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Abstract: Fourier series are fundamental analytical tools for representing periodic functions as infinite sums of sine and
cosine components. While their convergence properties for smooth functions are well established, many practical signals,
engineering systems, and physical models naturally give rise to piecewise smooth functions—functions that remain smooth
over subintervals but exhibit isolated discontinuities in the function or its derivatives. Such functions display a rich and
nontrivial convergence behavior, characterized by nonuniform convergence rates, localized oscillations near
discontinuities, overshoot phenomena, and slow decay of Fourier coefficients. This paper presents a comprehensive
investigation of the convergence behavior of Fourier series for piecewise smooth functions. The study integrates theoretical
analysis, convergence criteria, error characterization, and numerical demonstrations to examine how Fourier series
converge pointwise, uniformly, and in the mean-square sense under varying degrees of regularity. Particular emphasis is
placed on the Gibbs phenomenon, the role of jump discontinuities, endpoint smoothness, coefficient decay rates, and the
relationship between differentiability and convergence efficiency. Analytical results and graphical evaluations
demonstrate that convergence rates depend critically on function smoothness. For piecewise smooth functions, Fourier
coefficients decay proportionally to 1/n, while continuously differentiable functions exhibit a faster 1/n2 decay, and analytic
functions display exponential decay. In the presence of finite jump discontinuities, partial sums converge globally in the L2
sense but fail to converge uniformly, producing a persistent overshoot of approximately 8.94% near discontinuities.
Numerical experiments further reveal that although partial sums exhibit oscillatory behavior near jump points,
alternative summation techniques such as Fejér averaging and spectral smoothing can significantly suppress oscillations
and improve convergence. The results presented reinforce fundamental principles of Fourier analysis, clarify the intrinsic
limitations of classical Fourier approximations for non-smooth functions, and provide practical insights relevant to signal
processing, spectral methods for partial differential equations, and engineering system modeling.
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l. INTRODUCTION signals and models fall into this category, including square

waves, triangular waves, pulse trains, switching functions,

Fourier series occupy a central position in piecewise polynomial representations, and solutions to

mathematical analysis, physics, and engineering by enabling
periodic functions to be expressed as infinite sums of
orthogonal sine and cosine functions. This representation
underpins a wide range of applications, including signal and
image processing, heat conduction analysis, acoustics,
vibration modeling, quantum mechanics, and numerical
solutions of differential equations. Despite their extensive
use, a detailed understanding of Fourier series
convergence—particularly for piecewise smooth
functions—is essential for accurately interpreting and
applying Fourier-based methods.

A function is classified as piecewise smooth if it is
smooth within individual subintervals of its domain but may
exhibit a finite number of discontinuities in the function
itself or its derivatives. Many commonly encountered

UISRT25DEC1396

boundary-value problems involving material or geometric
discontinuities. For such functions, Fourier series do
converge, but the nature of this convergence differs
substantially from that observed for globally smooth
functions.

In particular, Fourier series of piecewise smooth
functions fail to converge uniformly at points of
discontinuity and instead exhibit localized oscillations
accompanied by overshoot near jump locations. This
behavior, known as the Gibbs phenomenon, is an inherent
feature of Fourier approximations and persists regardless of
the number of terms included in the partial sum.
Importantly, the magnitude of the overshoot does not
diminish with increasing series order, even though the
oscillations become increasingly localized.
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Understanding these convergence characteristics is of
significant practical importance. In signal processing,
nonuniform convergence can introduce ringing artifacts that
distort reconstructed signals. In numerical analysis,
especially in spectral methods for solving partial differential
equations, slow coefficient decay and boundary oscillations
can degrade accuracy and stability. In physical modeling,
particularly for wave propagation and diffusion problems,
discontinuities in material properties demand careful
interpretation of Fourier-based solutions.

This paper provides a detailed and systematic analysis
of Fourier series convergence for piecewise smooth
functions. Rather than assuming idealized smoothness, the
study focuses explicitly on realistic function classes that
include jump discontinuities and derivative discontinuities.
The analysis highlights how smoothness properties
influence convergence rates, error behavior, and oscillatory
structure in Fourier approximations.

