

Dentistry Detection by Artificial Intelligence

Ripunjoy Sarkar¹

¹uirerearchers.com

Publication Date: 2026/01/02

Abstract: The integration of Artificial Intelligence (AI) into dental diagnostics has emerged as a transformative force in modern dentistry. AI systems, particularly those based on deep learning, have demonstrated promising performance in early detection, classification, and diagnosis of dental diseases using a variety of imaging modalities, including intraoral radiographs, panoramic X-rays, and cone beam computed tomography (CBCT). This paper surveys recent advancements in AI-driven dental detection, compares algorithm performance against traditional clinical judgment, discusses applications in caries, periodontal disease, and other dental pathologies, and expounds on opportunities and limitations. The clinical potential, ethical concerns, and future challenges for routine integration are examined.

Keywords: Artificial Intelligence, Dentistry, Caries Detection, Dental Imaging, Deep Learning, Diagnostic Accuracy.

How to Cite: Ripunjoy Sarkar (2025) Dentistry Detection by Artificial Intelligence. *International Journal of Innovative Science and Research Technology*, 10(12), 2245-2247. <https://doi.org/10.38124/ijisrt/25dec1424>

I. INTRODUCTION

Over the past decade, Artificial Intelligence (AI) has revolutionized many sectors of healthcare, significantly influencing disease detection and patient management. Dentistry, with its heavy reliance on imaging and diagnostic interpretation, has become a natural application domain for AI systems. Traditional diagnostic procedures such as visual inspection and manual radiographic interpretation are prone to human variability, dependency on operator experience, and limitations in early pathology detection. AI, particularly convolutional neural networks (CNNs) and advanced machine learning techniques, provides the capability to analyze large volumes of imaging data with high precision and consistency, augmenting clinical decision making in both routine and complex cases. Recent systematic reviews indicate that AI algorithms often match or exceed clinician performance in identifying dental caries and other oral pathologies, highlighting AI's transformative potential in dental diagnostics. [Springer](#)

II. AI TECHNIQUES IN DENTAL IMAGE ANALYSIS

AI models for dental detection predominantly leverage deep learning frameworks that automatically learn hierarchical features from labeled datasets. CNNs have played a central role in this domain due to their efficacy in image classification and object detection. Researchers have extended CNN architectures with attention mechanisms and spatial enhancement modules to improve sensitivity to subtle radiographic features in dental images. [arXiv](#).

➤ Convolutional Neural Networks (CNNs)

CNNs extract spatial hierarchies of visual patterns and have been widely adopted for caries and lesion detection using bitewing and periapical radiographs. State-of-the-art CNN models, including ResNet variants and U-Net architectures, demonstrate high diagnostic precision in segmenting and classifying disease regions. [PubMed](#)

➤ Benchmark Datasets and Challenges

Efforts like the DENTEX challenge establish large, annotated panoramic X-ray datasets to benchmark abnormal tooth detection and classification. These curated datasets facilitate algorithm comparison and help advance generalizable detection models. [arXiv](#).

➤ CBCT and 3D Imaging

AI models applied to CBCT imaging achieve superior three-dimensional anatomical segmentation and detection accuracy for conditions such as periodontal bone loss, malocclusion classification, and lesion prediction, expanding beyond two-dimensional radiography. [arXiv](#).

III. PERFORMANCE EVALUATION AND CLINICAL EVIDENCE

AI systems have undergone extensive evaluation for diagnostic accuracy, sensitivity, specificity, and reliability when applied to dental images. A growing body of clinical and meta-analytic evidence supports their utility.

➤ Dental Caries Detection

Systematic reviews and meta-analyses report AI-based caries detection systems achieving high accuracy, frequently surpassing conventional interpretation. AI's pooled sensitivity and specificity for caries detection often exceed

85% and 90%, respectively, with some models achieving accuracy rates above 93%. *Nature*.

Clinical evaluations further demonstrate that deep learning models, such as architectures combining MobileNet-v3 and U-Net, can achieve diagnostic accuracy of 93.4% in intraoral image analysis, highlighting the practical viability of AI for real-time clinical screening. *SpringerLink*.

