

Clinical Significance of Peak Expiratory Flow Rate Monitoring in Asthma and Occupational Lung Disorders

Aslin Johnsi L.¹; Dr. Santhi Appavu²; Dr. Sheeba Chellappan³

¹MSc (N), Associate Professor / PhD Research Scholar, Medical Surgical Nursing, Ave Maria College of Nursing, Attoor.

²MSc (N), PhD (N), Principal/Research Guide, Medical Surgical Nursing, Christian College of Nursing, Neyyoor.

³MSc (N), PhD (N), Professor/Research Co-Guide, Medical Surgical Nursing, Christian College of Nursing, Neyyoor.

Publication Date: 2026/01/02

Abstract: Chronic respiratory illnesses, particularly asthma and chronic obstructive pulmonary disease (COPD), along with occupational lung diseases such as byssinosis, silicosis, and dust-induced airway disorders, constitute a significant global public health burden, with a disproportionate impact on low- and middle-income countries. Early identification of airway obstruction and timely intervention are critical in preventing progressive and irreversible lung damage. The peak flow meter (PFM), a portable instrument used to assess peak expiratory flow rate (PEFR), provides a practical and cost-effective approach for monitoring airway function outside specialized pulmonary laboratories. While spirometry remains the gold standard for pulmonary function testing, serial PEFR monitoring is particularly useful in resource-constrained settings, workplaces, and community-based screening programs. This review outlines the physiological basis of PEFR, measurement techniques, and interpretation; examines its clinical utility in asthma and occupational lung diseases; evaluates advantages and limitations; and highlights the essential role of nursing professionals in patient education, monitoring, and preventive care. Evidence from occupational health research is synthesized to support the use of PEFR in workplace surveillance. Future perspectives, including digital peak flow meters, mobile health integration, and implications for occupational health policy, are also discussed.

Keywords: Peak Flow Meter, PEFR, Asthma, Occupational Lung Disease, Byssinosis, Silicosis, Nursing, Respiratory Monitoring, Workplace Health.

How to Cite: Aslin Johnsi L.; Dr. Santhi Appavu; Dr. Sheeba Chellappan (2025) Clinical Significance of Peak Expiratory Flow Rate Monitoring in Asthma and Occupational Lung Disorders. *International Journal of Innovative Science and Research Technology*, 10(12), 2146-2151. <https://doi.org/10.38124/ijisrt/25dec1534>

I. INTRODUCTION

Conditions affecting the respiratory system contribute substantially to illness and mortality worldwide. Global estimates indicate that asthma affects hundreds of millions of individuals, while chronic obstructive pulmonary disease (COPD) ranks among the leading causes of death globally¹. In parallel, occupational lung diseases resulting from the inhalation of dusts, fibers, and chemical irritants continue to represent a significant yet frequently under-recognised public health concern. This burden is particularly evident in industrial, mining, textile, and construction sectors, especially within low- and middle-income countries, where regulatory enforcement and occupational health surveillance systems are often insufficient.

Assessment of airflow limitation and routine monitoring of lung function are fundamental components in the management of both chronic and occupational respiratory disorders. Although spirometry offers comprehensive pulmonary function measurements, including forced expiratory volume in one second (FEV₁) and forced vital capacity (FVC), its widespread use is constrained by cost, the need for trained personnel, and equipment availability. In this setting, the peak flow meter (PFM), which measures peak expiratory flow rate (PEFR), represents a practical and effective alternative. Its portability, low cost, and ease of use make it particularly suitable for community health services, home-based self-monitoring, and occupational health surveillance programs.

Moreover, nurses are ideally positioned to lead PEFR-based monitoring, educating patients/workers, ensuring

correct technique, interpreting trends, and advocating for early interventions. This article reviews the physiology and technique of PEFR measurement, presents evidence for its use in asthma and occupational lung diseases, discusses limitations and challenges, and underscores the nursing role and future perspectives.

II. PHYSIOLOGY OF EXPIRATORY FLOW AND THE RATIONALE FOR PEFR MONITORING

Airflow through the airways is determined by multiple factors: airway diameter, airway wall tone, lung elastic recoil, respiratory muscle strength, and lung compliance. During forced expiration from full lung inflation, maximal expiratory flow (i.e., peak flow) occurs within the first milliseconds. PEFR largely reflects flow through large airways and is dependent on airway calibre and muscular effort.

