CHAPTER ONE INTRODUCTION

➤ *Background Information*

Rwanda Energy Group is a holding that was incorporated in 2014 to expand, maintain and operate the energy infrastructure in Rwanda through its two subsidiaries, i.e. the Energy Utility Corporation Limited (EUCL) and the Energy Development Corporation Limited (EDCL).

The Group was developed from EWSA (Energy and water Sanitation authority that was combining both Energy and water activities in the country. The Government of Rwanda has undertaken reforms in the energy and water sector which have been developed by the separation of energy from water operations where the main objectives being: 1) To have sector focused and efficient operations; 2) Attract more investment; 3) Improve planning and accountability; and 4) Increase access to services by the population to drive sector performance towards the targets envisaged in the the Second Economic Development and Poverty Reduction Strategy (EDPRS II) and other national goals.

To this end, Government adopted the corporatization model as a vehicle to implement the required reforms. The law repealing EWSA of January 31, 2014 paved the way for the creation of two corporate entities which were subsequently incorporated in July 2014 with 100% government shareholding.

The Rwanda Energy Group Limited (REG) and its two subsidiaries; The Energy Utility Corporation Limited (EUCL) and The Energy Development Corporation Limited (EDCL) entrusted with energy development and utility service delivery while the Water and Sanitation Corporation (WASAC) has the mandate to develop and operate water and sanitation infrastructure and deliver related services in the country.

The Rwanda Energy Group (REG) was incorporated to expand, maintain and operate the energy infrastructure in the Country through its two subsidiaries the Energy Utility Corporation Limited (EUCL) and the Energy Development Corporation Limited (EDCL). The object of creating these subsidiaries amongst others was to ensure focused attention to enhancing efficiency in utility operations on one hand and ensure timelier and more cost-efficient implementation of development projects on the other. The Energy Utility Corporation is the trading arm of the Group and has to serve diverse Rwanda's electricity customers including individuals and industries. In executing its mandate, the Company will strive to achieve optimized generation capacity, economic plant dispatch to meet short and long-term energy supply requirements, enhanced operational efficiency, improved customer service, network growth, and increased connections within the footprint of electrified area. Energy loss in the existing power system is the difference between energy input to the system and the energy billed on the consumption of consumers connected and these are unavoidable. In the present global picture, where there is a never increasing demand for energy, energy These loss raises concerns to the utility, society, as well as the country as a whole where it belongs to. It has significant economical, financial and societal impacts amidst the continuing global energy crisis.

Energy losses occur at different levels of the power system, namely in electricity generation, transmission and distribution. The Utility is implementing various strategies and measures to minimize these losses in power systems. Although these losses are unavoidable but it is essential to maintain losses at certain minimum levels.

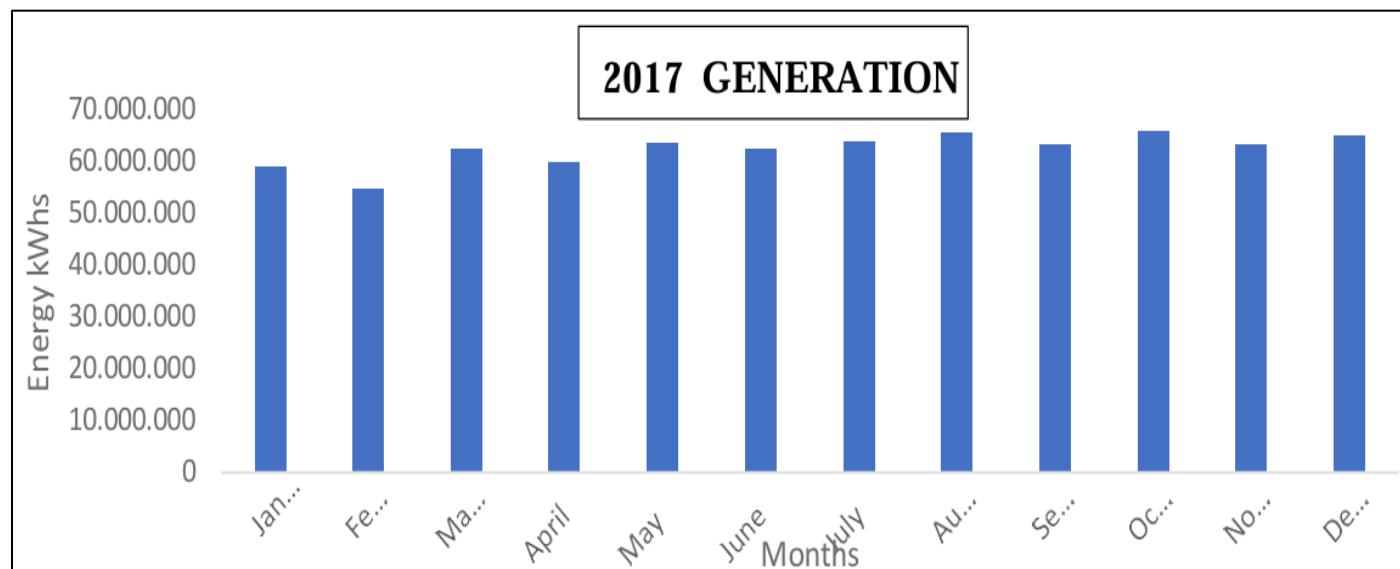


Fig 1 Electricity Generated in Year 2017

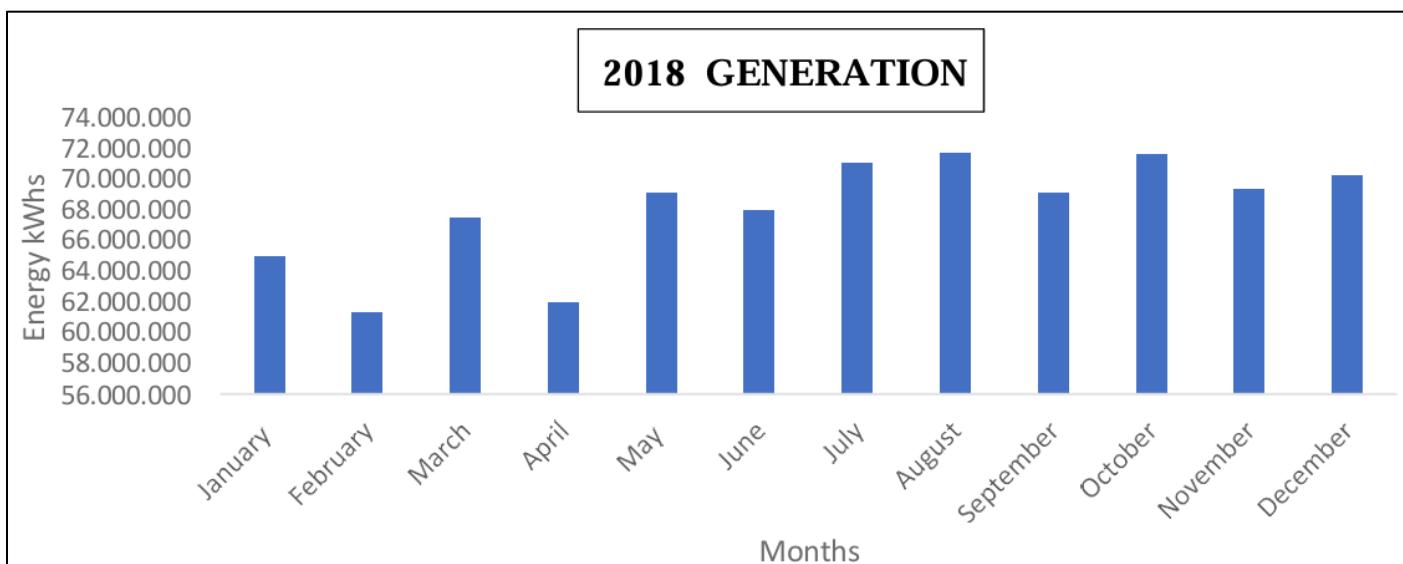


Fig 2 Electricity Generated in Year 2018

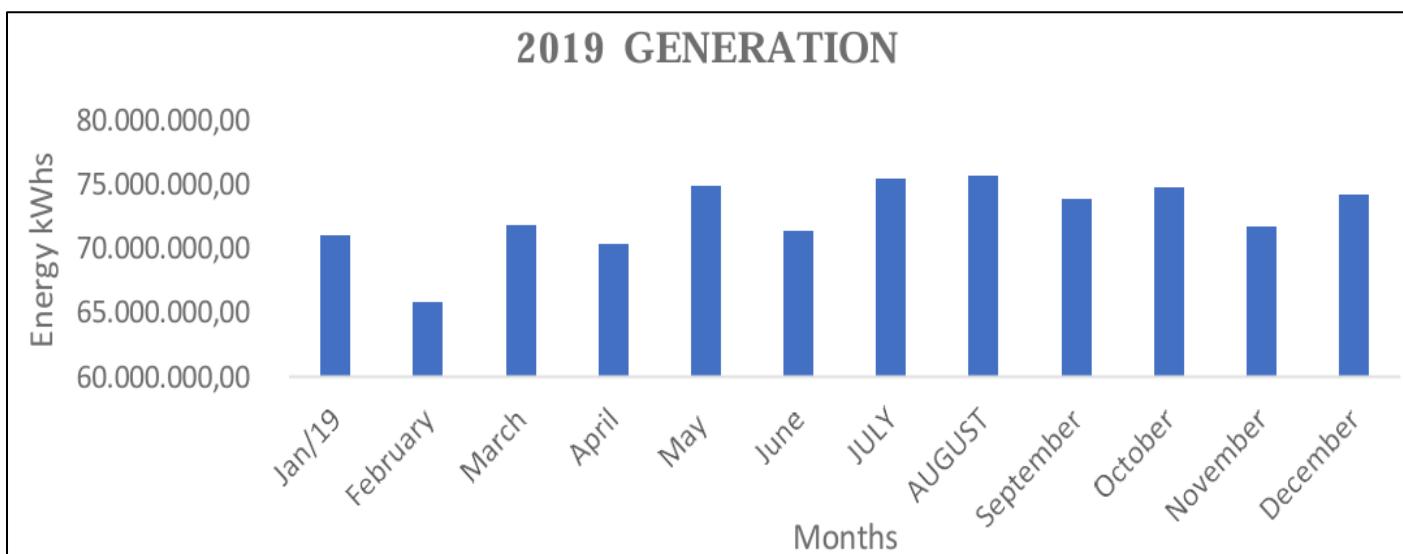


Fig 3 Electricity Generated in Year 2019

CHAPTER TWO DEFINITION OF THE INVESTIGATION (OR ISSUE)

➤ Electricity Distribution System in Rwanda

The Electricity Distribution in Rwanda is mainly at 30 kV as shown in the flow diagram below:

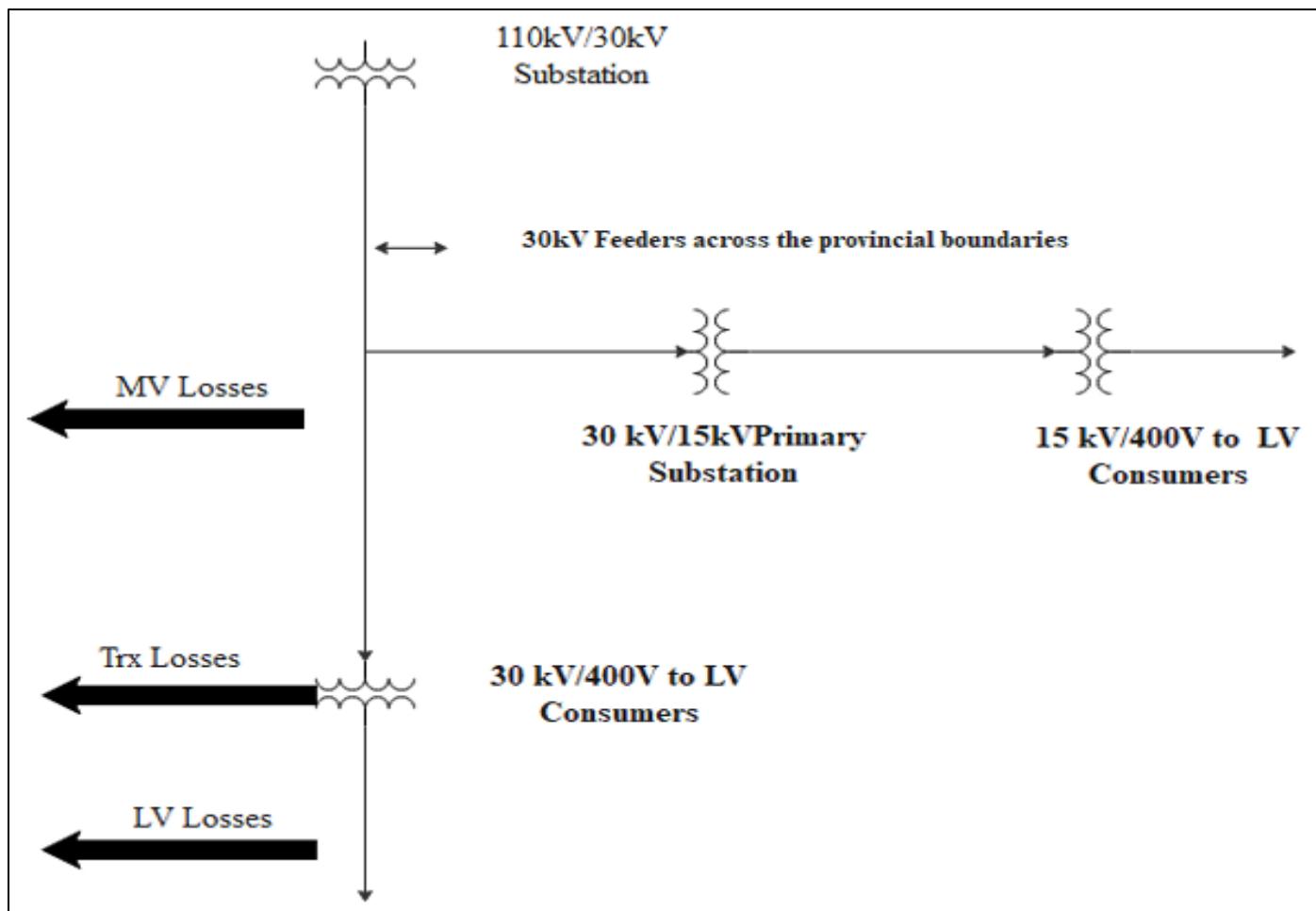


Fig 4 Energy Flow in the Distribution System

➤ Distribution Losses

Distribution losses can be segregated into the following components.

• Technical Losses:

These are inherently influenced by components and system designs. A list of such components in the local distribution system where power dissipation occurs is mentioned below.

- ✓ MV distribution lines
- ✓ Transformers supplying to low voltage heavy consumers
- ✓ Distribution transformers
- ✓ Low voltage distribution lines
- ✓ Consumer service lines
- ✓ Voltage regulators
- ✓ Capacitors
- ✓ Electrical burdens in metering equipment
- ✓ All other electrical devices necessary for the operation of the distribution system.

The losses in the power distribution lines, including service lines, are due to conductor loss. There are energy losses in electricity meters too. Further, higher level of harmonics in a distribution system also increases losses. Technical losses can be accurately computed provided the load conditions in the power system are known. Typically, load flow studies or network simulations are used to calculate technical losses.

- **Non-Technical Losses (NTLs):**

NTLs are due to actions external to the power distribution system. NTLs are often unaccounted by utilities due to unavailability or lack of information. Hence, it is extremely difficult to have an accurate estimation of NTL in distribution systems. The general practice is to derive NTL after estimating technical losses. NTLs represent an avoidable financial loss for the utility. It is the amount of energy not billed but consumed. NTLs also reflect a social issue as the consumers who are accurately metered and billed are subsidizing those who do not pay for the electricity consumed. In general, NTL in the electricity distribution is high in countries where Gross Domestic Product (GDP) per capita is low. However, there are exceptions who have achieved very low levels of NTL irrespective of lower GDP per capita such as Thailand and Indonesia.