The remainder of the paper is organized as follows.
Section 2 presents the mathematical foundations of Fourier
series and formal definitions of piecewise smooth functions.
Section 3 examines Fourier coefficient decay and truncation
error behavior. Section 4 analyzes pointwise, uniform, and
mean-square convergence. Section 5 explores the Gibbs
phenomenon and associated oscillatory effects. Section 6
presents numerical simulations  and graphical
demonstrations of convergence behavior. Section 7
discusses practical implications and applications across
science and engineering, and Section 8 concludes with a
summary of key findings and insights.

Figures are incorporated throughout the paper to
visually illustrate convergence trends, coefficient decay, and
oscillatory behavior, complementing the theoretical
analysis.

1. MATHEMATICAL BACKGROUND

Fourier series provide a method of representing a
periodic function as a weighted sum of sines and cosines.
For a function ( f(x) ) with period (2m), the Fourier series is
expressed as:

f(x) = ao/2 + 2 (a, cos(nx) + b, sin(nx)),n=1to o

Where

1 T
a, = ;J- f (x) cos(nx),dx, n=0,1,2,..
-1

1 T
b, = ;J- f (®)sin(nx),dx, n=1,2,..

Where (a,,) and (b,,) represent the amplitudes of the
cosine and sine components respectively.

These coefficients quantify the "energy" of the
function distributed across different frequencies. The
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behavior of these coefficients (how fast they decay and how
accurately they capture local structure) plays a defining role
in determining the convergence of the Fourier series.

For smooth functions, classical results state that the
Fourier series converges rapidly: the more differentiable the
function is, the faster its Fourier coefficients decrease. For
example, if a function has k continuous derivatives, the
Fourier coefficients decay roughly as:

[an], [ba| = 1/ kit
For analytic functions, the decay is even exponential.

However, piecewise smooth functions behave very
differently. These functions may be smooth in each
subregion but possess finite jump discontinuities at certain
points. While the Fourier coefficients still decay, they do so
at a substantially slower rate—approximately as:

jau, [ba] = 1 /n

This slower decay underlies the oscillatory structure of
partial sums and the emergence of the Gibbs phenomenon.
Because discontinuities inject high-frequency contributions,
the Fourier series cannot perfectly localize the
reconstruction at those points, leading to nonuniform
convergence patterns.

A. Definition of Piecewise Smooth Functions
A function f(x) defined on ([-r, ©]) is piecewise
smooth if:

» (f(x) ) is Continuously Differentiable on a Finite
Partition of the Interval.

» All Discontinuities are Finite Jump Discontinuities.

» The First Derivative Exists and is Piecewise Continuous.

Such functions satisfy Dirichlet’s conditions for
pointwise convergence of Fourier series. Specifically:

e At points where the function is continuous, the Fourier
series converges to f(x).

e At points where the function has a finite jump, the
Fourier series converges to the midpoint of the left and
right limits:

Su(x0) — (f(xo") + f(x0))/2

This mid-value convergence is essential in
understanding the behavior of Fourier approximations near
discontinuities.

B. Dirichlet’s Theorem and Convergence Criteria

Dirichlet’s theorem provides one of the foundational
results for convergence of Fourier series of piecewise
smooth functions. It states:

e If a function is piecewise monotonic and has a finite
number of extrema and discontinuities, the Fourier series
converges at every point.
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The convergence is not uniform due to localized
oscillations near discontinuities, but the series converges in
the L2 sense, meaning the total energy of the error
approaches zero as the number of terms increases.

This type of convergence is especially relevant in
engineering and physics, where energy norms often
determine system stability and accuracy.

C. Localization and Nonlocality of Fourier Basis

A defining feature of the Fourier basis is nonlocality.
Sine and cosine functions extend globally over the interval,
which means:

o Local discontinuities affect the entire Fourier spectrum.

o High-frequency components are required to approximate
sharp features.

e The partial sum at a point depends on values of the
function far from that point.

For smooth functions, nonlocality poses no issue. For
piecewise smooth ones, however, it creates overshoot and
ringing near discontinuities and slows convergence globally.
D. Partial Sums and Convolution with Dirichlet Kernel

The Nth partial sum of the Fourier series can be written
as:

Se(x) = (1/T[)Jf(t)D B(x —t)dt

Where (DB (x)) is the Dirichlet kernel:
Di(x) = X cos(kx), k =0 to n = (sin((nt"2)x)) / (2 sin(x/2))
» The Dirichlet Kernel has Two Important Features:

e |ts peak grows as n increases.
o It oscillates increasingly rapidly.