Pathophysiological changes that narrow or obstruct airways, for instance, bronchial smooth muscle contraction (bronchospasm), mucosal edema, increased mucus, airway wall thickening, fibrosis, or particulate obstruction, lower the maximal flow rate, thereby reducing PEFR. In asthma, reversible bronchoconstriction and inflammation produce characteristic PEFR variability. In occupational lung diseases (e.g., dust-induced airway injury, pneumoconiosis, and byssinosis), repeated exposure may lead to persistent airway narrowing, small airway involvement, and progressive airflow limitation. Serial PEFR monitoring can detect early airflow compromise before overt clinical symptoms or radiological changes become evident, making it an excellent screening and surveillance tool.

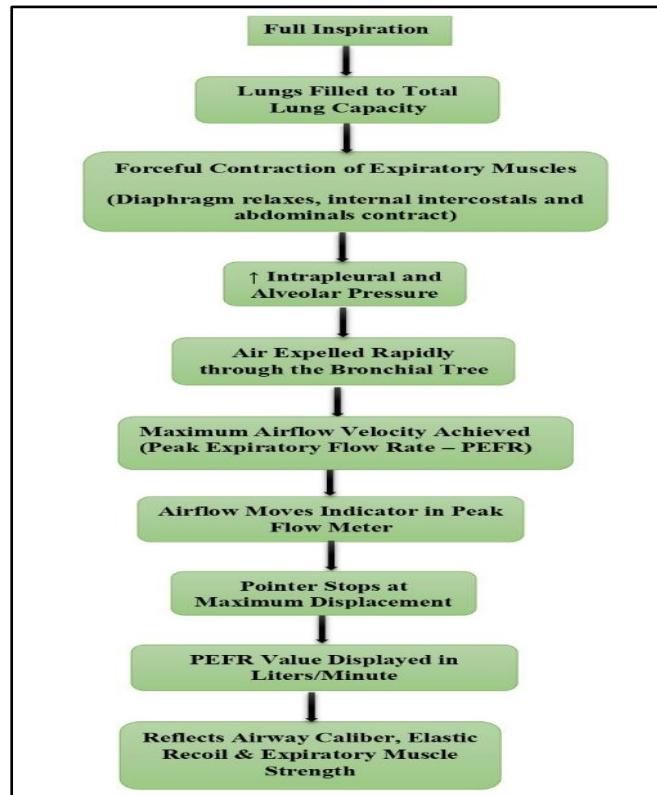


Fig 1 Physiological Basis of Peak Flow Rate Assessment

➤ Peak Flow Meter: Device Types, Range, and Standardization

• Device Types and Ranges

PFMs broadly fall into two categories:

✓ Mechanical Spring- or Vane-Based Meters:

Economical, simple, widely used, require no power source.

✓ Digital or Electronic PFMs:

Incorporate flow sensors, may record and store data, and allow Bluetooth or USB download useful for telemonitoring and workplace surveillance.

✓ Measurement Ranges Differ:

Low-range meters (≈ 50 – 390 L/min) are suitable for children or severely impaired adults; standard-range meters (≈ 60 – 800 L/min) are used for most adolescents and adults.

➤ Standardization and Accuracy

Despite simplicity, PEFR values are subject to device-to-device variability. International lung function standards recommend calibrated, validated PFMs and consistent use of the same device for serial monitoring. For occupational applications, devices capable of storing readings (digital meters) are preferred to reduce data recording errors.²

➤ Technique of Using a Peak Flow Meter

Accurate PEFR measurement requires correct technique and consistent practice. Nursing professionals must educate and periodically reassess patients to ensure proper usage [5].

