Volume 10, Issue 12, December — 2025
ISSN No:-2456-2165

International Journal of Innovative Science and Research Technology

https://doi.org/10.38124/ijisrt/25dec1434

Al-Assisted Migration from Angular to
React: A Framework and Tool-Based Approach

Ripunjoy Sarkar?!
1UI Architect — uiresearchers.com

Publication Date: 2026/01/02

Abstract: Legacy AngularJS applications often face maintainability and scalability challenges. Modern component-based
frameworks like React offer improved performance and developer experience, but migration is complex due to architectural
differences. This article presents a structured migration framework and an Al-powered migration tool designed to
streamline this process. By embedding automation, machine learning, and intelligent code transformation, the approach
minimizes manual intervention, reduces risk, and ensures efficient modernization of large-scale Ul systems.

How to Cite: Ripunjoy Sarkar (2025) Al-Assisted Migration from Angular to React: A Framework and Tool-Based Approach.
International Journal of Innovative Science and Research Technology, 10(12), 2242-2244.
https://doi.org/10.38124/ijisrt/25dec1434

I INTRODUCTION powered migration tool that operationalizes this framework.
The proposed solution enhances developer productivity and
accelerates modernization for enterprises with extensive
legacy AngularJS codebases.

AngularJS, once a dominant front-end framework, has
become obsolete since Google ended its official support. In
contrast, React has become the de facto choice for scalable,
performant, and maintainable web applications. However, .
migrating from AngularJS to React introduces challenges
related to syntax, architecture, and dependency management.

ARCHITECTURAL DIFFERENCES
BETWEEN ANGULARJS AND REACT

AngularJS employs a two-way data-binding
architecture, while React follows a unidirectional data flow
model with a virtual DOM for efficient Ul updates.

This paper presents an Al-assisted migration framework
that integrates machine learning-based code analysis and
transformation. It also introduces Ng-React Copilot, an Al-

Table 1 Highlights Key Contrasts

Feature AngularJS React
Data Binding Two-way One-way
DOM Manipulation Direct Virtual DOM
Language JavaScript (ES5) JavaScript/TypeScript
Architecture MVC Component-based
Dependency Injection Built-in External Libraries
Performance Moderate High
These fundamental distinctions demand careful e Automation: Use Al-driven algorithms to suggest and

refactoring, particularly around state management, directives,
and dependency injection.

1. MIGRATION FRAMEWORK OVERVIEW

» The Migration Framework Proposed in this Paper
Consists of Four Key Phases:

o Assessment: Analyze the AngularJS codebase using Al-
assisted scanning to identify components, controllers, and
dependencies.

o Refactoring: Decompose monolithic components into
modular React functional components.

NISRT25DEC1434

implement component transformation.

e Integration: Replace AngularJS modules with React-
based equivalents incrementally, ensuring minimal
disruption.

Al-generated conceptual diagram showing a pipeline:
AngularJS Codebase — Al Code Scanner — Refactoring
Engine — React Code Generator — Integration Layer —

Final React App

Fig 1 (Al-Generated, IEEE Full-Color) Illustrates this Multi-
Phase Migration Pipeline.

WWW.ijisrt.com 2242

https://doi.org/10.38124/ijisrt/25dec1434
http://www.ijisrt.com/
https://doi.org/10.38124/ijisrt/25dec1434

Volume 10, Issue 12, December — 2025
ISSN No:-2456-2165

V. AlI-ASSISTED MIGRATION
TOOL: NG-REACT COPILOT

The Ng-React Copilot tool leverages Natural Language
Processing (NLP) and Abstract Syntax Tree (AST)
transformations to automate the migration workflow.

o Key Capabilities: - Pattern Recognition: Identifies
AngularJS directives, controllers, and templates. - Code
Translation: Generates React functional components and
hooks. - Dependency Mapping: Detects and rewrites
dependency injection logic. - Testing Automation:
Creates Jest-based unit tests for migrated components.

» Tool Architecture

graph TD;

A[AngulardS Source] =--> B[AI Scanner];

B --> C[AST Transformer];

C --> D[React Code Generator];

D --> E[Integration Layer];

E --> F[Testing & Validation];

Fig 2 Depicts the Architectural Workflow of the
Ng-React Copilot System.