- **Electricity Theft:**

Electricity theft is defined as a conscious attempt by a person to eliminate or reduce the amount of money that he or she will owe the utility for electrical energy consumed. It is generally viewed as the major source of NTL by the electricity utilities worldwide. Two main forms of electricity theft can be identified, namely, directly connecting an unmetered load to a power line and tampering with the electricity meter in order to reduce, or stop recording the actual energy consumed. Illegal direct connections are mostly detected in rural and shanty areas.

- **Other Forms of Non-technical Losses:**

Whilst electricity theft is considered as the major form of NTL, the other forms of NTL are:

- ✓ Defective energy meters
- ✓ Un-metered connections
- ✓ Errors and delays in meter reading
- ✓ Arranging false meter readings by bribing utility staff
- ✓ Errors in billing
- ✓ Assessed meter readings
- ✓ Errors in estimation of technical losses

➤ **Economic Impact of Losses**

Energy losses represent losses in revenue for utilities. To recover costs involved in the supply of electricity and to fill the utility viability gap, costs of losses should be covered by paying users or by the Government via targeted output-based subsidies. Loss reduction and improvement on energy efficiency would partially cover the expected demand rise offsetting the need to increase the installed capacity. On the supply side, the impact on the utility to finance new generation capacity can be delayed or avoided if reduction in demand can be achieved by implementing good demand side management measures. The use of energy efficient compact fluorescent lamps (CFLs) in place of conventional incandescent lamps at large scale for domestic and other lighting applications is a typical example of such a demand side management measure.

➤ **Losses in Power Transformers**

Energy loss of a transformer depends on how it is loaded over a period of time. The following terms are important in understanding the energy loss of transformers:

- Load Loss Factor (LLF): This is the ratio Actual loss (kWh) during a certain period to the loss at maximum current during that period
- Utilization Factor (UF): this is the ratio of Maximum Demand to the Rated Capacity

The average Loss of a power transformer is the total of its Iron and Copper Losses ie (LI+LC).

Instead of calculating the losses of individual transformers, a statistical method can be applied to approximately calculate the total loss of all the transformers under consideration. However, the following details of the transformers are required for the calculation.

- Capacity rating of each transformer
- Peak loading of each transformer
- Fixed and variable losses of the transformers of each rating
- Load factor

➤ **Sample Study on Low Voltage Network Losses**

Low voltage network supplies electricity to ordinary consumers. The ordinary consumers include those supplied under the domestic, religious, small scale industrial and general purpose tariff categories. Street lighting is also in the low voltage network. The share of ordinary consumer electricity sales is about 56% total electricity sales in the country. Table 16 shows the comparison of electrical energy consumption of the ordinary consumers and the low voltage distribution line lengths in the entire country and the

provincial LV network.

➤ *Definition & Objectives of Electrical Energy Audit*

The fundamental goal of the Electrical Energy Audit is to minimise the electricity losses that might be present the course of transmitting and distributing electricity all the way to the end users. Once losses are reduced, the electricity tariffs might become affordable to the beneficiaries leading to the least cost and least environmental effect. One of the definitions of the Electrical Energy Audit is the judicious and effective use of Electricity to maximize profits (minimize costs) and enhance competitive positions. Another comprehensive definition is the strategy of adjusting and optimizing Electricity Usage, using systems and procedures so as to reduce electricity requirements per unit of output while holding constant or reducing total costs of producing the output from these systems.

The objective of this electrical Energy Audit is to achieve and maintain optimum Electrical energy procurement and utilisation, throughout the organization, to minimise electricity costs/waste without affecting production & quality and to minimise environmental effects.

➤ *Need for Energy Audit*

In any industry, the three top operating expenses are often found to be energy (both electrical and thermal), labour and materials. If one were to relate to the manageability of the cost or potential cost savings in each of the above components, energy would invariably emerge as a top ranker, and thus energy management function constitutes a strategic area for cost reduction. Energy Audit will help to understand more about the ways energy and fuel are used in any industry, and help in identifying the areas where waste can occur and where scope for improvement exists. The Energy Audit would give a positive orientation to the energy cost reduction, preventive maintenance and quality control programmes which are vital for production and utility activities. Such an audit programme will help to keep focus on variations which occur in the energy costs, availability and reliability of supply of energy, decide on appropriate energy mix, identify energy conservation technologies, retrofit for energy conservation equipment etc. In general, Energy Audit is the translation of conservation ideas into realities, by lending technically feasible solutions with economic and other organizational considerations within a specified time frame. The primary objective of Energy Audit is to determine ways to reduce energy consumption per unit of product output or to lower operating costs. Energy Audit provides a "bench-mark" (Reference point) for managing energy in the organization and also provides the basis for planning a more effective use of energy throughout the organization.

➤ *Problem of the Statement*

Electrical energy costs are soaring to the extent that this can lead to the population resorting to other alternatives or reduction in Electricity Consumptions in the Country. This can be a considerable risk if no measures are taken. Electrical energy audits are necessary to identify where Electricity is being wasted. Residential and commercial properties account for around 40% energy Consumption and the rest 60% is for industrial, agriculture, and service sectors and carrying out an Electrical energy audit will help by revealing just how and where electricity is being wasted. With thousands of commercial energy customers nationwide, the audit will come out with the advice you on which methods are best used for reducing electricity waste and overall energy consumption.

An energy audit is an inspection survey and an analysis of energy flows for energy conservation. It may include a process or system to reduce the amount of energy input into the system without negatively affecting the output. Since Electrical energy is a very important thing in the economic growth of any country in all sectors. The living standard of country is directly related to per capita electricity consumption. Due to the economic growth of modern societies and to meet increasing electricity demand.

Generally, in an Input / Output system, losses are the difference between incoming and outgoing flows. In the case of an energy system, the incoming flow represents the energy injected or produced by the generation units and made available to consumers through a physical system of transmission and distribution. As for the outgoing flow, it can be assimilated to the energy consumed and actually paid. However, the complexity of the electrical energy system invites losses to be classified by sub-system (generation, transmission, distribution, invoicing) and by category (technical and non-technical losses). Physical subsystems constitute the set of energy networks as such thus, in generation and transmission subsystems, the losses incurred are intrinsically linked to their equipment and to their mode of operation. It is very evident that on the high-voltage side, fraud or other tampering is hardly possible. These losses are said to be purely technical.

On the other hand, the distribution subsystem has two (2) components, one of which is at medium voltage and the other at low voltage where by in these two (2) sets, the recorded losses are technical and non-technical. The most vulnerable and most accessible of these is the low- voltage component where more tampering are recorded, including fraudulent connections.

➤ *Description of the Problem*

Besides its Importance, Electrical Energy audit is an essential for any Rwanda Energy Group wishing to control its electricity usage as well as its operating costs.

The annual report shows that REG has been incurring total losses ranging from 19 % to 21 % with an average for the year as a whole of 2019

It should be noted, however, that a review of the data used in calculating these losses identified anomalies that needed to be amended. As shown above the generated Energies are not read at real time basis and this leads to inaccurate computation of real Losses within the Network. In addition to inaccurate readings, during the computation of losses, the formula that is used allows some inaccuracies due to the fact the generation is being compared to sales instead of real Consumption in the same period as Generation.

The Low Voltage Distribution Network is operating in Imbalanced mode (i.e. the transformers are identified to face a lot of phase Imbalances), there is a need to balance the Phases on the Transformers with the Network. The weekly report shows that many transformers faces Phase imbalance rates that are above 5%. The chart below shows the behaviour of Phase currents from the chosen sample of the Transformer:

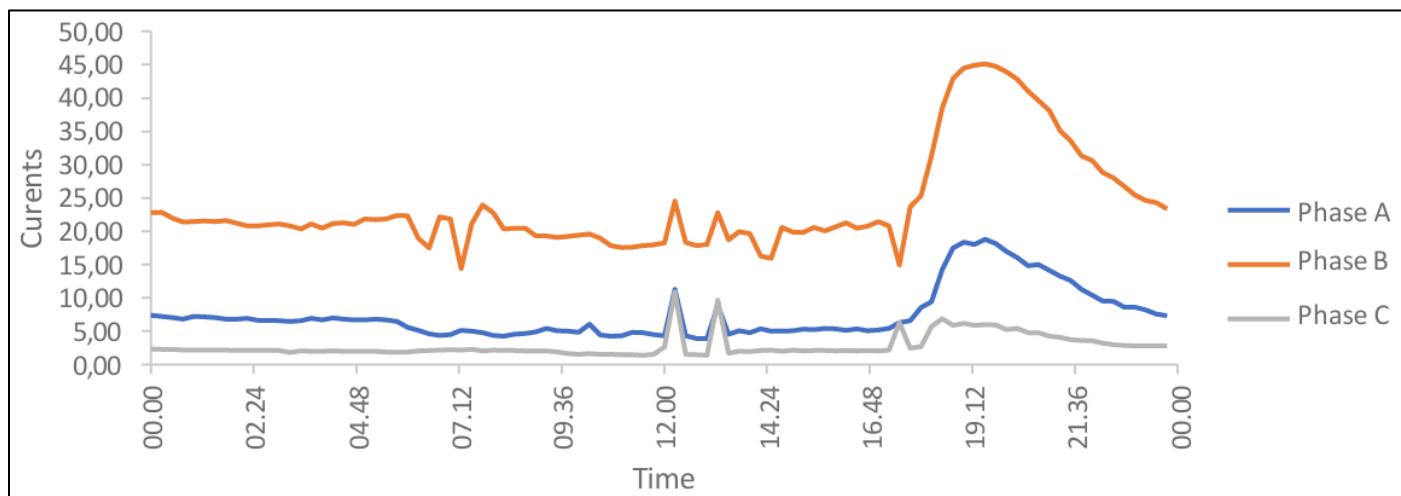


Fig 5 Transformer Curve Record

The Electricity Consumptions of most of the Customers of Rwanda Energy group behaves in a way that facilitates the losses like theft ie some customers tend to steal electricity hence contributing to a bigger T&D Losses, Low Power Factor that cause the Network to be stressed trying to overcome that reactive power from the clients. There is no means of monitoring the functioning of electricity meters to the extent that a meter might spend a lot of time malfunctioning i.e not registering all electricity being consumed by a client whereby it is found that all / part of consumed electricity is not billed and this contributes to the losses. Most of the customers tend to willingly tamper the electricity meters and since there are no means of monitoring tamper alarms at all customers, this increases the frequency of unbilled energy in the system.

Distribution transformers are not located at load centre on the secondary distribution system. In most of case, distribution transformers are not located centrally with respect to consumers. Consequently, the farthest consumers obtain an extremely low voltage even though a good voltage levels maintained at the transformers secondary. This again leads to higher line losses. The reason for the line losses increasing as a result of decreased voltage at the consumers end. Therefore, in order to reduce the voltage-drop in the line to the farthest consumers, the distribution transformer should be located at the load centre to keep voltage drop within permissible limits.

Most of 15/ &30 KV and 400-volt lines are extended over long distances to feed loads scattered over large areas. Thus, the primary and secondary distributions lines are largely radial laid usually extend over long distances. The following results in high line resistance and therefore, high I2R losses in the line:

- Haphazard growths of sub-transmission and distribution system into new areas.
- Large scale rural electrification through long 15 &30kV and LT lines.

Also, the size of the conductors should be selected on the basis of KVA x KM capacity of standard conductor for a required voltage regulation but rural loads are usually scattered and generally fed by radial feeders whose conductor sizes are not adequate.

In most Low Voltage distribution loads, the power factor lies below 0.8 and a low power factor contributes towards high distribution losses. For a given load, if the power factor is low, the current drawn is high and losses proportional to square of the current will be more.

Improper cable joints are found in the network and these contributes significant role towards increasing distribution losses. Poor Joining techniques cause the voltage reflections within the network in a such a way that they would create voltage imbalances in the network hence Current imbalances might follow.

On the side of customers, most of the clients consumes more than the electricity being supplied to them that leads to higher deviation from the Consumed and supplied energy to some of the customers. In addition to Large consuming capacity, some customers experience Low Power factor that raises copper loses within the Network. The table1 below shows the examples of Customers with Power Factor below 0,9

Table 1 Customers with their corresponding Power Factor

Customer Name	Branch	Power factor	Period	No of Billed Days
CATCHUP INVESTMENTS LTD CATCHUP	BUGESERA	0,896223981	201912	31
ABUSOL	BUGESERA	0,724396419	201912	31
KIGALI LEATHER	BUGESERA	0,514784975	201912	31
KIGALI LEATHER II	BUGESERA	0,702032914	201912	31
POURTRY EAST AFRICA LTD	BUGESERA	0,8345181	201912	30
EAST AFRICA EXCHANGE LTD	BUGESERA	0,818283696	201912	31
MAYANGE RICE	BUGESERA	0,61547507	201912	32
LAKE SIDE FISH FIRM	BUGESERA	0,850409253	201912	31
RWANDA BOTTLERS LTD	BUGESERA	0,747579731	201912	31
CONVENANT TREASURES RWANDA Limited	BUGESERA	0,345819826	201912	31
GLOBAL TRADING IMPEX LTD	BUGESERA	0,790982529	201912	31
ENVIROSERVE RWANDA GREEN PARK LTD	BUGESERA	0,814318394	201912	31
GASHORA GIRLS ACADEMY	BUGESERA	0,85246664	201912	31
BUGESERA WATER PARK	BUGESERA	0,857021416	201912	31
WASAC/POMPAGE RWAKIBIRIZI	BUGESERA	0,845043715	201912	31
WASAC/KANYONYOMBA WATER PUMPING	BUGESERA	0,881984991	201912	31
RUHUHA KUNDA UMURIMO Ltd	BUGESERA	0,817363687	201912	31
SUNBELT TEXTILES RWANDA LTD	BUGESERA	0,576221411	201912	29
SOSOMA INDUSTRY BUGESERA	BUGESERA	0,736529888	201912	30
TRINITAS GROUP LTD	BUGESERA	0,606843203	201912	31
TRIBU LTD	BUGESERA	0,757409962	201912	31
WASAC/PROJET A.E.P.BUGESERA	BUGESERA	0,842742984	201912	31
SHYAMA GGREGATES LTD	BUGESERA	0,847998304	201912	28

CHAPTER THREE

DYNAMICS OF THE ANTICIPATED SOLUTION

Electrical Energy Auditing in Rwandan Network will provide the vital information base for overall energy conservation program covering essentially energy utilization analysis and evaluation of energy conservation measures. It aims at: Identifying the quality and cost of various energy inputs, assessing present pattern of energy consumption in different cost centres of operations, Relating energy inputs and production output, Identifying potential areas of thermal and electrical energy economy, Highlighting wastage in major areas and Implementation of measures of energy conservation and realisation of savings.

The audit will determine the electricity consumption associated with the company and the potential savings associated with that consumption. It will help to reduce the dependence on foreign electrical energy sources as well as reducing environmental damage and pollution.

➤ *Methodology*

The Efficient electrical Energy Audit in the company will be accomplished by

- Identifying areas of improvement and formulation of energy conservation measures requiring no investment or marginal investment through system improvements and optimisation of operations.
- Identifying areas requiring major investment by incorporation of modern electricity efficient equipment and up-gradation of existing equipment.

➤ *The Electrical Energy Auditing Involved:*

- Collection of primary data & preliminary analysis of Electricity data: At this initial stage, data and information will be collected related to the present/current and past energy profile including the utilization on electricity with in the network. This data/information can be retrieved with the aid SMART Meters installed in the Network. The preliminary analysis of all collected data will lead to the identification of the annual trend and monthly fluctuation/variation of the total electricity energy consumption and Generation, which constitutes company's electrical energy profile. Initial energy data collected, will also lead to a first approximation on electricity consumption allocation in every area and sub-system of the network. This is a way to express the electricity balance of the network.
- Walking through the network to check on the Installation states of some of the equipment in the network: This will involve the qualitative of the Distribution Network to determine the appropriate sizing on the any existing electricity Infrastructure. This data registration will be coupled with instantaneous sampling measurements to apportion energy use and thus leads to the electricity balance within the network. This method once coupled with the previous one will lead to determination of energy saving potential with the use of tiding-up measures and simple inexpensive measures/actions that don't need economic payback assessment through relevant energy studies.
- On-site thorough Electrical energy Audit: This will involve the collection (from in-site measurements) and processing of data as well as a full examination of the installed infrastructures in the network which will trigger a thorough analysis. This procedure will also permit a sound techno- economical evaluation of one or more energy-saving approaches, with medium to high investments on specific systems, after a relevant study. This audit will be finalised with the presentation of all the energy saving proposals having the form of a summarized techno-economical report, which is composed by the Auditor and presented to the Company's Management for further decisions. This report will be part of my Final thesis for achieving a doctorate degree in Energy Audi and Management from Atlantic International University (AIU).