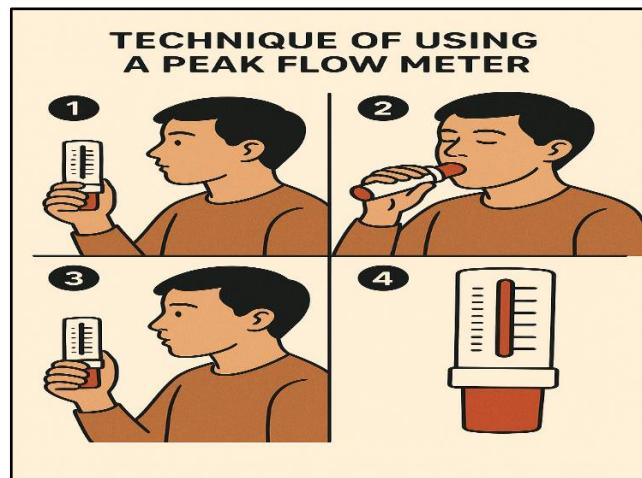


Fig 2 Steps for Using a Peak Flow Meter

• Step-by-Step Procedure

- ✓ Preparation: Ensure the marker is at zero, and the device is clean.
- ✓ Positioning: Stand upright; remove gum or food from mouth.
- ✓ Inhalation: Take a deep breath to TLC.
- ✓ Mouthpiece Placement: Seal lips around the mouthpiece without tongue interference.

- ✓ Forced Exhalation: Blow hard and fast in a single effort.
- ✓ Reading and Recording: Note the highest value on the scale.
- ✓ Repetition: Perform three attempts; record the highest value.
- ✓ Timing: Measure at the same time each day (morning and evening).
- ✓ Documentation: Record in a chart or digital log for review.
- ✓ Interpretation: Personal Best, Predicted Values, and Zone Strategy

➤ *Personal Best vs. Predicted Norms*

Given the wide inter-individual variability determined by age, sex, height, and ethnicity, many clinicians favour a “personal best” approach: PEFR values recorded when the individual is asymptomatic and under stable control are used

as baseline. Subsequent PEFRs are compared as a percentage of personal best.

Alternatively, predicted PEFR values are calculated using reference equations derived from large population studies; however, these may not always account for local anthropometry or ethnic variations, which can limit their reliability in many populations.

III. ZONE-BASED ACTION PLAN

➤ *Interpretation of Results*

Interpretation relies on the patient-specific reference PEFR, determined over 2–3 weeks during stable asthma control, using the widely applied “traffic light” system:

Table 1 Interpretation of Peak Flow Rate Zones

Zone	PEFR (% of Personal Best)	Interpretation	Recommended Action
Green	80–100%	Good control, open airways	Continue treatment and monitoring
Yellow	50–80%	Airway narrowing, possible worsening	Adjust medication, reassess triggers
Red	<50%	Severe obstruction, possible asthma attack	Use rescue medication, seek urgent care

➤ *Example Calculation:*

If a patient’s personal best PEFR is 400 L/min, then:

- Green Zone = 320–400 L/min (80–100%)
- Yellow Zone = 200–320 L/min (50–80%)
- Red Zone = <200 L/min (<50%)

Patients in the yellow or red zones should take immediate action according to their Asthma Action Plan, typically involving short-acting bronchodilator use, medical review, or emergency intervention if symptoms persist⁷.

Consistent interpretation of PEFR trends enables early detection of airway obstruction, minimizes exacerbations, and supports personalized asthma management.

➤ *Clinical Application: Asthma and COPD*

PEFR monitoring has long been central to asthma management:

- Facilitates early diagnosis -PEFR variability, reversibility after bronchodilator.
- Supports disease control -daily or twice-daily monitoring helps detect nocturnal or diurnal variations, early deterioration, and need for treatment escalation.
- Guides therapy - response to bronchodilators or inhaled corticosteroids can be monitored by changes in PEFR.
- Empowers self-management - patients maintain PEFR logs, recognize warning signs, and follow pre-designed action plans.