➤ *Multicondition Detection*

AI systems capable of multi-condition detection—simultaneously identifying caries, periapical lesions, calculus, marginal bone loss, and restorative margins—have shown high sensitivity and specificity across conditions, reinforcing AI's broad diagnostic capacity with diverse dental pathologies. *PubMed*

➤ *Cross-Population Performance*

Large-scale multinational studies indicate that AI systems trained on heterogeneous datasets generalize well across varying imaging qualities and demographic groups while achieving performance metrics comparable to or better than human experts, particularly in identifying periapical radiolucencies and missing teeth in panoramic radiographs. *arXiv*

IV. CLINICAL APPLICATIONS

AI-driven detection systems have significant implications across multiple domains of dental practice.

➤ *Diagnostic Support Tools*

AI serves as a diagnostic support tool to enhance clinician efficiency and accuracy, acting as a “second set of eyes” during radiographic evaluation. Such systems can reduce oversight, assist less experienced practitioners, and standardize diagnostic workflows. *PubMed*

➤ *Early Disease Detection*

Early detection of caries and periodontal disease remains a key preventative strategy in dentistry. AI models capable of identifying early radiolucent changes and subtle lesion contours promote earlier interventions, reducing disease progression and the need for invasive treatment. *Med & Health Sci Review*

➤ *Remote and Tele-Dental Applications*

AI algorithms trained on intraoral photographs and other non-invasive imaging modalities facilitate remote diagnostics, improving access to dental care in underserved regions and enabling preliminary screening outside traditional clinical settings. *PubMed*

V. CHALLENGES AND LIMITATIONS

Despite notable advances, substantial challenges remain in the widespread clinical adoption of AI in dentistry.

➤ *Data Quality and Standardization*

AI performance depends on large quantities of high-quality annotated data. Variability in imaging protocols,

patient demographics, and labeling standards may hinder generalizability and robustness. *Nature*

➤ *Ethical and Legal Considerations*

Issues of data privacy, algorithmic transparency, and regulatory compliance present ethical and legal hurdles for integrating AI into routine dental practice. Clear guidelines are needed to ensure patient confidentiality and mitigate liability for diagnostic oversights.

➤ *Clinical Integration*

Clinicians must interpret AI outputs within the context of comprehensive patient evaluation. AI should augment—rather than replace—clinical judgment, and dental professionals require training to effectively leverage AI tools. Regulatory frameworks and evidence-based validation are necessary prerequisites for routine use.

VI. FUTURE DIRECTIONS

Emerging research efforts aim to improve interpretability, enhance multimodal integration, and extend AI diagnostics into predictive analytics for personalized dental care. Integration of AI with electronic health records, wearables, and longitudinal oral health tracking offers opportunities for predictive risk modeling and tailored preventive strategies.

Furthermore, standardization of benchmarking datasets and collaborative consortiums may foster reproducibility and accelerate clinical validation.

VII. CONCLUSION

AI technologies have demonstrated substantial efficacy in dental disease detection, offering high diagnostic accuracy, improved workflow efficiency, and potential for early, non-invasive intervention. While technical, ethical, and regulatory challenges remain, thoughtful integration of AI into dental diagnostics promises to enhance the quality and accessibility of oral healthcare. As the field progresses, multidisciplinary collaboration will be pivotal to fully realize AI's benefits in clinical dentistry.

REFERENCES

- [1]. “Accuracy of artificial intelligence in caries detection: a systematic review and meta-analysis,” *Head & Face Medicine*, vol. 21, no. 24, Apr. 2025. Springer
- [2]. “Diagnostic Support in Dentistry Through Artificial Intelligence: A Systematic Review,” *PubMed*, 2025. *PubMed*
- [3]. “The Role of Artificial Intelligence in Early Detection of Dental Diseases: Current Trends and Future Prospects,” *Journal of Dental Science and Medicine*, Nov. 2024. Omics Online Publishing
- [4]. “Assessment of the Diagnostic Accuracy of Artificial Intelligence Software...,” *PubMed*, 2025. *PubMed*
- [5]. “Accuracy of AI-Assisted Caries Detection: ...,” *BMC Oral Health*, 2024. *SpringerLink*

- [6]. “Artificial Intelligence Methods in Detection of Oral Diseases on Pantomographic Images,” PubMed. PubMed
- [7]. I. E. Hamamci et al., “DENTEX: ... Panoramic X-rays,” arXiv, 2023. arXiv
- [8]. S. Sarwar & S. Jabin, “AI Techniques for Cone Beam Computed Tomography in Dentistry,” arXiv, 2023. arXiv
- [9]. S. Rezaie et al., “Improving Dental Diagnostics: Enhanced Convolution with Spatial Attention Mechanism,” arXiv, 2024.