➤ *Typical Tools that will be Used in this Audit and Time Frames for Energy Audits in Various Applications*

Generally speaking, the typical requirements for carrying out an efficient Electrical energy audit in the company will be summarised can be summarised as:

- Staff with relevant knowledge/skills
- Time allocated to perform the tasks involved
- Technical equipment for any measurements eg SMART meters
- Financial assistance in the above areas and for the implementation of the recommendations
- Technical and operational information on Network performance.

The time taken to perform the mentioned Audit will depend on the availability of electrical energy data, the size of the site and the complexity of the systems. A walk-through audit will take only a few hours for a simple site for which information is readily available.

➤ *Electrical Energy Audit: Types and Methodology.*

Electrical energy Audit is the key to a systematic approach for decision-making in the area of Electricity sector. It attempts to balance the total energy inputs with its use, and serves to identify all the energy streams in a facility. As it quantifies energy usage according to its discrete functions, it is as well an effective tool in defining and pursuing comprehensive electricity usage management programme.

• *The Type of Electrical Energy Audit to be Performed will Depend on:*

- ✓ Function and type of the facility
- ✓ Depth to which final audit is needed, and
- ✓ Potential and magnitude of cost reduction desired

• *Thus, Electrical Energy Audit was Classified into the Following Two Types*

- ✓ Preliminary Audit
- ✓ Detailed Audit

• *The Preliminary Involved the Following:*

- ✓ Establishing energy consumption in the organization
- ✓ Estimating the scope for saving
- ✓ Identifying the most likely (and the easiest areas for attention
- ✓ Identify immediate (especially no-/low-cost) improvements/ savings
- ✓ Setting a 'reference point'
- ✓ Identifying areas for more detailed study/measurement
- ✓ Preliminary audit used the existing, or easily obtained data

A Detailed Audit provided a detailed electrical energy project implementation plan for a facility, since it evaluates all major electrical energy using systems. This type of audit offerd the most accurate estimate of energy savings and cost. It considered the interactive effects of all projects, accounts for the energy use of all major equipment, and includes detailed electricity cost saving calculations and project cost. Since the energy Balance is one of the key elements of a comprehensive audit, During the audit, an energy Balance was considered by basing on an inventory of electrical energy using systems, assumptions of current operating conditions and calculations of electricity usage. This estimated use was then be compared to utility bill charges. Detailed auditing was carried out in three phases:

- ✓ Phase I - Pre-Audit Phase
- ✓ Phase II - Audit Phase
- ✓ Phase III - Post Audit Phase

✓ *Phase I -Pre-Audit Phase Activities*

- An initial study of the site was carried out as it is a condition for this phase.
- Initial Site Visit and Preparation was done. This took only one day and provided an opportunity to meet the personnel concerned.

• *During the Initial Site Visit, the Following Actions were Carried Out:*

- ✓ Discuss with the site's senior management the aims of the audit.
- ✓ Discuss economic guidelines associated with the recommendations of the audit.
- ✓ Analyse the major energy consumption data with the relevant personnel.
- ✓ Obtain the building plan drawings where available - building layout, steam distribution, compressed air distribution, electricity distribution etc.

• *Tour the Site Accompanied by the Electrical Engineer Staff from the Facility. The Main Aims of this Visit were:*

- ✓ To identify the main energy consuming areas/plant items to be surveyed during the audit
- ✓ To identify any existing instrumentation/ additional metering required.
- ✓ To decide whether any meters will have to be installed prior to the audit e.g. kWh, steam, oil or gas meters
- ✓ To identify the instrumentation required for carrying out the audit
- ✓ To collect macro data on facility energy resources, major energy consuming centers
- ✓ To create awareness through meetings/programme

✓ *Phase II- Detailed Energy Audit Activities*

Depending on the nature of data availability and access, the detailed studies to establish, and investigate, Electrical energy balances were easily carried out. Whenever possible, checks of facility operations were carried out over extended periods of time, at nights and at weekends as well as during normal daytime working hours, to ensure that nothing is overlooked. The audit report will include a description of energy inputs and product outputs by different categories of Electricity Consuming Equipment i.e. HVAC, Motors, Lighting, etc. and will evaluate the efficiency of each step of the manufacturing process. Means of improving these efficiencies will be listed, and at least a preliminary assessment of the cost of the improvements will be made to indicate the expected payback on any capital investment needed. The audit report will conclude with specific recommendations for detailed engineering studies and feasibility analyses, which must then be performed to justify the implementation of those conservation measures that require investments.

- *Below Shows the Flow Chart of a Detailed Audit Process Taken:*

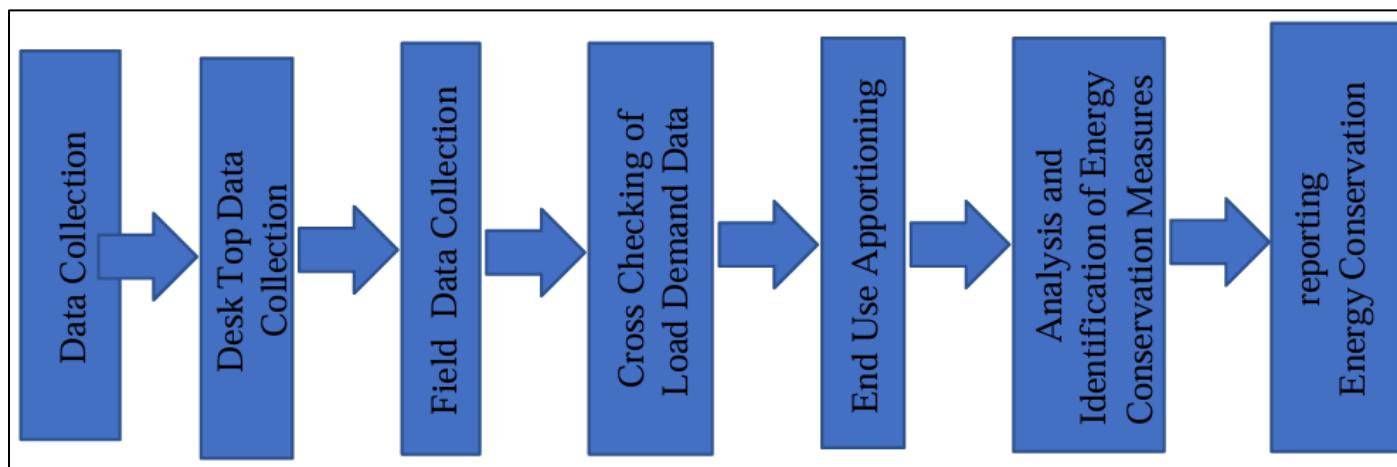


Fig 6 Flow Chart of a Detailed Audit Process

➤ *Data Collection*

Data were collected from the site either by moving there physically or using remote data collection through the Installed SMART meters. The collected data is then used to build a reliable picture of where and how much energy is being consumed as well as the cost of energy being used. Data collection was the most laborious tasks in the Electrical Energy Audit conducted.

➤ *Desktop Data Collection*

The purpose of desktop data collection was to minimize the field energy related data collection by using all available facility data. It was during the initial process that the audit forms were used to collect preliminary data where by the forms allowed me to understand the nature of the audited building and its areas to focus during the detailed auditing. The data collection through the form were used to estimate the time and resources required for the field data collection activity. Below are the forms that were used to collect the preliminary data:

Table 2 Preliminary Data Collection Form

Company Name & Address
Name, designation, telephone, fax no & email of company's person in-charge
Name, telephone, fax no & email of registered electrical energy manager
No. of staff
Operating hours (day, week, month)
Electricity tariff category
Building age
Building function
No. of blocks
Gross floor area (m ²)
Percent of gross floor area that is air conditioned (%)
Server area (%)
Parking area that is enclosed (%)
Designed occupant load (please specify unit)
Actual occupant load (%)

Table 3 Billing Data Collection Form

Month	Energy Use (kWh)	Rent (RWF)	VAT (RWF)	Sales (RWF)	Total Bill (RWF)

Table 4 Lighting Desk Top Data Collection Form

Table 5 Lighting Field Data Collection Form (*If any Changes/Absence of Information During Desktop Data Collection*)

T8/T5 fluorescent light, CFL, incandescent light, LED, etc

Table 6 Other Electrical Equipment Data Collection Form

Type of building electrical equipment □:					
Level	Operation hours (hr/day)	Rated power kW	Quantity (nos)	Remark	Please expand the table for other type of building electrical equipment (s)

➤ *Field Data Collection*

The field Data Collection was carried out as a critical for:

- Complementing the missing data, which could not be found during the Desktop Data Collection process.
- Verifying the accuracy of Desktop Data.
- Understanding closely the building operations, energy wastages and building maintenance status.
- Carrying out the necessary field measurements required to establish main incoming load profile, major energy end-uses such as HVAC, lighting and others. Establishing actual building load apportioning

➤ *Cross Checking of Load Demand Data*

The accuracy of estimated end-use energy consumption might affect the accuracy of estimated energy savings of various ECMs. Therefore, for reliable estimate of the building and end-use energy consumption, the following approach was used:

- Use of the field data collected to estimate the building's total and end-use energy consumptions. Due to a number of assumptions used in this method, in particular the equipment loading and time usage factors, the accuracy in estimating the building total end-use energy consumption may vary depending on the loads measured. For instance, due to the predictable nature of lighting load, this method allows reliable determination of the building lighting load.
- Use of the appropriate data loggers to record the building and end-use load cycles. For example, recording typical daily load profiles of main incoming for seven (7) days, through SMART meter.

✓ *E.g. photocopying machine, fax machine, computer, printer, water dispenser, vending machine, lift, escalator etc*

CHAPTER FOUR OVERALL OUTCOMES

In order to carry out the efficient and purposeful electrical Energy Audit in Rwandan Network, several strategies were taken and among those were as follows:

- Installation of SMART meters on every Transformer in the Network
- Installation of SMART Meters on all Power Plants
- Piloting SMART prepaid meters on 1000 customers

These SMART meters are helping in retrieving the network consumption details like Transformer Imbalances, real-time distributed energy from transformers, real time generation, real time consumptions of prepaid customers etc....

➤ *The Techniques that were Used During the Same Audit are Listed Below:*

- Reading all meters in the Network at the same time i.e at every beginning of each month at 00:00 midnight.
- Reading the phase unbalancing at the Transformer output on weekly basis
- Reading daily consumption of clients with SMART Prepaid Meters on real time basis.
- Reading the alarms caused by poor installations.

➤ *Load Imbalances:*

At present time, asymmetrical or unbalanced loads are experienced almost in all 0.4 kV distribution networks. The causes of this load imbalances is usually caused by domestic consumers, industrial consumers, etc. A balanced three phase system is characterized by the same module and voltage in all the three phases. During unbalanced operation mode, current is not equally distributed in the phases. Unbalanced operation modes in electrical networks are caused by the following reasons:

- Unequal loads in various phases,
- Partial operation of lines and other elements in the network,
- Different line parameters in different phases

It was found that most of the transformers in the Network are working in Unbalancing mode due to the fact that before any New connection of a customer, the loading of the transformer is not considered. Annex C shows the load Imbalances of most of the transformers which shows that Most of them are above 5% and this causes high Copper losses in Conductors. The Imbalances were found mostly to be caused by tapping a single-phase long extension lines from a three-phase line.

➤ *Estimation of Distribution Losses*

Basing on the demand, the energy loss was calculated given the following data:

- The total annual energy demand (677,87 GWhs) *ie for both residential and non- residential*
- Peak Power Demad (152 MW)
- Installed Capacity (227 MW)
- Peak availability (176MW)
- Peak Power Loss (176-152 = 24 MW)

From the above data, the Load factor is the ratio of Total annual energy demand to the Peak Power Demand (= 677870/ 152 * 24 *365 = 0.51.

Since the loss of energy in any electricity network varies with time, A hypothetical time known as ‘Utilization time of losses’ or ‘UTL’ is defined such that losses during UTL with a continuous load equal to the peak power loss is the same as the loss with actual loading over the day. From the above data, $UTL = LF^2 / (2+LF^2) * 8760$ divided by $1+2*LF$. = $(0.51^2 / (2+0.51^2) * 8760) / 1+2*0.51 = 5150.6$ Hrs/ year.

Therefore Energy Loss per year is estimated to be $24 * 5150.6 / 1000$ GWhs = 123 GWh. Since the average Energy Input to the network is 810,8 GHws. The annual energy loss as percentage of energy input to the network is $123/810.8 = 15\%$.

➤ *Low Voltage Distribution Losses*

During the analysis of the losses with the help of the installed SMART Meters on all MV/LV Distributionn Transformers, a comparison was made between the energy being distributed into an area with the energy billed from the same area.

Estimates were done on consumptions of clients using prepaid Meters by taking the average of their sales within a year as to minimize all possible errors that arises considering the following scenario:

- Some clients might buy electricity to be consumed for a long time to the extent that the units bought might also be used in more than one month.
- The challenge is that all Transformers are not yet covered except only two are covered at 100%
- *The Table 4 below Illustrates the Difference Between the Energy Distributed and Energy Billed for the Covered Ones:*

Table 7 Low Voltage Distribution Losses

	Branch Name	Distributed Energy (kWhrs)	Billed Energy (POST- PAID Customers)	Energy_Sold to Prepaid Customers (kWhrs) (Average of One year ie from June 2019 to June 2020)	Total Billed Energy	%ge LV Loss for June 2020.
1	Huye	1.183.150,60	517507	546974,3917	1064481,392	10,03%
2	Muhanga	749.461,88	236.368,00	434.288,24	670.656,24	10,51%

➤ *Methodology*

In order to find the electrical energy loss in the LV network selected, the methodology adopted is explained below.

- All the Transformers in Low Voltage network were obliged to be equipped with SMART Meters that are sending a 15 minute date to the central station.
- All the customers that are not on prepaid metering were bliged to have SMART meters sending a 15 minute data to the central station.
- In order to obtain the nearest to real Energy Cosumed by Prepaid Customers, their average sales within a year had to be computed.
- At the end of the month, the difference between the energy distributed from the Transformers and the energy billed from the customers supplied by the same transformers is computed and the result is the loss

➤ *Load Power Factor.*

The power factor is defined as the ratio of the active power (P) i.e the real power which is assumed in an AC circuit, and volt-ampères ie which is produced in the circuit when the waves of voltage or current are not in phase.

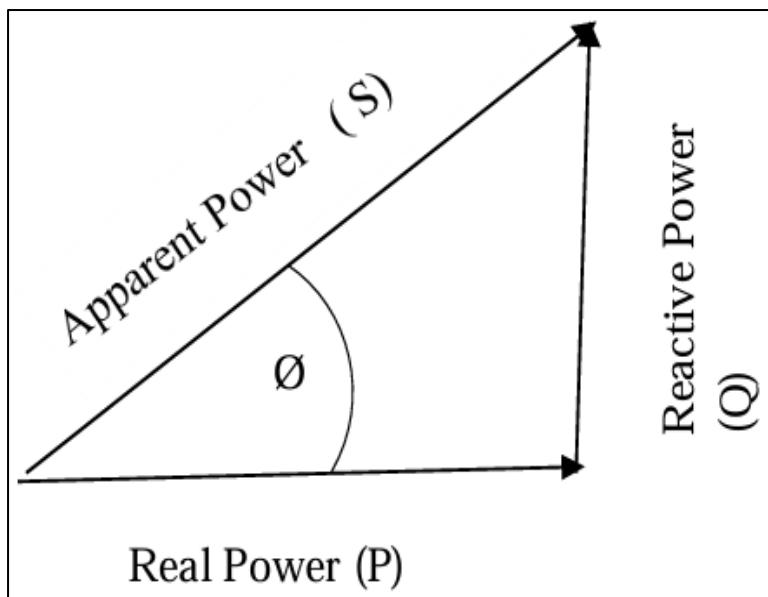


Fig 7 Graphical Power Factor Presentation

$$\text{Power Factor} = \text{Cos}\Phi = \frac{P}{S} = \frac{P}{VI}$$

$$I = P/V \cos\Phi \dots \text{Equ (I)}$$

Equation (1) shows that the current is affected by the power factor. Hence, for a given power P by the load, the current I , taken by the load varies inversely as the load power factor $\cos\Phi$. Thus, a given load takes more current at a low power factor than it does at a high-power factor.