In COPD, although spirometry remains preferred, PEFR can offer a simple method for home-based follow-up, particularly when spirometry is not available. Studies combining PEFR with symptom questionnaires have demonstrated reasonable sensitivity for detecting obstructive

airway disease in primary care settings when spirometry is unavailable.³

➤ *Application in Occupational Lung Diseases*

While PFM are widely used in asthma, their role in occupational lung diseases is equally important but often underutilized. Work-related inhalation of dusts, fumes, fibers, and chemicals can cause a spectrum of respiratory disorders, including:

- Occupational asthma (e.g., due to isocyanates, solvents, metal fumes)
- Byssinosis (cotton, flax, hemp dust)
- Silicosis/pneumoconiosis (silica, mineral dust, coal dust)
- Chronic dust-induced COPD / bronchitis
- Irritant-induced airway disease / reactive airway dysfunction

➤ *Evidence Supporting PEFR Use in Occupational Settings*

- Regular assessment of peak expiratory flow (PEFR) during working periods and away from the workplace plays a crucial role in diagnosing occupational asthma. Evidence from earlier reviews indicates that PEFR monitoring should be incorporated in the evaluation of all suspected cases, although it does not fully substitute for specific inhalation challenge tests.⁴
- In a prospective study of 14 workers suspected of occupational asthma, serial PEFR data over 15 days successfully documented work-related airflow changes that correlated with exposures; such data proved helpful for confirming occupational asthma.⁵
- A systematic review of 19 studies found that serial peak expiratory flow (PEFR) monitoring was achievable in 61% of participants and demonstrated satisfactory sensitivity and specificity for diagnosing occupational

asthma when the collected data were of sufficient quality.⁶

- In cement dust-exposed construction workers, cross-sectional assessment demonstrated significantly reduced PEFR compared with non-exposed controls, confirming the adverse effect of dust exposure on airway flow.⁷
- Quarry workers exposed to high particulate levels in sandstone mining showed a significant decline in PEFR correlated with exposure duration and particulate concentrations; long-term exposure (≈ 20 years) was associated with reductions suggestive of early obstructive disease commonly preceding clinical silicosis.⁸

These studies underscore PEFR's value as a screening and monitoring tool in various dust-exposed industries, including stone quarries, cement and construction works, textiles, and manufacturing.

➤ *Practical Implementation in Occupational Health*

Given these evidences, serial PEFR monitoring can be integrated into workplace health programs as follows:

- Pre-placement screening: Baseline PEFR before employment in high-risk dusty environments.
- Periodic surveillance: Monthly or quarterly PEFR assessments to detect early airflow decline.
- Pre- and post-shift measurements: Compare PEFR before work, mid-shift, post-shift, and several hours after shift to detect acute effects and cumulative burden.
- Longitudinal monitoring with exposure data: Coupling PEFR trends with exposure assessment (dust measurements, duration, PPE use) to guide preventive interventions.
- Fitness-for-work and compensation evaluation: Because PEFR reflects airway flow limitation relevant for occupational fitness, sustained reductions may trigger job reassignment, exposure reduction, or further diagnostic evaluation (spirometry, imaging).

➤ *Advantages of PEFR Monitoring in Occupational Settings*

- Affordability & accessibility- PFM are inexpensive compared to spirometers; no power supply or complex calibration needed.
- Portability - devices can be taken into remote worksites, mines, quarries, textile mills, or agricultural fields.
- Minimal training requirements - after brief instruction, workers can self-monitor PEFR.
- Frequent monitoring possible - daily or multiple times per day.
- Immediate feedback - results available at the point of care/work.
- Facilitates large-scale screening for epidemiological surveillance and occupational health programmes.
- Supports preventive action - early detection can prompt dust control, job rotation, PPE use, or removal from harmful exposure.

IV. LIMITATIONS, CHALLENGES, AND CONSIDERATIONS

➤ *Despite its Advantages, PEFR Monitoring Has Several Limitations:*

- Effort- and technique-dependent: Inconsistent or improper maneuvers can yield unreliable data. This is particularly challenging for workers with limited literacy or motivation.
- Large-airway bias: PEFR reflects predominantly large airway flow; small airway disease or early parenchymal changes may not be detected.
- Variability among devices: Different brands or poorly calibrated meters may give inconsistent readings; using the same device consistently is essential.
- Compliance issues: For occupational monitoring, ensuring adherence to frequent measurements (pre-shift, post-shift, weekends) over extended periods can be difficult.
- Confounding factors: Smoking, environmental pollution, concurrent respiratory infections, or non-occupational exposures may influence PEFR independently of workplace exposures.
- Not a definitive diagnostic tool: In occupational asthma, Specific inhalation challenge testing remains the benchmark for diagnosis. PEFR serves as a useful screening or adjunctive method, not a definitive replacement.⁴

To maximise validity, careful planning, thorough training, consistent device use, and accurate data record-keeping are essential. Nursing professionals play a pivotal role in these aspects.