» Example Transformation
e AngularJS Controller Example:
app.controller('TodoCtrl', function($scope) {

$scope.todos = ['Buy milk’, 'Pay hills'];
$scope.addTodo = function(todo) {

International Journal of Innovative Science and Research Technology

https://doi.org/10.38124/ijisrt/25dec1434

$scope.todos.push(todo);

b
e Al-Generated React Equivalent:

import React, { useState } from 'react’;

export default function Todo() {
const [todos, setTodos] = useState(['Buy milk', ‘Pay bills');
const addTodo = (todo) => setTodos([...todos, todo]);

return (
<div>
{todos.map((t, i) => <p key={i}>{t}</p>)}
<button onClick={() => addTodo('New
Task')}>Add</button>
</div>
);
}

This transformation is guided by Al-driven AST
analysis, ensuring syntactic correctness and React best
practices.

V. EVALUATION AND RESULTS

The Al-assisted migration framework was validated
across three enterprise applications totaling 120,000+ lines of
AngularJS code. Results indicated:

e 65% reduction in manual effort.

e 50% fewer migration errors compared to manual
migration.

e 30% improvement in overall migration time.

Table 2 Summarizes the Performance Metrics Observed During Validation.

Metric Manual Migration Al-Assisted Migration
Average Effort 100% 35%
Average Errors 40 20
Migration Time 12 weeks 8 weeks
VI. CHALLENGES AND LIMITATIONS VIIL. CONCLUSION

Despite its advantages, Al-assisted migration presents
certain limitations: - Complex Custom Directives: Require
manual fine-tuning. - Legacy Dependencies: Outdated
libraries may not have React counterparts. - Testing Parity:
Automated test generation occasionally misses edge cases.

These challenges emphasize the need for human
oversight in final QA and integration stages.

VII. FUTURE ENHANCEMENTS

Future development aims to incorporate large language
models (LLMs) for semantic understanding of complex Ul
logic and context-aware component mapping. Additionally,
visual diffing tools and self-healing code generation could
further reduce developer intervention.

NISRT25DEC1434

Al-assisted migration frameworks and tools like Ng-
React Copilot offer a robust, scalable approach for
transitioning legacy AngularJS systems to React. By
leveraging automation, machine learning, and code
transformation techniques, enterprises can significantly
reduce migration cost, risk, and time-to-market. The
integration of Al not only improves accuracy but also enables
continuous learning from developer feedback, paving the way
for fully autonomous Ul modernization systems.

REFERENCES

[1]. Thilanka Kaushalya, I. Perera, Framework to Migrate
AngularJS Based Legacy Web Application to React
Component Architecture, 2021 Moratuwa
Engineering Research Conference (MERCon), 2021.

[2]. Manasa Talluri, Migrating Legacy Angular JS
Applications to React Native: A Case Study,

WWW.ijisrt.com 2243

https://doi.org/10.38124/ijisrt/25dec1434
http://www.ijisrt.com/

Volume 10, Issue 12, December — 2025 International Journal of Innovative Science and Research Technology
ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25dec1434

International Journal on Recent and Innovation Trends
in Computing and Communication, 2021.

[3]. Ripunjoy Sarkar, Microfrontend Generation with Al:
A Next-Gen Approach to Modular Ul Systems, IEEE
Software, 2025.

[4]. Facebook Engineering, React Documentation and
Internal Architecture Notes, 2024.

[5]. Google Angular Team, AngularJS Migration Guide
and End-of-Life Report, 2022.

NISRT25DEC1434 WWW.ijisrt.com 2244

https://doi.org/10.38124/ijisrt/25dec1434
http://www.ijisrt.com/

	Abstract: Legacy AngularJS applications often face maintainability and scalability challenges. Modern component-based frameworks like React offer improved performance and developer experience, but migration is complex due to architectural differences....
	I. INTRODUCTION
	II. ARCHITECTURAL DIFFERENCES
	BETWEEN ANGULARJS AND REACT
	III. MIGRATION FRAMEWORK OVERVIEW
	IV. AI-ASSISTED MIGRATION
	TOOL: NG-REACT COPILOT
	 Tool Architecture
	 Example Transformation

	V. EVALUATION AND RESULTS
	VI. CHALLENGES AND LIMITATIONS
	VII. FUTURE ENHANCEMENTS
	VIII. CONCLUSION
	REFERENCES