A low power factor has caused a greater loss of Electricity in the electrical distribution system. This low power factor results in the equipment being overloaded, overheated and hence experiencing a shorter life time.

Four Customers were taken as a study sample and the following were identified.

Table 8 Customers with their Load Power Factor

Customer Name	PF	kV	I0,496	I0,98	W	kVA 0,496	kVA 0,98	Reduction of kVA ie Demand	Annual kVA Reduction
ECLAIRAGE PULIC RUGERAMIGOZI	0,49 6043	0, 4	39,7 0967	20,0 9968	136 30,8	27,4 7909	13,9 0898	13,57 011	162,8 414
MUNYINYA	0,75 1458	0, 4	27,0 576	20,7 4761	140 70,2	18,7 2386	14,3 5735	4,366 512	52,39 815
Quartier Commercial	0,54 7851	0, 4	22,8 7867	12,7 899	867 3,6	15,8 3204	8,85 0612	6,981 428	83,77 713
KABGAYI DIOCESE - ECONOMAT	0,52 5617	0, 4	5,71 6376	3,06 5943	207 9,2	3,95 5732	2,12 1633	1,834 099	22,00 919
TOTAL kVA Reductions							321,0258454		

As shown in the table above, improving power factor leads first in the reduction of Electricity demand.

Considering 13630,8 W load and 400 V system, the load current and copper losses are: $I0,496 = 13630.8/\sqrt{3}*400*0.496 = 39.70967$ A

$$I0,98 = 13630.8/\sqrt{3}*400*0.98 = 20.09968$$

Assuming that the copper losses are 3% of the load which is $0.03*13630.8 = 408.924$ W (the Copper Losses at 0.496 Power Factor)

Therefore, the copper losses at 0,98 Power Factor

$$I^2R0,98 = 408.924 * (20.09968/39.70967)^2 = 104.7679222133$$
 W since the Copper losses is proportional to the Current.

$$\text{The reduction in Copper Losses is} = (408.924 - 104.7679) = 304.1561 \text{ W which is 74\% decrease.}$$

Likewise, the improvement of power factor reduces the demand as follows: kVA recorded at existing Power Factor i.e 0.496

$$kVA0.496 = 13630.8/0.496 = 27.48145 \text{ kVA}$$

$$kVA0.98 = 13630.8/0.98 = 13.90898 \text{ kVA}$$

$$\text{Therefore, the reduction in Demand} = (27.48145 - 13.90898) = 13.57247 \text{ kVA}$$

➤ Disadvantages of Low Power Factor

The undesirable effect of operating a low load at a low power factor is due to the large current required for a low power factor. The important disadvantages of low power factor are:

- Higher current is required by the equipment, due to which the economic cost of the equipment is increased.
- At low power factor, the current is high which gives rise to high copper losses in the system and therefore the efficiency of the system is reduced.
- Higher current produced a large voltage drop in the apparatus. This results in the poor voltage regulation.

Since both the capital and running cost are increased, the operation of the system at low power factor (whether it is lagging or leading) is uneconomical from the supplier's point of view.

➤ Electrical Energy Audit of Public Building Electricity Supply

The Electrical Energy Audit was carried out on a PUBLIC Building in the center of the town and its Energy end use is 100% electric and all electricity in the building is supplied by the local supply network via a step-down Transformer.

Electricity is supplied from the local Network first to the automatic backup generator switch and then to the building itself through a main distribution switch located in the basement level. Each floor of the building is equipped with two electricity distribution panels which are supplied from the main distribution panel located in the basement.

➤ *Tariff and Charges*

The electricity service supplied to the building is billed in the following categories : Value Added Tax, Regulator fee as well as the consumption in kWhs. The Building pays for electricity under a flat tariff structure, which includes a charge only for the consumption component energy supplied to the building.

Table 9 Summarizes the Charges and Tariffs of Electricity Supplied

Regulator Fee	0.3% (Applied to Energy)
Energy	RWF 222/Month
VAT	18% (Applied to Energy)

Table 10 Utility Billing History

Months	Energy kWhs	Total Cost
Jan/19	54597,00	14336462,00
Feb/19	42727,00	11219092,00
Mar/19	38202,00	10030709,00
Apr/19	46412,00	12186868,51
May/19	42165,00	11407685,56
Jun/19	39859,00	10468009,73
Jul/19	42384,00	11131140,38
Aug/19	42457,00	11150312,08
Sep/19	49454,00	12987906,20
Oct/19	39921,00	10484292,55
Nov/19	36252,00	9520717,75
Dec/19	45724,00	12008311,22

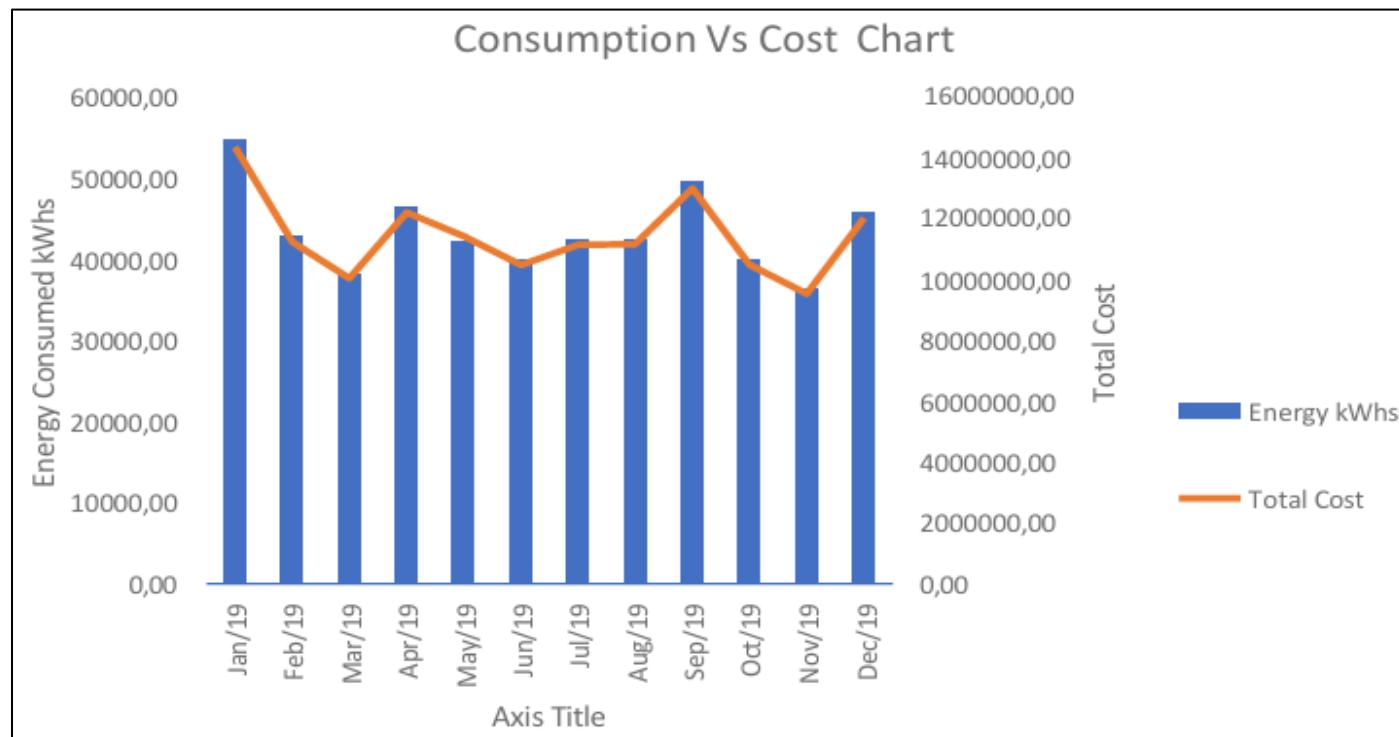


Fig 8 The Building Electricity Billing History

➤ *Instantaneous Primary Power Measurements*

Electrical measurements for the primary electric service to the Building were taken at a point of supply to the whole. The following voltage and current measurements were observed.

Table 11 Electrical Power Supply to the Public Building

Phase A			Phase B			Phase C		
Volts	Amps	kVA	Volts	Amps	kVA	Volts	Amps	kVA
239	148,2	35,4198	239,7	165,8	39,74226	239,6	201,6	48,30336
Total kVA								123,4654

As shown above, the building is facing the Phase current Imbalance of 17% which is out of acceptable limits as it is beyond 10%.

➤ *Elevator Instantaneous Power Measurements*

Since the specifications of the elevators were not available, instantaneous electrical measurements for the elevators were taken at the main control panel located on the 6th level to determine the electric power demand. The following voltage and current measurements were observed.

Table 12 Electrical Power Supply to the Elevators

Phase A			Phase B			Phase C		
Volts	Amps	kVA	Volts	Amps	kVA	Volts	Amps	kVA
160	19	3	194	20	4	193	19	4
Total apparent power:								11 kVA

Electricity is supplied to the two elevators in the building from the same conductors, and the measurements shown above are the average readings for each as they operated.

➤ *End-Use Load Apportioning*

The Audit carried out used the above suggested three steps to apportion the total building load into its major end-use loads. The chart in below shows a sample of load apportioning of a building.

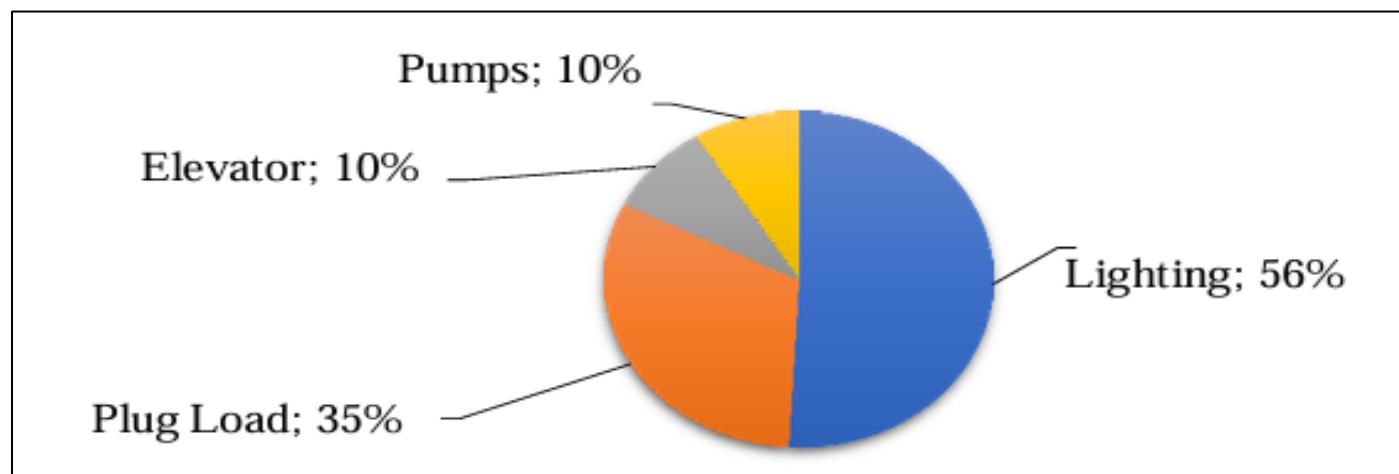


Fig 9 Public Building End-Use Load Apportioning

Energy end use for the building is categorized as shown in the table below, including the estimated peak load for each.

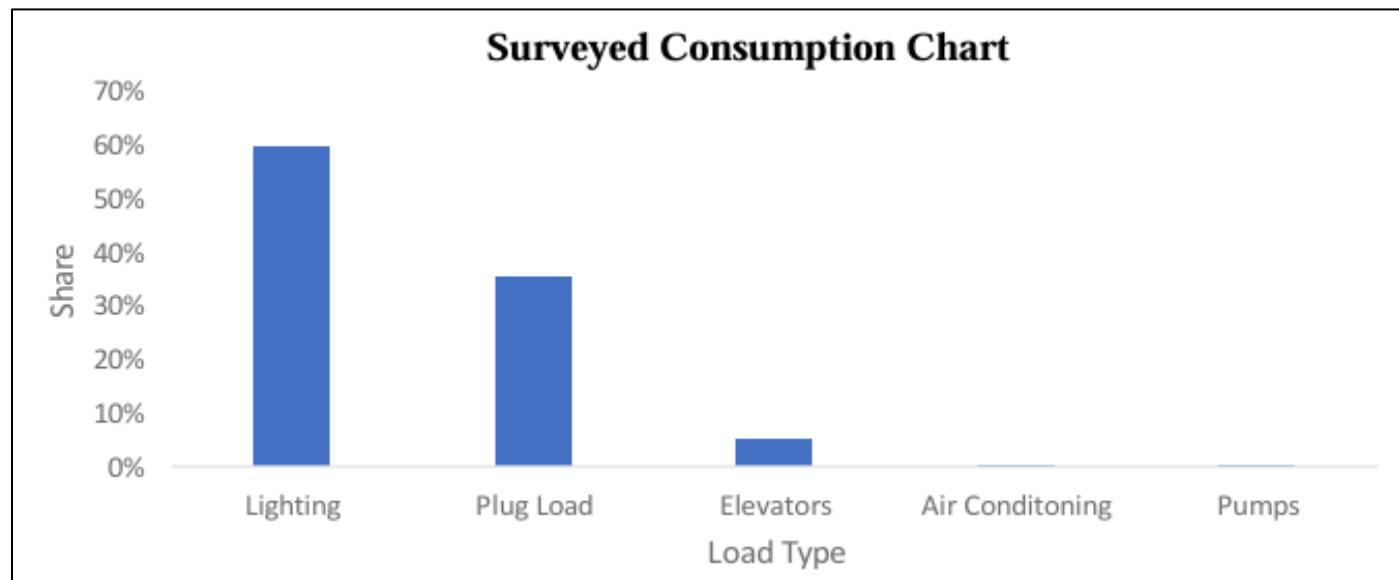


Fig 10 The Building Electricity End Use

The energy end use for lighting, pumps and plug loads were estimated based on name plate data collected during the on-site data collection survey. A detailed survey of the fourth floor of the building was conducted to estimate the power density for lighting and plug loads. The recorded lighting and plug loads were categorized according to spaces with occupancy schedules noted. Power densities were then calculated on a meter/kW basis for the fourth floor and then applied to the remaining portions of the building with similar spaces. For spaces in the building, such as the basement floor, that do not have characteristics similar to the fourth floor, unique power density figures were derived. Once the loads were extrapolated to all spaces in the building, operating schedules were applied to loads to determine energy use.

➤ *Calculated Energy Use vs Billed Energy Use*

The energy use for the building was calculated for each end use category as described above. A comparison of the billed vs calculated energy use is shown below.

Table 13 Calculated Energy Use vs Billed Energy Use

Load	Energy Use (kWh)			Max (kW) Demand
	From Electrical Measurements	From Name Plate Data	% Total	
Lighting		290.543	60%	290.543
Plug Load		172.759	35%	172.759
Elevators	46257.12		5%	24024
Air Conditioning		2,49	0,0005%	2,49
Pumps		338.208	0,07%	339
Totals		487.667	100%	509900.2739
Total Surveyed				509900.2739
Utility Bill				520.154,00
Difference				2%

➤ *Operating Schedules*

Operating schedules for space classifications in the building were determined through interviews with facility personnel. The following operating schedules were used for calculating end use in the building.