These oscillations directly cause the Gibbs
phenomenon.
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Because the kernel integrates globally, even a single
jump in f(t) influences S.(x) for all x. Despite this drawback,
partial sums remain fundamental tools for analysis and are
central to the convergence study presented in this paper.

E. Coefficient Decay Patterns for Piecewise Smooth
Functions
For piecewise smooth functions, Fourier coefficients
decay as:

lan| = 1/n
[bn| = 1/n

This decay rate is slow in comparison to smooth
functions where coefficients often decay as ( 1/n2) or faster.

» The Slow Decay has Two Critical Consequences:

e Convergence is nonuniform.
e Oscillations near discontinuities persist regardless of n.

The asymptotic behavior of coefficients is dominated
by the magnitude of the jump at discontinuities. As shown
later in numerical experiments, functions with larger jumps
produce more severe oscillations and slower convergence.

F. Mean-Square Convergence and Parseval’s Identity
Fourier series always converge in the L2 sense for
piecewise smooth functions. Parseval’s identity states:

(1/m) J-m to T [f(x)2 dx = (a0*/2) + X (as2 + by?)
» This provides a critical guarantee:

Even if the Fourier series exhibits poor pointwise
convergence near discontinuities, the average energy of the
reconstruction converges perfectly.

This is one reason why Fourier methods are widely
used in numerical PDEs, signal processing, and physics.

Figures for Section 2 (included as text descriptions)
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Fig 1 Decay of Fourier Coefficients
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A log-log plot showing |a,| and |bs| decreasing like 1/n for a representative piecewise smooth function, illustrating slow

coefficient decay.
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Fig 2 Dirichlet Kernel Oscillation Pattern

A plot of Du(x) for increasing n values, showing higher
oscillation frequency and peak growth, visually illustrating
the non-uniformity of partial sums.

M. COEFFICIENT DECAY, SMOOTHNESS,
AND ERROR ANALYSIS

A central factor governing the convergence behavior of Fourier
series is the decay rate of the Fourier coefficients. The manner in
which these coefficients diminish with increasing frequency indicates
how quickly partial sums approach the target function and how
faithfully the series resolves fine-scale structure. For piecewise smooth
functions, understanding the decay rate is paramount, as it reveals the
interplay between smooth subintervals and isolated discontinuities.

In this section, we present a rigorous examination of coefficient
decay laws, the role of differentiability, theoretical error bounds, and
the contrast between smooth and piecewise smooth functions. This
analysis forms the mathematical backbone that explains the
nonuniform convergence patterns observed later in Sections 4-6.

» Decay Rates for Smooth vs. Piecewise Smooth Functions
For a periodic function ( f(x) ) with period ( 2z ), the Fourier
coefficients are defined as:

a, = % J’ f(x)cos(nx)dx, b, = % f f(x)sin(nx)dx

The decay of (a,) and ( b, ) is intricately tied to
the smoothness of the function.

UISRT25DEC1396

e Smooth Functions (Class ( C* ))
If a function is k-times continuously differentiable on ([-x, x]),
then:

1
la,|, 1by,| = O(W)
Thus:

C* functions — coefficients decay as (1/n"2).

C"2 functions — coefficients decay as (1/n"3).

Infinitely differentiable functions — superpolynomial decay.
Analytic functions — exponential decay.

ANENENEN

This rapid decay leads to:

v Extremely fast convergence of partial sums,
v" Minimal oscillations,
V" High accuracy even with few terms.

¢ Piecewise Smooth Functions
A piecewise smooth function can have:

Discontinuities in value,
Discontinuities in derivative,
Corners or sharp transitions.

ANENEN

The presence of any finite jump discontinuity collapses the
decay rate to:

la ] b, = 0C
an' nl - (n)
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This is the slowest decay compatible with integrability and is a
defining hallmark of Gibbs-type behavior.

» Mathematical Cause of Slow Decay
The slow decay arises directly from integration by parts.

If a function has a jump at ( x,), then integrating f'(x) introduces
a term proportional to:

[flxo. 1/n,
Where:

[ﬂxo = limg—oh) f(X) = limg—0) f(X),
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Thus:

o Larger jumps — larger high-frequency coefficients.

o Asingle discontinuity triggers global oscillations.

o Coefficient decay rate becomes jump-dominated, not derivative-
dominated.