➤ *The Role of Nursing Professionals in PEFR-Based Monitoring*

Nurses in hospitals, community health centres, occupational health clinics, and industrial settings are ideally positioned to lead PEFR-based respiratory surveillance and management efforts. Their roles include:

• *Education and Training*

- ✓ Teaching correct PFM technique and performing return demonstrations;
- ✓ Educating patients/workers about PEFR significance, zones, and self-management plans;
- ✓ Counselling on inhaler use (asthma) and protective measures (occupational).

• *Monitoring and Documentation*

- ✓ Distributing PFM for home or workplace use;
- ✓ Maintaining PEFR, symptom, and exposure diaries;
- ✓ Supervising periodic re-training to ensure technique fidelity;
- ✓ Encouraging adherence to monitoring schedules.

- *Interpretation and Action Planning*

- ✓ Reviewing serial PEFR charts and identifying declining trends;
- ✓ Coordinating with occupational health or physicians when sustained reductions occur;
- ✓ Advising exposure reduction, PPE use, job modification, or further investigation;
- ✓ Developing individualized action plans (for asthma) or exposure prevention plans (for occupational lung disease).

- *Workplace Health Advocacy*

- ✓ Participating in workplace health and safety committees;
- ✓ Advocating for engineering controls (ventilation, dust suppression), provision of respirators/masks;
- ✓ Facilitating periodic health screening camps among workers;
- ✓ Educating coworkers and management about respiratory risks and preventive practices.

Nursing involvement ensures continuity of monitoring, empowers workers/patients, and bridges clinical care with occupational health and preventive strategies.

V. RECOMMENDATIONS FOR IMPLEMENTATION AND BEST PRACTICES

For effective use of PEFR monitoring in asthma and occupational lung disease, the following practices are recommended:

- Use the same PFM device for serial monitoring across years.
- Train and certify all users (patients/workers) and periodically re-evaluate technique.
- Maintain well-structured PEFR diaries with date, time, shift, exposure level, symptoms, medication, PPE use, and other relevant factors.
- Perform pre-shift and post-shift PEFR during workplace surveillance; additionally, include measurements on rest days or holidays to assess recovery.
- Define personal best PEFR during symptom-free stable periods.
- Use zone-based action plans (green/yellow/red) tailored to clinical or occupational context.
- On sustained reductions or red-zone entries, refer for spirometry, radiological imaging, or specialist evaluation.
- Employ occupational health measures: dust control, ventilation, PPE, job rotation, and exposure limitation.
- Leverage digital PFMs and mobile health platforms where possible, especially for large workforces or remote settings.
- Integrate PEFR monitoring into routine occupational health policy, medical surveillance, and worker safety regulations.

VI. FUTURE DIRECTIONS

Advances in technology and public health policy are likely to enhance the role of PEFR monitoring:

- Digital PFMs with data logging and wireless connectivity - facilitate remote monitoring, longitudinal data collection, and real-time alerts.
- Mobile health (mHealth) integration and tele-nursing - enables remote counseling, exposure tracking, and adherence reinforcement.
- Combination with environmental monitoring - linking PEFR data with real-time dust/fume sensors could enable proactive exposure control.
- Large-scale occupational health surveillance programs - especially in developing countries, to detect occupational lung disease early and implement preventive measures.
- Research on PEFR decline thresholds - establishment of cut-off values predictive of irreversible lung impairment or high-risk exposure, to guide early intervention.
- Policy advocacy and inclusion in occupational health regulations -making serial PEFR monitoring mandatory for workers in high-risk industries.

Such developments can shift respiratory care from reactive to preventive models, reducing disease burden, preserving lung function, and improving quality of life among workers and communities.

VII. CONCLUSION

The peak flow meter is a simple, low-cost, portable instrument that offers significant clinical value beyond asthma management. Its utility extends to occupational lung diseases, enabling early detection of airflow limitation, monitoring of dust- and irritant-induced respiratory impairment, and facilitating timely preventive or therapeutic interventions. In resource-constrained environments, workplace settings, and remote areas where spirometry is unavailable or impractical, PEFR monitoring becomes a vital tool.