Table 14 Operating Schedules

Area Classification	Description	Hours/Day	Hours/Week
Circulation General	Hallways	15	105
Circulation Stairs	Stairways	15	105
Meeting Room High Frequency	Meeting Room	2	9
Meeting Room Medium Frequency	Meeting Room	0	2
Meeting Room Low Frequency	Meeting Room	1	3
Utility High Frequency	Utility High	2	10
Utility Medium Frequency	Utility Low	1	3
Utility Low Frequency	Utility Medium	1	5
Office, General	General Offices	10	45
Office, Executive	Executive Offices	10	45
Lavatory	Toilets, Showers	10	45

The operating schedules shown above are used as a baseline, with adjustments made to each area according to interviews with facility personnel for holidays, extended hours, etc.

➤ *Space Utilization and Occupancy Schedule General Operating Hours*

The building is substantially occupied from 8:00 a.m. to 5:00 p.m. five days per week (Monday through Friday). Interviews with the facility managers during on-site data collection revealed that there is limited after-hour use until about 10:00 p.m. on week nights and on weekends between 8:00 a.m. and 5:00 p.m. For the purpose of this audit, general office spaces were deemed to be normally occupied 10 hours per day.

➤ *Corridor Lighting*

Corridor lighting in the building typically operates from 7:00 a.m. to 10:00 p.m. hours 7 days per week. Office lighting is operated on demand through wall-mounted switches with no automation.

➤ *Occupancy and Use*

According to operation personnel, the building has at least 100 visitors per day. A large number of people were observed entering and exiting the building constantly during the site inspection. Much of the ground floor office space is dedicated to servicing

investment inquiries and delivering counter services to visitors. The back and front doors are almost always open. The six upper floors of the building receive fewer visitors. Floor space in the first through fifth levels is mainly dedicated to general offices, with some space allocated to meeting rooms. Spaces in the sixth level of the building are dedicated to offices for facility maintenance personnel (20%), an employee canteen (20%) and storage (45%). The basement of the building is mostly used for storage, but has some areas for security personnel and electrical utilities.

➤ *Architectural Description*

The building is generally rectangular in shape with eight levels including the basement and ground floor. Interior office spaces are arranged around a large, enclosed atrium space from the ground to the sixth floor. The atrium is a pleasant architectural feature allowing a generous amount of natural light into the building. A glass elevator located on one side of the atrium serves all eight levels from basement to sixth floor.

➤ *Orientation*

The building is basically rectangular in shape with orientation of the narrower faces perpendicular to a direction approximately 20° off north to the east. The main front and rear entrances are located to the northeast and southeast faces of the building respectively.

➤ *Walls*

The core structure of the Building is constructed with reinforced concrete columns and floor plates. Exterior walls of the building are of two types: The first type of wall is concrete with the cladding being plasterboard with a cement finish. About 50% of the exterior face of the building is constructed of concrete wall. The second type of wall is a glass cladding system fastened to metal framing with no other layering. The glass cladding is single-glazed and layered with a reflective tint. Interiors of the building besides glazing are layered with a type of plasterboard and exterior finishing.

It is assumed that both the concrete wall system and glass cladding type wall have low thermal performance (i.e Lower U-factor).

➤ *Roof*

Most of the building's roofing system covers the fifth and sixth floors. About 15% of the roof covers the atrium and the remaining covers various other interior spaces such as offices, the cafeteria and storage areas.

The atrium roof is arched and constructed of single pane glass that has either been painted or had a green opaque film applied to it.

➤ *Lighting*

The majority of lighting fixtures in the building are 2 ft X 2 ft, 3 X 17 watt recessed parabolic fluorescent fixtures equipped with reflectors. Light fixtures are equipped with two ballasts with an assumed power consumption of 59% of the total fixture lamp power. Office spaces, meeting rooms and corridors generally have a lighting power density of 27 watts per square meter or 2.3 square meters per fixture.

Other than fluorescent lighting, which covers most interior spaces, there are various other light sources inside and outside the building. The atrium has light fixtures mounted at the ground floor, and exit signs equipped with incandescent bulbs are located throughout the building near each stairwell and point of egress.

The side windows in the roof over the glass atrium and windows in the central part of the building's northeast face let a considerable amount of natural light into the interior office and corridor spaces. However, since most of the atrium roof, although made of glass, is painted an opaque color that blocks almost all light, the potential for daylighting through the central space is significantly reduced.

During the site visit, it was observed that less than 50% of the light fixtures are working at all. About 25% of the working fixtures are not firing with lamps emitting only a slight orange glow at the tips.

During the audit, lighting levels were measured on the fifth floor. The table below shows the light level readings.

Table 15 Light levels in Fifth Floor

Floor	Location	Light Level Reading
5	Window	300 lux
5	Middle Office, Under Fixture	250 lux
5	By Wall Far Side From Window	30 lux
5	In corridor adjacent to atrium	664 lux
5	In hallway between office and stairwell	260 lux

➤ *Heating, Ventilation and Air Conditioning (HVAC)*

The building is not equipped with any mechanical ventilation systems and has almost no air conditioning except for a few computer servers' rooms. All outside air ventilation in the building is natural, with air flowing through operable windows on each floor and doorways to the outside located at on the ground, fourth and sixth floors. The primary mode of air flow in the building during the site visit seemed to be horizontally through the operable windows. There did not seem to be a strong stack effect through the building's central atrium.

Most office spaces are open plan with transparent glass wall partitions separating adjacent office areas from each other and corridors. During the site visit, almost all doorways, interior and exterior, were left open, presumably to facilitate natural ventilation. The building was visited at 10:00 a.m. and 1:30 p.m., and most interior spaces seemed comfortable except those that had poor ventilation such as separate, enclosed offices and interior stairwells.

Designed with a large, interior atrium, the building is nearly ideal to leverage passive ventilation to facilitate the conditioning of interior spaces. Unfortunately, the atrium roof is completely sealed, eliminating the possibility of using a thermal stack effect to facilitate ventilation through the building. Existing passive ventilation is mainly across the building from operable windows and doors on one side of the building through to operable windows and doors on the other side of the building.

➤ *Air Conditioning*

As mentioned above, the building is generally not mechanically air conditioned. Only a single split system type direct expansion air conditioning system of 4.8 kW of cooling capacity was observed.

➤ *Space Temperatures*

Space temperatures were taken within the office spaces and the corridor adjacent near the atrium at all levels. In general, the office spaces were about 26°C, which is approximately 1°C more than the outside air temperature. Interestingly, the spaces at the atrium in the ground floor was about 26°C and increased by 4°C on the fifth floor in the corridor adjacent to the atrium. The thermocline in the building indicates good potential for passive ventilation using the atrium space.

➤ *Domestic Water and Sewage Systems*

• *Domestic Water Supply*

Presently, no domestic water end uses in the building utilize hot water. All energy related to domestic water use is due to a small pump that is used to fill a water tank at the top of the building. The exact power rating of the pump could not be determined, but considering the pipe size, building height and flow rate for such a system, the pump motor is estimated to be 0.27 kW.

The facility manager said that the pump operates when needed, which was estimated to be about 3 hours per day.

• *Sewage Circulation Pump*

Sewage from the building is piped to a pit located outside near the south-most corner of the building. According to the facility manager, the sewage pit is part of some sort of aerobic treatment system with a pump that circulates the sewage. The pump is estimated to run about 4 hours each day.

The power rating for the sewage pump could not be determined due to the confined space it is mounted within. However, the power rating of the pump motor power has been estimated at 3 kW given the application and motor size.

• *Plug Loads*

Plug load (portable electrical equipment) in the building consists almost exclusively of computers and printers. There are various other appliances and devices in the building, like the security scanners at main entrances, which add no more than an estimated 5,000 kWh to the building's annual energy consumption.

CHAPTER FIVE

ANALYSIS AND IDENTIFICATION OF ENERGY CONSERVATION MEASURES (ECMS)

At about 64 kWh/ m²/year, the building has extremely low energy intensity when compared to buildings in the US with energy intensity ranges of 200 kWh/m²/year to 300 kWh/m²/year. The low energy intensity is attributable to the fact that almost all of the building has no mechanical ventilation, spaces are not mechanically air conditioned and less than 50% of the light fixtures are functioning. The primary energy efficiency opportunity for the building is retrofitting of fluorescent light fixtures.

The effectiveness of the audit was related to the understanding in depth of the nature and operations of the audited building. Knowing the acceptable level of comfort and tolerance for lighting, temperature and humidity level are essential to come up with effective and acceptable ECMs.

➤ *The ECMs can be classified into the following categories:*

Table 16 Energy Conservation Measures Categories

Categories	Description
No/low cost measures	Involves practically no/low cost investment and without any disruption to building operations, normally involving general housekeeping measures
Medium cost measures	Involves medium cost investments with some minor disruption to building operation
High cost measures	Involves relatively high capital cost investments with much disruption to building operation

- Typical sample of one of E.C.Ms activities that can be started with are listed below:

➤ *E.C.Ms for Main Incoming*

- Ensure appropriate electricity tariff
- Power factor improvement
- Maximum demand control

➤ *E.C.Ms for Air Conditioning System*

- Equipment tuning
- Manual/automatic equipment control
- Equipment replacement
- Equipment maintenance
- Use of heat exchangers to pre-cool outside air used by Air handling Units (AHU) using spill air.
- Limit outside air intake to minimum requirements or use air quality sensors (e.g CO₂ sensors) to control outdoor air intake according to occupancy level
- Use of ice storage for peak load reduction
- Improve piping insulation

➤ *ECMs for Lighting System*

- Manual/automatic control equipment (eg Dimmers, occupancy sensors, Photo/Daylight sensors cells, time clock, etc)
- Equipment maintenance (periodical cleaning, ballast replacement with more efficient alternatives)
- Delamping in over-lit areas
- Use of daylight in conjunction with lighting control
- Equipment replacement (e.g. Efficient luminaires, low loss ballast, tri-phosphor lamps, etc)

➤ *ECMs for Other Electrical Equipment*

- On - off system
- Maintain ventilation at optimum requirements
- High efficiency motors
- Use of variable speed drive to reduce fan and pump loads
- Use of equipment control for equipment start and stop

➤ *Lighting Retrofits*

• *General Office Fluorescent Fixture Retrofits*

The existing 2' x 2' fluorescent fixtures are equipped with 3 x 17 watt T8 lamps and magnetic ballasts with a total rating of about 62 watts including ballast losses. The standard retrofit for this fixture would involve replacing it with a T8 or T5 fixture equipped with electronic ballasts. The modelling for the existing light fixtures show that light levels from the 3-lamp T8 fixture would deliver light levels of about 1200 lux. The standard level of light needed for normal office tasks is about 500 lux.

During the audit, it was observed that many fixtures had missing lamps. Operations personnel said that ballasts and lamps frequently failed. However, considering the excessive light levels that would be produced from a normally functioning fixture, it would be logical to assume that operations personnel are purposely not re-lamping fixtures to reduce light levels. The exact specifications for the existing ballasts could not be located, but it is likely they were selected to drive the fixtures at their rated lumen levels.

The building has a significant amount of glazing and a central atrium that allows significant natural light in the building. Considering the excessive amounts of light that would be produced by the existing fixtures and the available daylight, the best retrofit would generally be T8, 2-lamp fixtures driven by electronic ballasts. This fixture would reduce wattage from 66 watts to 43 watts. Further energy consumption savings could be achieved by equipping perimeter areas in the building that are adjacent to windows and the atrium with dimmable ballasts using photosensor-based daylight harvesting capabilities.

Unfortunately, considering a lighting retrofit at this point would have a poor payback, because many existing fixtures have one or two lamps burned out. To make economic sense, the retrofit scenario would calculate a baseline that assumes all existing fixtures are currently working to be economically viable. Therefore, any lighting retrofit should be implemented with the expectation that little or no savings will actually be seen at the building's meter.

➤ *Daylighting*

The building receives a considerable amount of daylight both from outside windows and interior corridors adjacent to the atrium. If the atrium glass were replaced with a transparent or translucent material, there would be even greater opportunity for leveraging daylight to light interior spaces. A technology that should be considered to leverage the available daylight are fluorescent light fixtures equipped with dimmable ballasts which attenuate lamp light output according to a light level reading from an integrated photocell.

➤ *Passive Ventilation Air Conditioning Options*

If the air conditioning retrofit is implemented as planned for all office spaces, this would add an estimated 87 kW of peak electrical load or 7.385,50 kWh of additional energy use and RWF 1.639.580,06 to the electricity bill each year.

Analyzing the number of cooling degree days for Kigali in a year according to the internal heat gains and thermal properties of the building, the air conditioning may run as many as 893 hours per year. Normally, once air conditioning is installed, the tolerance of indoor occupants to thermal discomfort decreases, which tends to increase the number of hours air conditioning would run in comparison to what would be considered uncomfortable in a building that did not have air conditioning at all.

As mentioned above, the building has an ideal architectural design for passive ventilation. Passive ventilation would be greatly enhanced by putting relief air vents near the top of the atrium roof. This simple measure would encourage natural ventilation by leveraging the stack effect in the building where air warmed from internal heat sources (people, computers) would be conveyed from the office spaces into the atrium space and up through the relief vents. Enhancing natural ventilation would greatly reduce or eliminate the periods in the year when mechanical air conditioning would be needed.

To investigate the possible effect of passive ventilation on the projected operating hours of the air conditioning equipment that will be installed in the building, a simple analysis based on cooling degree days was performed. The passive ventilation scenario was modeled by raising the estimated balance point temperature (outside air temperature at which air conditioning is turned on) by two degrees compared to the case without passive ventilation. Two degrees was selected because it has been shown that increasing passive ventilation can reduce the air temperature perceived by occupants in a building by two to five degrees.

It should be noted that, although passive ventilation represents an excellent opportunity, it is a solution that should be carefully modelled to select the appropriate modifications to the building. Achieving an optimum natural airflow rate through the building may require installing additional venting through the external cladding system and internal partition walls that currently separate the offices from the atrium space.

➤ *Operational Hours*

During the preliminary data, the operational hrs. of the whole building as well as the specific area were recorded as follows. The operational hrs. were divided into before and after retrofitting.

Table 17 The Building Operating Hrs Operational Hours Per the Specific Areas

Average Hours / Year	3744
Hours Work Day	12
After Hours Weekday	5
Days Work Week	5
Holidays Per Year	10
Work Days Per Year	251
Hours Weekend	6
Work Start	7
Work End	16
After Hours End	22
Hallway Start	7
Hallway End	22
Utility Low Hours / Day	0,5
Utility Medium Hours / Day	1
Utility High Hours / Day	2

Description	Hours/Day	Hours/ Week	Hours / Year
After_Hours	6	42	312
Circulation_General	15	105	780
Circulation_Pre_Retrofit	2	14	728
Circulation_Stairs	15	105	780
Daily_Normal	9	63	468
Day_Light_Harvest_Ciculation	4	28	1456
Day_Light_Harvest_Office	4	20	1040
Daylighting_Hours	5		
Full	168	1176	8736
Holiday	1	3	180
Meeting_Room_High_Frequency	2	9	468
Meeting_Room_Low_Frequency	0	2	16
Meeting_Room_Medium_Frequency	1	3	31
None	0	0	0
Utility High	2	10	104
Utility Low	1	3	26
Utility Medium	1	5	52
Weekday_Full	24	120	1128
Weekday_Normal	9	45	348

Table 18 Operating Hrs for Specific Areas

Weekday_Plus_After_Hours	15	75	3900
Weekend_Full	24	48	2496
Weekend_Normal	9	18	468
Weekend_Plus_After_Hours	15	30	1560
Months	Days	Weeks	
Jan	31	4,428571429	
Feb	28	4	
Mar	31	4,428571429	
Apr	30	4,285714286	
May	31	4,428571429	
Jun	30	4,285714286	
Jul	31	4,428571429	
Aug	31	4,428571429	
Sep	30	4,285714286	
Oct	31	4,428571429	
Nov	30	4,285714286	
Dec	31	4,428571429	

➤ *Building Area Estimate:*
 The whole Building Floor area: 486m²

Table 19 Estimated Surface Areas

Floor Number	Area
B	700
G	1179
1	1179
2	1227
3	1227
4	1227
5	1227
6	763

The ratio of the area of the 4th floor to the whole building area : (Area of the 4th floor- area of atrium)/ Total area of the building. Since the area of the atrium is 100m², the real area of the 4th floor is 1127m²

The building has got its existing working hrs that were realised that once modified, the energy Consumption would reduce.