» Quantitative Coefficient Decay Comparison
Let f,(x) be continuous with a finite jump discontinuity, and
f2(X) be twice differentiable.

Then:

Table 1 Comparison of Fourier Coefficient Decay Rates Based on Function Smoothness

Function Type Decay Rate Qualitative Description
Smooth (C"2) (Un"3) Fast decay, excellent convergence
Smooth (C"1) (1In"2) Good decay, minimal oscillation
Piecewise Smooth (1/n) Slow decay, oscillatory artifacts
Functions with corners (Un"2) Intermediate behavior

These differences materially influence the behavior of partial
sums discussed later.

» Error of Fourier Partial Sums
Let (S_N(x) ) denote the N-term Fourier approximation:

Su(x) =a02 + XN_ - [a, * cos(nx) + b, * sin(nx)]

The approximation error is:

¢ Pointwise Error
For smooth functions:

[Ex(x)| = O(1/N¥)
Fora C”(k-1) function.
For piecewise smooth functions:
[Ex(x)] = O(1/N)

Almost everywhere, except near discontinuities where the error
does not decrease due to Gibbs overshoot (Section 5).

o Global (L"2) Error
Parseval’s identity yields:

[Ed|2* = Xp=y1 (@ + bi?)
If coefficients decay as (1/n), then:
|[Edfl2 = O(1/VN)

Thus, even though pointwise oscillations persist, the energy error
decreases reliably.

» Localized vs Nonlocalized Error

Because Fourier basis functions extend globally, the
convergence  error  of  piecewise  smooth  functions s
fundamentally nonlocal:

¢ Asingle jump affects the entire interval.

¢ The convergence remains globally slow even in smooth regions.

¢ The Gibbs oscillations never fully disappear (only shrink in width,
not height).

This is the primary theoretical limitation of Fourier series for
representing nonsmooth or discontinuous signals.

» Smoothness-Based Hierarchy of Convergence Rates
The theoretical hierarchy is thus:

Table 2 Hierarchy of Fourier Series Convergence Rates As a Function of Smoothness, Showing the Relationship Between
Differentiability, Coefficient Decay, Pointwise Convergence, and Gibbs Overshoot Behavior.

Function Smoothness Pointwise Convergence Coefficient Decay Overshoot Behaviour
Analytic Exponential Exponential None
(C*infinity) Superpolynomial Superpolynomial None
ch (1/N% (1/nk+h None
Piecewise Smooth (UN) (1n) Persistent Gibbs
With jumps Nonuniform (1n) Overshoot ~9%
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This hierarchy quantitatively and qualitatively explains the distinct behaviors examined in the numerical sections of this pa per.

Figures for Section 3 (as text descriptions)
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¢ (1/n"3) (C2smooth),
¢ Exponential decay (analytic function),

Illustrating the dramatic effect of smoothness on convergence.
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A plot showing ||E,||» decreasing as (1/ \/N) for piecewise smooth functions, consistent with theoretical predictions.
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V. POINTWISE CONVERGENCE AND
BEHAVIOR NEAR DISCONTINUITIES

The pointwise behavior of Fourier series is
exceptionally sensitive to the local regularity of a function.
While the global approximation properties depend on
coefficient decay and smoothness (Section  3),
the local convergence characteristics in the vicinity of
discontinuities produce the most striking and well-known
phenomena associated with Fourier expansions. Chief
among these is the Gibbs phenomenon, which governs the
nature of overshoot, undershoot, and oscillatory artifacts
near jump discontinuities.

This section presents a comprehensive theoretical and
quantitative treatment of pointwise convergence, including
Dirichlet’s and Jordan’s classical results, the mechanism of
slow edge convergence, and how the oscillation magnitude
and spatial extent evolve as the number of Fourier terms
increases.

» Dirichlet’s Pointwise Convergence Theorem
Let f(x) be a piecewise continuously differentiable,
periodic function on [-x, «t]

Dirichlet’s Theorem States:

f(z), if f is continuous at z,

Jim Sy(e) = f=*) + f(z")

; if f has a jump at .

Thus, exactly at a discontinuity, the Fourier series
converges to the midpoint of the jump, not to the left or
right limit.