Nurses, whether in clinical, community, or occupational health roles, are essential to the successful implementation of PEFR-based surveillance. Their responsibilities span education, monitoring, data management, trend analysis, referral, and advocacy for worker safety.

With growing industrialisation, increasing awareness of occupational health, and advances in portable technology, serial PEFR monitoring integrated with preventive occupational health policies can substantially reduce the burden of both asthma and work-related lung diseases.

REFERENCES

- [1]. Global Initiative for Asthma (GINA). *Global strategy for asthma management and prevention: 2024 update*. Fontana (WI): Global Initiative for Asthma; 2024.
- [2]. Reeb G, et al. Occupational/work-related asthma medical treatment guideline: peak expiratory flow

rates (PEFR). *J Occup Environ Med.* 2016;58(6):e215–e220.

[3]. Bandyopadhyay D, Sharma S, Biswas D. Peak flow meter with a questionnaire and mini-spirometer to help detect asthma and COPD in real-life clinical practice. *NPJ Prim Care Respir Med.* 2017; 27:29. doi:10.1038/s41533-017-0036-8.

[4]. Moore VC, Jaakkola MS, Burge PS. Use of serial measurements of peak flow in the diagnosis of occupational asthma. *Occup Environ Med.* 2009;66(7):416–422.

[5]. New Jersey Department of Health SENSOR Project. The use of portable peak flowmeters in the surveillance of occupational asthma. *Am J Ind Med.* 1991;19(2):199–206.

[6]. Moore VC, Jaakkola MS, Burge PS. A systematic review of serial peak expiratory flow measurements in the diagnosis of occupational asthma. *Ann Respir Med.* 2009;5(2):85–96.

[7]. Akter MM, Sarka CR, Zahid AZR. Effects of cement dust on peak expiratory flow rate among female cement dust-exposed construction workers. *J Rangpur Med Coll.* 2023;8(2):25–28. doi:10.3329/jrmpmc. v8i2.69322.

[8]. Singh SK, Chowdhary GR, Purohit G. Assessment of impact of high particulate concentration on peak expiratory flow rate of lungs of sandstone quarry workers. *Int J Environ Res Public Health.* 2006;3(4):355–359. doi:10.3390/ijerph2006030046.

[9]. Deshmukh SA, Nigudgi SR, Reddy S. Peak expiratory flow rate among workers engaged in stone crushing units surrounding Gulbarga city. *Int J Community Med Public Health.* 2015;2(4):547–552. doi:10.18203/2394-6040.ijcmph20150680.

[10]. Ebeling TR, Hankinson JL, Lyman M, Petsonk EL, Short SR, Viola JO. Investigation of work-related respiratory symptoms using portable battery-operated belt spirometry. *NIOSH Tech Rep.* 1994; 94:101–110.

[11]. Cockcroft DW, et al. Use of peak flow meters in the monitoring of airflow limitation: principles and limitations. *J Occup Med.* 1989;31(5):395–401.

[12]. Nunn AJ, Gregg I. Outcome of patients with borderline airflow obstruction: comparison of peak flow meter and spirometry. *Thorax.* 1989;44(2):96–100.

[13]. Burge PS, et al. Peak flow rate records in the diagnosis of occupational asthma due to isocyanates. *Am Rev Respir Dis.* 1991;143(6):1316–1321.

[14]. Pellegrino R, Viegi G, Brusasco V, et al. Interpretative strategies for lung function tests. *Eur Respir J.* 2005;26(5):948–968.

[15]. Viegi G, Paoletti P, Renzetti G, et al. Peak expiratory flow standards in Italian adults aged 25–84 years. *Eur Respir J.* 2004;23(3):389–396.

[16]. Hnizdo E, Murray J. Cumulative exposure to silica dust and risk of chronic airway obstruction. *Occup Environ Med.* 1998;55(3):234–240.

[17]. American Thoracic Society. Standardization of spirometry: 1994 update. *Am J Respir Crit Care Med.* 1995;152(3):1107–1136.

[18]. American College of Occupational and Environmental Medicine (ACOEM). *Occupational respiratory disease guidelines.* Elk Grove Village (IL): ACOEM; 2022.