➤ *Annex A illustrates the working hrs before and after retrofitting. Example from the table in Annex A:*

- The atrium was found not to be utilised all the time whether in weekday or weekends. It is recommended to utilise it in all the time during weekdays plus after hrs ie 75 hrs/ week as well as weekends plus its after hrs ie 30 hrs/week.
- The executive office used for the meeting was is being used utilized at the time (ie 45 hrs/ week during the weekdays as well as 18 hrs/week during weekends). It is recommended not utilize this as a meeting room as the first floor is mainly dedicated to the general offices with some space allocated to meeting rooms.
- The circulation within the Atrium is made all the time (ie 75 hrs/week during weekdays as well as 30 hrs/week during weekends) and this has been recommended to be reduced to 45 hrs/week in weekdays as well as 18 hrs/week in weekends.

All the above recommendations will affect the electricity Consumption.

➤ *Lighting Survey Data*

- *Fixture Surveys:*
 4th Floor Offices Fixture Densities as described in the followingng table 20 below:

Table 20 Floor Offices Fixture Densities on 4th Floor

Area	Square meters/ Fixture	Fixture type
All	0	
Atrium	0	
Circulation	2,3	Fluorescent, (3) 24", STD lamp
Lavatory	10	Compact Fluorescent, (1)26W spiral lamp 4-pin, high CRI, electronic ballasted
Lifts	2,3	Compact Fluorescent, (1)26W spiral lamp 4-pin, high CRI, electronic ballasted
Office	2,3	Fluorescent, (3) 24", STD lamp
Stairs	16,67	Compact Fluorescent, (1)26W spiral lamp 4-pin, high CRI, electronic ballasted
Storage	12,5	Compact Fluorescent, (1)26W spiral lamp 4-pin, high CRI, electronic ballasted

Below show the details concerning number of fixtures withinn every areas on each Floor. The table clearly show that the 290.543kWs can be saved anually by retrofitting the existing lights to the efficient ones that can reduce the electricity Consumption by 50% . The 4th floor is divided into the followingng areas that were audited: Atrium, Mai stairs, stairs at the coner, general Offices, Office for the Meeting, general circulation, atrium circulationn, mainn Lift and lavatories in South Western corner. Each area containsns certainn number of light fixtures that leads to its own energy consumption which all adds up to 114.537 kWrs which can be retrofitted to 57.268,5 kWhrs basing on the number of operational hours.

Table 21 Number of Fixtures in Specified Areas

Area Description	Schedule ID	Fixture ID	Fixture Description	Total Energy 100% Operational	Total Energy 50% Operational
Atrium_Atrium	None			-	-
Stairs_Main	Weekday_Plus_After_Hours	CF26/1- L- SCRW	Compact Fluorescent, (1)26W spiral lamp 4-pin, high CRI, electronic ballasted	427	214
Stairs_Corner	Weekday_Plus_After_Hours	CF26/1- L- SCRW	Compact Fluorescent, (1)26W spiral lamp 4-pin, high CRI, electronic ballasted	214	107
Office_General	Weekday_Normal	F23SS	Fluorescent, (3) 24", STD lamp	30.822	15.411
Office_Window_Perimeter	Weekday_Normal	F23SS	Fluorescent, (3) 24", STD lamp	22.138	11.069
Office_Executive/Meeting	Weekday_Normal	F23SS	Fluorescent, (3) 24", STD lamp	3.425	1.712
Circulation_General	Weekday_Plus_After_Hours	F23SS	Fluorescent, (3) 24", STD lamp	33.394	16.697
Circulation_Atrium	Weekday_Plus_After_Hours	F23SS	Fluorescent, (3) 24", STD lamp	23.060	11.530
Lifts_Main	Weekday_Plus_After_Hours	CF26/1- L- SCRW	Compact Fluorescent, (1)26W spiral lamp 4-pin, high CRI, electronic ballasted	774	387
Lavatory_SW_Corners	Weekday_Plus_After_Hours	CF26/1- L- SCRW	Compact Fluorescent, (1)26W spiral lamp 4-pin, high CRI, electronic ballasted	285	142
Total Consumption				114.537	57.269

➤ *4th Floor Area Consumptions*

Annex B Shows the electricity consumption by light fixtures in the whole building and this has been found that most of the lights are found in the 4th floor and are fluorescent where by the General Offices having many of them (ie 151)

➤ *Air Conditioning*

- Existing Units: The building is generally not mechanically air conditioned. Only a single split system type direct expansion air conditioning system of 4.8 kW of cooling capacity was observed.

Table 22 Existing Air Conditioning.

Equipment Name	Quantity	Power Estimate for Motors		Annual Hours of Operation (hours)	Energy Consumption (kWh)
		Nameplate	Average Load Factor (%)		
		kW demand			
LGS2465	2	4,8	1,00	520	2.496

• *Climate Data & Operating Hours for Air Conditioners*

From world Bank data, it was shown that the average temperatures per month from 1901 to 2016 varies as shown in the graph below:

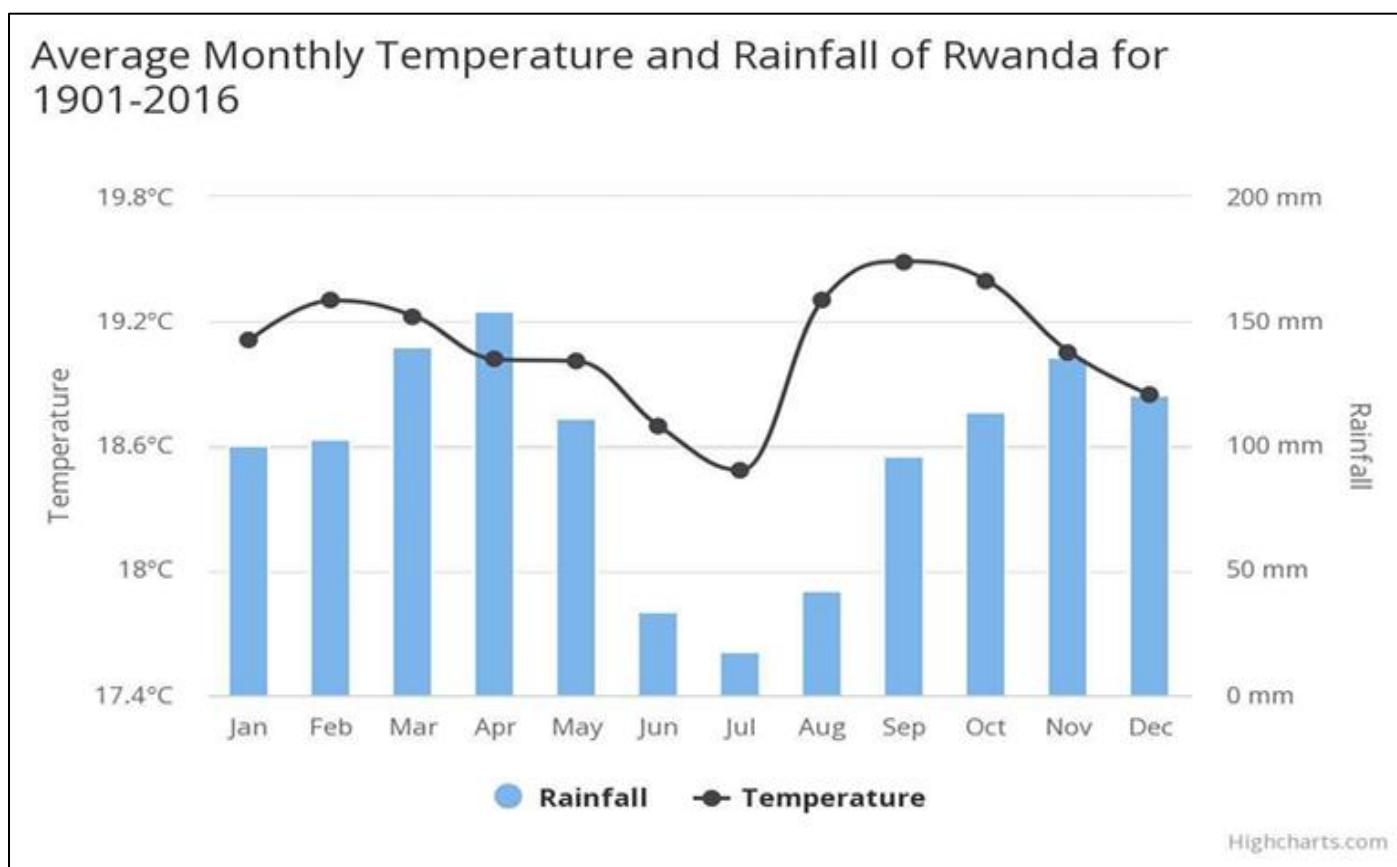


Fig 11 Average Monthly Temperature of Rwanda up to 2016.

Source: <https://climateknowledgeportal.worldbank.org/country/rwanda/climate-data-historical>

Basing on the above temperature data, the table below shows that there is no need of cooling during passive ventilation. As shown, the number of cooling degree days becomes less during passive than non-passive ventilation.

- Cooling Temperature: 26,3°C Heating Temperature: 14,7°C

Table 23 Climate Data & AC Hours

Month	Average Temperature (°C)	Humidity	Balance Point	Avg CDD	Max CDD	Max Cooling Hours	Cooling Hours	Balance Point Passive	Avg CDD	Max CDD	Max Cooling Hours	Cooling Hours
1	19,11	70,4	18	34,41	257,3	279	37	20	-27,59	195,3	279	0
2	19,3	66,5	18	36,4	232,4	252	39	20	-19,6	176,4	252	0
3	19,23	76,1	18	38,13	257,3	279	41	20	-23,87	195,3	279	0
4	19,02	78,4	18	30,6	249	270	33	20	-29,4	189	270	0
5	19,01	62,8	18	31,31	257,3	279	34	20	-30,69	195,3	279	0
6	18,7	49,9	18	21	249	270	23	20	-39	189	270	0
7	18,48	45,1	18	14,88	257,3	279	16	20	-47,12	195,3	279	0
8	19,31	46,4	18	40,61	257,3	279	44	20	-21,39	195,3	279	0
9	19,48	56	18	44,4	249	270	48	20	-15,6	189	270	0
10	19,4	74,9	18	43,4	257,3	279	47	20	-18,6	195,3	279	0
11	19,04	81,4	18	31,2	249	270	34	20	-28,8	189	270	0
12	18,85	78,1	18	26,35	257,3	279	29	20	-35,65	195,3	279	0

It was found that since the building has enough natural ventilation, there is no need of additional of non-Passive ventilation. This will as well reduce the power consumption hence reduction of electricity bill as shown in the table below:

Cooling Density: 10,6 Meter / kW Cooling COP new AC System 5 kW Cooling / kW Power Balance Point with Air Conditioning 18°C Balance Point without Air Conditioning: 15°C.

Table 24 AC Retrofit Scenario

Month	Average Temperature	Average Cooling Degree Days	Total Air Conditioned Area	Cooling Hours	1	No Passive Ventilation (kWh) (With Acs)	With Passive Ventilation (With Natural Resources)
				Cooling Load (kW)	Electrical Load (kW)		
1	19,11	34,41	4593	434	87	647	-
2	19,3	36,4	4593	434	87	685	-
3	19,23	38,13	4593	434	87	717	-
4	19,02	30,6	4593	434	87	576	-
5	19,01	31,31	4593	434	87	589	-
6	18,7	21	4593	434	87	395	-
7	18,48	14,88	4593	434	87	280	-
8	19,31	40,61	4593	434	87	764	-
9	19,48	44,4	4593	434	87	835	-
10	19,4	43,4	4593	434	87	816	-
11	19,04	31,2	4593	434	87	587	-
12	18,85	26,35	4593	434	87	496	-

➤ *Motor Survey*

During the audit, it was found that the building have got some motors that are used I the following : Pumping Domestic water into the building, sewage circulation for aerobic treatment system as well as two elevators.

• *Domestic Water Pump:*

All energy related to domestic water use is due to a small pump that is used to fill a water tank at the top of the building. The exact power rating of the pump could not be determined, but considering the pipe size, building height and flow rate for such a system, the pump motor is estimated to be 0.27 kW. The facility manager said that the pump operates when needed, which was estimated to be about 3 hours per day.

• *The Following Parameters were Assumed:*

Assumed Building «height: 30 meters Assumed Flow Rate 1,5 M³ / Hour Shaft Efficiency 0,6 Pump Power= (1 m3/h) (1000 kg/m3) (9.81 m/s²) (10 m) / (3.6 106) / Pump Effiency = 0,271699994kW.

• *Sewage Circulation Pump:*

All sewage from the building is piped to a sump located outside the building. According to the facility manager, the sewage sump is part of some sort of aerobic treatment system with a pump that circulates the sewage. The power rating for the sewage pump could not be determined due to the confined space it is mounted within. However, the power rating of the pump motor power has been estimated at 3 kW given the application and motor size. The pump is estimated to run about 4 hours each day.

• *Elevators:*

The Building has got two elevators whose power was determined by taking power measurements at their electricity supply as follows and they are estimated to run about 16 hrs. each day.

Table 25 Elevators Electrical Supply Measurements Electrical Measurements

Power Measurements	Phase A	Phase B	Phase C
Voltage	160	194	193
Amperage	19,3	20,1	18,7
kVA	3,088	3,8994	3,6091
Total Power (kW)		10,5965	

➤ *Plug Loads in the 4th Floor Offices*

Table 26 Plug-in Loads

Equipment	Qty	Watts	Assume d Diversity Factors	Actual load	%ge
Desktop Computers	10	200	0,5	1000	36%
Laptop Computers	10	40	0,5	200	7%
Monitors	20	50	0,5	500	18%
Laser Printers	10	1100	0,1	1100	39%

Total				2800	
Floor Area	191,63				
Plug-in Load Power Intensity (M²/W)	0,0684375 (ie Floor Area/Total Load)				
Area Class	Fraction			Power Density	
All	0,000			0,0000	
Atrium	0,000			0,0000	
Circulation	0,100			0,6844	
Lavatory	0,100			0,6844	
Lifts	0,000			0,0000	
Office	1,000			0,0684	
Stairs	0,000			0,0000	
Storage	0,000			0,0000	

➤ *Measurements Taken as the Supply to the Offices*

Table 27 Electrical Measurements Taken as the Supply to the Offices

Phase A		Phase B		Phase C		Power
Volts	Amps	Volts	Amps	Volts	Amps	
160	19,3	194	20,1	193	18,7	10.597

Table 28 Building Area Operational Hrs

Area Description	Schedule ID	Area Diversity (M ²)	Hours	Hours	Hours/Weekend	Power Density (watt/m ²)	Load (w)	Hours	Total Energy 100% Operational (kWhs)
			/ Day	/ Weekday				/ Week	
Storage_General	_Weekday_Plus_After_Hours	333	0	0	0	0	0	0	78,0
Stairs_Main	_Weekday_Plus_After_Hours	50	0	0	0	0	0	0	78,0
Stairs_Corner	_Weekday_Normal	50	0,1	0,9	4,5	1,8	0	0	46,8
Office_General	_Weekday_Normal	329	0	0	0	0	0,068438	4808	46,8
Office_Window_Perimeter	_Weekday_Normal	297	0	0	0	0	0,068438	4338	46,8
Circulation_General	_Weekday_Plus_After_Hours	234	0	0	0	0	0,684375	342	78,0
Circulation_Atrium	_Weekday_Plus_After_Hours	156	0	0	0	0	0,684375	228	78,0
Lifts_Main	_Weekday_Plus_After_Hours	13	0	0	0	0	0	0	78,0
Lavatory_SW_Corners	_Weekday_Plus_After_Hours	20	0	0	0	0	0,684375	29	78,0
Atrium_Atrium	_None	100	0	0	0	0	0	0	0,0
Stairs_Main	_Weekday_Plus_After_Hours	50	0	0	0	0	0	0	78,0
Storage_Strong_Room	_Utility_Low	125	1	0,5	2,5	5	0	0	3,0
Stairs_Corner	_Weekday_Plus_After_Hours	50	1	15	75	30	0	0	78,0
Office_General	_Weekday_Normal	345	0,1	0,9	4,5	1,8	0,068438	5038	46,8
Office_Window_Perimeter	_Weekday_Normal	359	1	9	45	18	0,068438	5251	46,8
Office_Executive / Meeting	_Weekday_Normal	37	0,05	0,45	2,25	0,9	0,068438	542	46,8
Office_Executive / Meeting	_Weekday_Normal	30	0,6	5,4	27	10,8	0,068438	443	46,8
Storage_General	_Utility_Low	2	0	0	0	0	0	0	2,8
Circulation_General	_Weekday_Plus_After_Hours	47	0	0	0	0	0,684375	69	78,0
Circulation_Atrium	_Weekday_Plus_After_Hours	156	0	0	0	0	0,684375	228	78,0
Lifts_Main	_Weekday_Plus_After_Hours	13	0	0	0	0	0	0	78,0
Utility_Electrical	_Utility_Low	25	1	0,5	2,5	60	0	0	8,5
Lavatory_SW_Corners	_Weekday_Plus_After_Hours	20	1	15	75	30	0,684375	29	78,0
Atrium_Atrium	_None	100	0	0	0	0	0	0	0,0
Stairs_Main	_Weekday_Plus_After_Hours	50	0	0	0	0	0	0	78,0
Stairs_Corner	_Weekday_Plus_After_Hours	50	0	0	0	0	0	0	78,0
Office_General	_Weekday_Normal	493	0	0	0	0	0,068438	7209	46,8
Office_Window_Perimeter	_Weekday_Normal	297	0	0	0	0	0,068438	4338	46,8
Office_Executive / Meeting	_Weekday_Normal	38	0	0	0	0	0,068438	560	46,8
									1424

Office_Executive / Meeting	_Weekday_Normal	48	0	0	0	0	0,068438	703	46,8	1787
Storage_General	_Utility_Low	2	0	0	0	0	0	0	2,8	0
Stairs_Main	_Weekday_Plus_After_Hours	25	1	15	75	30	0	0	78,0	0
Circulation_General	_Weekday_Plus_After_Hours	7	1	15	75	30	0,684375	11	78,0	46
Circulation_Atrium	_Weekday_Plus_After_Hours	156	0,1	1,5	7,5	3	0,684375	228	78,0	968
Lifts_Main	_Weekday_Plus_After_Hours	13	0	0	0	0	0	0	78,0	0
Lavatory_SW_Corners	_Weekday_Plus_After_Hours	20	0	0	0	0	0,684375	29	78,0	124
Atrium_Atrium	_None	100	0	0	0	0	0	0	0,0	0
Stairs_Main	_Weekday_Plus_After_Hours	50	0	0	0	0	0	0	78,0	0
Stairs_Corner	_Weekday_Plus_After_Hours	50	0	0	0	0	0	0	78,0	0
Office_General	_Weekday_Normal	433	0	0	0	0	0,068438	6324	46,8	16087
Office_Window_Perimeter	_Weekday_Normal	309	0	0	0	0	0,068438	4521	46,8	11500
Circulation_General	_Weekday_Plus_After_Hours	48	0	0	0	0	0,684375	70	78,0	296
Office_General	_Weekday_Plus_After_Hours	63	1	15	75	30	0,068438	913	78,0	3872
Circulation_Atrium	_Weekday_Plus_After_Hours	156	1	15	75	30	0,684375	228	78,0	968
Lifts_Main	_Weekday_Plus_After_Hours	13	0,1	1,5	7,5	3	0	0	78,0	0
Lavatory_SW_Corners	_Weekday_Plus_After_Hours	20	0	0	0	0	0,684375	29	78,0	124
Circulation_General	_Weekday_Plus_After_Hours	18	0	0	0	0	0,684375	26	78,0	108
Atrium_Atrium	_None	100	0	0	0	0	0	0	0,0	0
Stairs_Main	_Weekday_Plus_After_Hours	50	0	0	0	0	0	0	78,0	0
Stairs_Corner	_Weekday_Plus_After_Hours	25	0	0	0	0	0	0	78,0	0
Office_General	_Weekday_Normal	348	0	0	0	0	0,068438	5086	46,8	12938
Office_Window_Perimeter	_Weekday_Normal	250	0	0	0	0	0,068438	3653	46,8	9293
Office_Executive / Meeting	_Weekday_Normal	39	1	9	45	18	0,068438	565	46,8	1438
Lifts_Main	_Weekday_Plus_After_Hours	13	1	15	75	30	0	0	78,0	0
Circulation_General	_Weekday_Plus_After_Hours	226	0,1	1,5	7,5	3	0,684375	331	78,0	1402
Circulation_Atrium	_Weekday_Plus_After_Hours	156	0	0	0	0	0,684375	228	78,0	968
Lifts_Main	_Weekday_Plus_After_Hours	13	0	0	0	0	0	0	78,0	0
Lavatory_SW_Corners	_Weekday_Plus_After_Hours	20	0	0	0	0	0,684375	29	78,0	124
Atrium_Atrium	_None	100	0	0	0	0	0	0	0,0	0
Stairs_Main	_Weekday_Plus_After_Hours	50	0	0	0	0	0	0	78,0	0
Stairs_Corner	_Weekday_Plus_After_Hours	25	0	0	0	0	0	0	78,0	0
Office_General	_Weekday_Normal	425	0	0	0	0	0,068438	6213	46,8	15806
Office_Window_Perimeter	_Weekday_Normal	359	1	9	45	18	0,068438	5251	46,8	13358
Office_Executive / Meeting	_Weekday_Normal	43	0,1	0,9	4,5	1,8	0,068438	628	46,8	1597
Lavatory_SW_Corners	_Weekday_Plus_After_Hours	100	0	0	0	0	0,684375	146	78,0	620
TOTAL		7741								180095

CHAPTER SIX

CONCLUSION AND RECOMMENDATIONS

- Losses in electrical power systems have become a serious problem to utilities worldwide. Amidst the escalating global crisis for energy, the attention of utilities has shifted towards reduction of losses. The economic, financial and social consequences of power system losses are being gradually understood. As such, utilities and countries as a whole are devising various measures to arrest losses in electrical power systems. However, an initial and essential step towards reduction of losses is accurately estimating losses.
- Losses in electricity distribution represent dominant part in the overall power system losses. From the survey taken in two Municipalities with batch of MV/LV Distribution Transformers, it was found that the LV Distribution losses are around 10%.
- Since the overall losses were estimated to be 15% considering the estimated Peak loss, this means that all other losses including Transmission and generation constitute about 5%
- In any efforts to arrest losses, it is of paramount importance that the losses are estimated accurately. It is a pre-requisite before developing strategies to counter losses. It is required to segregate distribution losses to identify the losses at different levels.
- As discussed above, although there are opportunities for energy efficiency measures, these measures will have a low impact on reducing the current utility bill. However, if the energy efficiency opportunities for the building are considered in the right context, there is a case for implementation.
- From the temperature data given, it has been realised that most of the buildings can use Passive ventilation to make the comfortability of the occupants and this not only reduce the Greenhouse gas emissions but also saves on the electricity bill hence advantageous to the Building owners.
- Most of the electricity Consumers have got low power factor which contributes to the distribution Losses.
- The Single-phase extended Distribution Lines were constructed hence contributing to the serious load Imbalances in the network.
- In order to identify the real losses in the network, there is a need to segregate them in different Levels i.e. transmission and Distribution.
- It is recommended to install SMART meters at all Distribution nodes as to identify the energy distributed from those nodes.
- It is recommended to carry out Phase Balancing on distribution transformers.
- It is recommended to apply the incentives to the customers in order to rectify their Poor Power Factor.

REFERENCES

- [1]. Article *in* Engineer - Journal of the Institution of Engineers, Sri Lanka . July 2019. <https://www.researchgate.net/publication/334431852>
- [2]. Electrical Energy Audit guidelines by SURUHANJAYA TENAGA (ENERGY COMMISSION) No. 12, Jalan Tun Hussein, Precinct 2, 62100 Putrajaya, Malaysia. ISBN 978-967-13778-6-4 ST Publication No. : ST(P) 16/09/2016
- [3]. World Bank Climate change knowledge Portal <https://climateknowledgeportal.worldbank.org/country/rwanda/climate-data-historical>
- [4]. International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181 Vol. 2 Issue 8, August – 2013.

ANNEX A: WORKING HRS OF DIFFERENT AREAS

		Pre-Retrofit		Post-Retrofit - Daytiming & Occupancy Sensors							
		Weekday	Weekend	Weekday	Weekend	Weekday	Weekend				
Area Description	Area a (m ²)	Schedule	Hours	Schedule	Hours	Schedule	Hours	Meters / Fixture	Total Fixtures	Watts/ Meter	
General	333	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	30	Building_Weekday_Full	120	120	13	27	0
Main	50	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	30	Building_Weekday_Normal	45	Building_Weekend_Normal	18	17	3
Corner	50	Building_Weekday_Normal	45	Building_Weekend_Normal	18	Building_Weekday_Normal	45	Building_Weekend_Normal	18	16,7	3
General	329	Building_Weekday_Normal	45	Building_Weekend_Normal	18	Building_Weekday_Normal	45	Building_Weekend_Normal	18	2,3	143
Window Perimeter	297	Building_Weekday_Normal	45	Building_Weekend_Normal	18	Building_Weekday_Normal	45	Building_Weekend_Normal	18	2,3	129
General	234	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	30	Building_Weekday_Normal	45	Building_Weekend_Normal	18	2,3	102
Atrium	156	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	30	Building_Weekday_Normal	45	Building_Weekend_Normal	18	2,3	68
Main	13	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	30	Building_Weekday_Normal	45	Building_Weekend_Normal	18	2,3	5
SW_Corners	20	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	30	Building_Weekday_Plus_After_Hours	75	Building_Weekday_Plus_After_Hours	75	10,0	2
Atrium	100	Building_None	0	Building_None	0	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	30	0	0
Main	50	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	30	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	30	17	3
Strong_Room	125	Building_Utility_Low	2,5	Building_Utility_Low	5	Building_Utility_Low	2,5	Building_Utility_Low	5	13	10
Corner	50	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	30	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	30	17	3
General	345	Building_Weekday_Normal	45	Building_Weekend_Normal	18	Building_Weekday_Normal	45	Building_Weekend_Normal	18	2	150
Window Perimeter	359	Building_Weekday_Normal	45	Building_Weekend_Normal	18	Building_Weekday_Normal	45	Building_Weekend_Normal	18	2	156
Executive/ Meeting	37	Building_Weekday_Normal	45	Building_Weekend_Normal	18				2	16	0,0684375

Executive e/ Meeting	30	Building_Weekday_Normal	45	Building_Weekend_Normal	18					2	13	0,0684375
General	2	Building_Utility_Low	2,5	Building_Utility_Low	2,5	Building_Utility_High	10			13	0	0
General	46,9375	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	30	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	30	2	20	0,684375
Atrium	156	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	30	Building_Weekday_Normal	45	Building_Weekend_Normal	18	2	68	0,684375
Main	13	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	30	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	30	2	5	0
Electrical	25	Building_Utility_Low	2,5	S	60	Building_Utility_Medium	5	Building_Utility_Medium	10	13	2	0
SW_Corners	20	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	30	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	30	10	2	0,684375
Atrium	100	Building_None	0	Building_None	0	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	30	0	0	0
Main	50	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	30	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	30	17	3	0
Corner	50	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	30	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	30	17	3	0
General	493	Building_Weekday_Normal	45	Building_Weekend_Normal	18	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	30	2	215	0,0684375
Window_Perimeter	297	Building_Weekday_Normal	45	Building_Weekend_Normal	18	Building_Weekday_Normal	45	Building_Weekend_Normal	18	2	129	0,0684375
Executive e/ Meeting	38	Building_Weekday_Normal	45	Building_Weekend_Normal	18					2	17	0,0684375
Executive e/ Meeting	48	Building_Weekday_Normal	45	Building_Weekend_Normal	18					2	21	0,0684375
General	2	Building_Utility_Low	2,5	Building_Utility_Low	2,5	Building_Utility_High	10			13	0	0
Main	25	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	30	Building_Weekday_Full	120	Building_Weekend_Full	48	17	2	0
General	7,4375	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	30	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	30	2	3	0,684375
Atrium	156	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	30	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	30	2	68	0,684375
Main	13	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	30	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	30	2	5	0
SW_Corners	20	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	30	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	30	10	2	0,684375

Atrium	100	Building_None	0	Building_None	0	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	30	0	0	0
Main	50	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	30	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	30	17	3	0
Corner	50	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	30	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	30	17	3	0
General	433	Building_Weekday_Normal	45	Building_Weekend_Normal	18	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	30	2	188	0,0684375
Window Perimeter	309	Building_Weekday_Normal	45	Building_Weekend_Normal	18	Building_Weekday_Plus_After_Hours	45	Building_Weekend_Normal	18	2	135	0,0684375
General	47,75	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	30	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	30	2	21	0,684375
General	63	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	30	Building_Weekday_Plus_After_Hours	45	Building_Weekend_Normal	18	2	27	0,0684375
Atrium	156	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	30	Building_Weekday_Plus_After_Hours	45	Building_Weekend_Normal	18	2	68	0,684375
Main	13	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	30	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	30	2	5	0
SW_Corners	20	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	30	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	30	10	2	0,684375
General	18	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	30	Building_Weekday_Plus_After_Hours	45	Building_Weekend_Normal	18	2	8	0,684375
Atrium	100	Building_None	0	Building_None	0	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	30	0	0	0
Main	50	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	30	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	30	17	3	0
Corner	25	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	30	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	30	17	2	0
General	348	Building_Weekday_Normal	45	Building_Weekend_Normal	18	Building_Weekday_Plus_After_Hours	45	Building_Weekend_Normal	18	2	151	0,0684375
Window Perimeter	250	Building_Weekday_Normal	45	Building_Weekend_Normal	18	Building_Weekday_Plus_After_Hours	45	Building_Weekend_Normal	18	2	109	0,0684375
Executive/ Meeting	39	Building_Weekday_Normal	45	Building_Weekend_Normal	18					2	17	0,0684375
Main	13	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	30	Building_Weekday_Plus_After_Hours	45	Building_Weekend_Normal	18	2	5	0
General	226	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	30	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	30	2	98	0,684375
Atrium	156	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	30	Building_Weekday_Plus_After_Hours	45	Building_Weekend_Normal	18	2	68	0,684375

Main	13	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	75	Building_Weekday_Plus_After_Hours	30	2	5	0
SW_Corners	20	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	30	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	30	10 2 0,684375
Atrium	100	Building_None	0	Building_None	0	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	30 0 0	0
Main	50	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	30	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	30 17 3	0
Corner	25	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	30	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	30 17 2	0
General	425	Building_Weekday_Normal	45	Building_Weekend_Normal	18	Building_Weekday_Normal	45	Building_Weekend_Normal	18 2 185	0,0684375
Window_Perimeter	359	Building_Weekday_Normal	45	Building_Weekend_Normal	18	Building_Weekday_Normal	45	Building_Weekend_Normal	18 2 156	0,0684375
Executive/ Meeting	43	Building_Weekday_Normal	45	Building_Weekend_Normal	18				2 19	0,0684375
SW_Corners	100	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	30	Building_Weekday_Normal	45	Building_Weekend_Normal	18 10 10	0,684375
General	2	Building_Utility_Low	2,5	Building_Utility_Low	2,5	Building_Utility_High	10		13 0	0
General	33	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	30	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	30 2 15	0,684375
Atrium	156	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	30	Building_Weekday_Normal	45	Building_Weekend_Normal	18 2 68	0,684375
Main	13	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	30	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	30 2 5	0
SW_Corners	20	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	30	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	30 10 2	0,684375
Atrium	50	Building_None	0	Building_None	0	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	30 0 0	0
General	214	Building_Utility_Low	2,5	Building_Utility_Low	5	Building_Utility_Low	12,5	Building_Utility_Low	5 13 17	0
Main	50	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	60	Building_Utility_Low	12,5	Building_Utility_Low	5 17 3	0
General	50	Building_Weekday_Normal	45	Building_Weekend_Normal	18	Building_Weekday_Normal	45	Building_Weekend_Normal	18 2 22	0,0684375
Atrium	100	Building_Weekday_Normal	45	Building_Weekend_Normal	18	Building_Weekday_Normal	45	Building_Weekend_Normal	18 0 0	0
General	210	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	30	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	30 2 92	0,684375
Atrium	156	Building_None	0	Building_None	0	Building_Utility_Low	2,5	Building_Utility_Low	2,5 2 68	0,684375
		Building_Weekday		Building_Weekend		Building_Weekday				

Main	13	ay_Plus_After_Hours	75	nd_Plus_After_Hours	30	y_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	30	2	5	0
SW_Corners	20	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	30	Building_Weekday_Plus_After_Hours	75	Building_Weekend_Plus_After_Hours	30	10	2	0,684375

ANNEX B: LIGHT FIXTURES

Floor		Area	De-	Hours	Hours	Hours	#	Lamps	Power/	Balla	(W)	Total	Hours /	Total	Total
			Rating	Hours /	Weekend				Fixture	Lamp(Power		Week	Energy	Energy
			Fact	Day	/ Weekday		(#)	Fixture	W)	(W)				100% Operational	50% Operational
B	Storage	332,5	1	15	75	30	13	1	1	25	26	325	105	1.779	890
G	Stairs	50	1	15	75	30	17	1	1	25	26	433	105	2.373	1.186
G	Stairs	50	1	9	45	18	17	1	1	25	26	433	63	1.424	712
G	Office	329,062	1	9	45	18	2	3	3	53	62	143	63	468	234
G	Office	296,875	1	9	45	18	2	3	3	53	62	143	63	468	234
G	Circulation	234	1	15	75	30	2	3	3	53	62	143	105	781	390
G	Circulation	156,25	1	15	75	30	2	3	3	53	62	143	105	781	390
G	Lifts	12,5	1	15	75	30	2	1	1	25	26	60	105	327	164
G	Lavatory	20	1	15	75	30	2	1	1	25	26	52	105	285	142
1	Atrium	100	1	0	0	0	0	0	0	0	0	0	0	0	-
1	Stairs	50	1	15	75	30	3	1	1	25	26	78	105	427	214
B	Storage	125	1	0,5	2,5	5	10	1	1	25	26	260	7,5	102	51
1	Stairs	50	1	15	75	30	3	1	1	25	26	78	105	427	214
1	Office	344,812	1	9	45	18	150	3	3	53	62	9.29	63	30.534	15.267
1	Office	359,375	1	9	45	18	156	3	3	53	62	9.68	63	31.823	15.912
1	Office	37,125	1	9	45	18	16	3	3	53	62	1.00	63	3.287	1.644
G	Office	30,3125	1	9	45	18	13	3	3	53	62	817	63	2.684	1.342
1	Storage	2	1	0,5	2,5	2,5	0	1	1	25	26	4	5	1	1
1	Circulation	46,9375	1	15	75	30	20	3	3	53	62	1.26	105	6.927	3.464
1	Circulation	156,25	1	15	75	30	68	3	3	53	62	4.21	105	23.060	11.530
1	Lifts	12,5	1	15	75	30	5	1	1	25	26	141	105	774	387
B	Utility	25	1	0,5	2,5	60	2	1	1	25	26	52	62,5	169	85
1	Lavatory	20	1	15	75	30	2	1	1	25	26	52	105	285	142
2	Atrium	100	1	0	0	0	0	0	0	0	0	0	0	-	-
2	Stairs	50	1	15	75	30	3	1	1	25	26	78	105	427	214
2	Stairs	50	1	15	75	30	3	1	1	25	26	78	105	427	214
2	Office	493,375	1	9	45	18	215	3	3	53	62	13.3	63	43.689	21.845
2	Office	296,875	1	9	45	18	129	3	3	53	62	8.00	63	26.289	13.144
2	Office	38,3125	1	9	45	18	17	3	3	53	62	1.03	63	3.393	1.696
3	Office	48,0875	1	9	45	18	21	3	3	53	62	1.29	63	4.258	2.129
2	Storage	2	1	0,5	2,5	2,5	0	1	1	25	26	4	5	1	1
B	Stairs	25	1	15	75	30	2	1	1	25	26	39	105	214	107
2	Circulation	7,4375	1	15	75	30	3	3	3	53	62	200	105	1.098	549
2	Circulation	156,25	1	15	75	30	68	3	3	53	62	4.21	105	23.060	11.530
2	Lifts	12,5	1	15	75	30	5	1	1	25	26	141	105	774	387
2	Lavatory	20	1	15	75	30	2	1	1	25	26	52	105	285	142
3	Atrium	100	1	0	0	0	0	0	0	0	0	0	0	-	-
3	Stairs	50	1	15	75	30	3	1	1	25	26	78	105	427	214
3	Stairs	50	1	15	75	30	3	1	1	25	26	78	105	427	214

3	Office	432,787 5	1	9	45	18	188	3	3	53	62	11.6 66	63	38.324	19.162
3	Office	309,375	1	9	45	18	135	3	3	53	62	8.34 0	63	27.396	13.698
3	Circulati on	47,75	1	15	75	30	21	3	3	53	62	1.28 7	105	7.047	3.524
B	Office	62,5	1	15	75	30	27	3	3	53	62	1.68 5	105	9.224	4.612
3	Circulati on	156,25	1	15	75	30	68	3	3	53	62	4.21 2	105	23.060	11.530
3	Lifts	12,5	1	15	75	30	5	1	1	25	26	141	105	774	387
3	Lavator y	20	1	15	75	30	2	1	1	25	26	52	105	285	142
B	Circulati on	17,5	1	15	75	30	8	3	3	53	62	472	105	2.583	1.291
4	Atrium	100	1	0	0	0	0	0	0	0	0	0	0	-	-
4	Stairs	50	1	15	75	30	3	1	1	25	26	78	105	427	214
4	Stairs	25	1	15	75	30	2	1	1	25	26	39	105	214	107
4	Office	348,060 938	1	9	45	18	151	3	3	53	62	9.38 3	63	30.822	15.411
4	Office	250	1	9	45	18	109	3	3	53	62	6.73 9	63	22.138	11.069
4	Office	38,6734 375	1	9	45	18	17	3	3	53	62	1.04 3	63	3.425	1.712
B	Lifts	12,5	1	15	75	30	5	1	1	25	26	141	105	774	387
4	Circulati on	226,265 625	1	15	75	30	98	3	3	53	62	6.09 9	105	33.394	16.697
4	Circulati on	156,25	1	15	75	30	68	3	3	53	62	4.21 2	105	23.060	11.530
4	Lifts	12,5	1	15	75	30	5	1	1	25	26	141	105	774	387
4	Lavator y	20	1	15	75	30	2	1	1	25	26	52	105	285	142
5	Atrium	100	1	0	0	0	0	0	0	0	0	0	0	-	-
5	Stairs	50	1	15	75	30	3	1	1	25	26	78	105	427	214
5	Stairs	25	1	15	75	30	2	1	1	25	26	39	105	214	107
5	Office	425,214 281	1	9	45	18	185	3	3	53	62	11.4 62	63	37.654	18.827
5	Office	359,375	1	9	45	18	156	3	3	53	62	9.68 8	63	31.823	15.912
5	Office	42,9509 375	1	9	45	18	19	3	3	53	62	1.15 8	63	3.803	1.902
B	Lavator y	100	1	15	75	30	10	1	1	25	26	260	105	1.424	712
5	Storage	2	1	0.5	2,5	2,5	0	1	1	25	26	4	5	1	1
5	Circulati on	33,4597 813	1	15	75	30	15	3	3	53	62	902	105	4.938	2.469
5	Circulati on	156,25	1	15	75	30	68	3	3	53	62	4.21 2	105	23.060	11.530
5	Lifts	12,5	1	15	75	30	5	1	1	25	26	141	105	774	387
5	Lavator y	20	1	15	75	30	2	1	1	25	26	52	105	285	142
6	Atrium	50	1	0	0	0	0	0	0	0	0	0	0	-	-
6	Storage	214,062 5	1	0.5	12,5	5	17	1	1	25	26	445	17,5	406	203
6	Stairs	50	1	15	375	60	3	1	1	25	26	78	435	1.769	885
6	Office	50	1	9	45	18	22	3	3	53	62	1.34 8	63	4.428	2.214
6	Circulati on	210,468 75	1	15	75	30	92	3	3	53	62	5.67 4	105	31.062	15.531
6	Circulati on	156,25	1	0	0	0	68	3	3	53	62	4.21 2	0	-	-
6	Lifts	12,5	1	15	75	30	5	1	1	25	26	141	105	774	387

ANNEX C: TRANSFORMER LOAD IMBALANCES

Collection Point Name	Frozen Date	Data Item Name	I max	%ge Imbalance
ACOTE M T N NGENDA201609005301	2020-05-05	(Curve) Phase-A Current(A)	16,3	41,7%
		(Curve) Phase-B Current(A)	15,2	
		(Curve) Phase-C Current(A)	28,2	
	2020-05-06	(Curve) Phase-A Current(A)	16,1	48,9%
		(Curve) Phase-B Current(A)	12,2	
		(Curve) Phase-C Current(A)	27,9	
	2020-05-07	(Curve) Phase-A Current(A)	17,7	38,5%
		(Curve) Phase-B Current(A)	15,3	
		(Curve) Phase-C Current(A)	28,3	
	2020-05-08	(Curve) Phase-A Current(A)	22,1	28,1%
		(Curve) Phase-B Current(A)	19,1	
		(Curve) Phase-C Current(A)	30,7	
AKILLAH MAYANGE201609005695	2020-05-05	(Curve) Phase-A Current(A)	21,16	40,4%
		(Curve) Phase-B Current(A)	33,8	
		(Curve) Phase-C Current(A)	48,32	
	2020-05-06	(Curve) Phase-A Current(A)	18,48	56,2%
		(Curve) Phase-B Current(A)	29,04	
		(Curve) Phase-C Current(A)	51,64	
	2020-05-07	(Curve) Phase-A Current(A)	22,32	55,9%
		(Curve) Phase-B Current(A)	33,72	43,3%
		(Curve) Phase-C Current(A)	60,64	
	2020-05-08	(Curve) Phase-A Current(A)	21,52	
ARRETE CENTRE201609005303		(Curve) Phase-B Current(A)	33	22,5%
		(Curve) Phase-C Current(A)	49,84	
	2020-05-09	(Curve) Phase-A Current(A)	28,16	
		(Curve) Phase-B Current(A)	29,8	57,8%
		(Curve) Phase-C Current(A)	40	
	2020-05-10	(Curve) Phase-A Current(A)	15,76	
		(Curve) Phase-B Current(A)	49,04	
		(Curve) Phase-C Current(A)	47,32	
	2020-05-11	(Curve) Phase-A Current(A)	20,04	63,1%
		(Curve) Phase-B Current(A)	80,44	
		(Curve) Phase-C Current(A)	47,48	

BATIMA CENTRE201609003726	2020-05-10	(Curve) Phase-A Current(A)	84,7	18,5%
		(Curve) Phase-B Current(A)	62,9	
		(Curve) Phase-C Current(A)	83,8	
	2020-05-11	(Curve) Phase-A Current(A)	54,4	10,3%
		(Curve) Phase-B Current(A)	48,1	
		(Curve) Phase-C Current(A)	58,4	
	2020-05-05	(Curve) Phase-A Current(A)	119,1	7,8%
		(Curve) Phase-B Current(A)	131	
		(Curve) Phase-C Current(A)	137,5	
	2020-05-06	(Curve) Phase-A Current(A)	208,1	0,8%
		(Curve) Phase-B Current(A)	206	
		(Curve) Phase-C Current(A)	205	
BENIMPUHWE201609000689	2020-05-05	(Curve) Phase-A Current(A)	18,226	22,2%
		(Curve) Phase-B Current(A)	26,582	
		(Curve) Phase-C Current(A)	25,466	
	2020-05-06	(Curve) Phase-A Current(A)	17,954	21,4%
		(Curve) Phase-B Current(A)	26,463	
		(Curve) Phase-C Current(A)	24,067	
	2020-05-07	(Curve) Phase-A Current(A)	18,932	19,0%
		(Curve) Phase-B Current(A)	26,599	
		(Curve) Phase-C Current(A)	24,566	
	2020-05-08	(Curve) Phase-A Current(A)	19,194	17,8%
		(Curve) Phase-B Current(A)	26,472	
		(Curve) Phase-C Current(A)	24,369	
	2020-05-09	(Curve) Phase-A Current(A)	19,754	14,6%
		(Curve) Phase-B Current(A)	24,736	
		(Curve) Phase-C Current(A)	24,864	
	2020-05-10	(Curve) Phase-A Current(A)	15,872	134,9%
		(Curve) Phase-B Current(A)	130,141	
		(Curve) Phase-C Current(A)	20,182	
	2020-05-11	(Curve) Phase-A Current(A)	18,143	27,1%
		(Curve) Phase-B Current(A)	30,523	
		(Curve) Phase-C Current(A)	25,979	
BIDUDU201609000845	2020-05-05	(Curve) Phase-A Current(A)	14,892	0,7%
		(Curve) Phase-B Current(A)	15,087	
		(Curve) Phase-C Current(A)	14,952	
	2020-05-06	(Curve) Phase-A Current(A)	14,595	2,0%
		(Curve) Phase-B Current(A)	15,101	
		(Curve) Phase-C Current(A)	14,963	
	2020-05-07	(Curve) Phase-A Current(A)	15,497	2,9%
		(Curve) Phase-B Current(A)	15,01	
		(Curve) Phase-C Current(A)	15,856	
	2020-05-08	(Curve) Phase-A Current(A)	15,22	1,6%
		(Curve) Phase-B Current(A)	15,682	
		(Curve) Phase-C Current(A)	15,508	
	2020-05-09	(Curve) Phase-A Current(A)	21,461	1,2%
		(Curve) Phase-B Current(A)	21,211	
		(Curve) Phase-C Current(A)	21,717	
	2020-05-11	(Curve) Phase-A Current(A)	34,452	77,1%
		(Curve) Phase-B Current(A)	14,809	
		(Curve) Phase-C Current(A)	70,939	
BUGANDE201609000682	2020-05-05	(Curve) Phase-A Current(A)	49,848	2,1%
		(Curve) Phase-B Current(A)	49,112	
		(Curve) Phase-C Current(A)	47,956	
	2020-05-06	(Curve) Phase-A Current(A)	115,759	8,2%
		(Curve) Phase-B Current(A)	130,13	

		(Curve) Phase-C Current(A)	114,976	
2020-05-07		(Curve) Phase-A Current(A)	94,236	49,3%
		(Curve) Phase-B Current(A)	38,593	
		(Curve) Phase-C Current(A)	95,606	
2020-05-08		(Curve) Phase-A Current(A)	50,639	
		(Curve) Phase-B Current(A)	48,902	3,0%
		(Curve) Phase-C Current(A)	47,982	
2020-05-09		(Curve) Phase-A Current(A)	30,767	
		(Curve) Phase-B Current(A)	33,8	8,4%
		(Curve) Phase-C Current(A)	29,003	
2020-05-10		(Curve) Phase-A Current(A)	96,147	
		(Curve) Phase-B Current(A)	71,446	18,3%
		(Curve) Phase-C Current(A)	94,764	
2020-05-11		(Curve) Phase-A Current(A)	29,371	
		(Curve) Phase-B Current(A)	29,448	
		(Curve) Phase-C Current(A)	31,907	5,5%