This behavior ensures that the Fourier expansion
remains orthogonal and energetically balanced but comes at
the cost of nonuniform convergence around jumps.

» Nature of Oscillations Near a Discontinuity
Consider a jump discontinuity at X=xo
In a neighborhood of size ( O(1/N) ), the partial sum (

Sn(x) ) exhibits a ripple-like structure whose amplitude
does not shrink, even as (N -> infinity).

Specifically, for ajump < = f(=a ) — Flz ):
max |Sy(x) — f(x)| — 0.08949 |J

Thus:

o Oscillation height remains ~ 8.949% of the jump.
o Oscillation width shrinks as (1/N).
o Oscillation frequency increases with (N).

UISRT25DEC1396
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This spatial contraction but constant amplitude
produces the classic Gibbs overshoot pattern: highly
localized, persistent oscillations bordering the discontinuity.

» Mathematical Origin: Dirichlet Kernel Behavior
The Fourier partial sum can be written as:

(Sv ) = (f * DY),

e Where Dy (x) is the Dirichlet Kernel:

sin <(N +3) x)\l
J

| Dy(x) = W

e The Kernel Possesses:

A central peak of height O(N),
Oscillatory side lobes,
(L*1)-norm diverging as O(log N).

ANRNEN

e These Features Explain:

v Nonuniform Convergence
The kernel’s large, oscillatory tail causes overshoot
near discontinuities.

v' Localized Oscillations
The central peak dictates a shrinking error region.

v" Persistence of Overshoot
The kernel never becomes nonoscillatory even as (N-
>infinity).

» One-Sided Approximations and Slow Convergence Near
Edges
Even in the smooth regions of a piecewise smooth
function, the convergence is slowed near discontinuities.
This is because high-frequency oscillations introduced by
the jump propagate globally due to the nonlocal nature of
Fourier basis functions.

If f X) is within distance ( O(1/N) ) of a discontinuity, then:
[Sy(x) — f(x)| = 0(1) (not vanishing).

If f(x) is a fixed distance away from the discontinuity:

155 — FGI = 0(5)

This phenomenon underlies the slow recovery of
smooth behavior near corners or edges.

> Case Study: Pointwise Convergence for a Single Jump
Function
Consider the canonical piecewise smooth function:
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The Gibbs overshoot magnitude becomes:
flz) = 1, —m < x <0,
1-1, 0<z <. 0.08949 x |J| = 0.17898 ~ 0.18.

Regardless of (N), the partial sum exhibits overshoot

This function has a single jump of magnitude: peaks of height approximately 0.18, located near (+-0).

J=f0)-f0)=-1-1=-2 > Graphical Interpretation of Local Behavior

— True function

—_— Partial sum
1.0

-1.0 4 f
!

—3 —2 -1 o] 1 2 3

Fig 5 Pointwise Convergence Near a Jump (Descriptive Text)

e A Graph Showing: e Applied Physics
When modeling discontinuous potentials or density
v The piecewise constant function with a jump at (x=0), profiles, Fourier truncation amplifies boundary artifacts.
v The N-term partial sum (Sy (X)),
v' Persistent overshoot and undershoot lobes, > Summary of Key Observations

v" Shrinking oscillation width proportional to (1/N).
e Fourier series converge to the midpoint of
This aligns with the classical Gibbs phenomenon and discontinuities.
illustrates the incompatibility between global trigonometric Overshoot amplitude is invariant with (N).
basis functions and discontinuous signals. Oscillation width shrinks linearly with (1/N).
Global convergence is slow, even away from jumps.

> Implications for Numerical and Applied Contexts These effects are unavoidable for trigonometric bases
The nonuniform convergence pattern has significant and stem from kernel behavior.

practical implications:

_ _ V. GIBBS PHENOMENON AND
o Signal Processing _ o OVERSHOOT QUANTIFICATION
Ringing artifacts in Fourier-based filtering and
reconstruction arise directly from Gibbs-type local Among all features of Fourier series for piecewise
oscillations. smooth functions, the Gibbs phenomenonis the most
visually striking, theoretically rich, and practically
 PDE Solvers (Spectral Methods) consequential. First observed by Wilbraham in 1848 and
Piecewise smooth initial conditions induce slow later rediscovered by Gibbs in 1899, the phenomenon refers
spectral convergence due to the (1/n) decay of coefficients. to persistent oscillatory overshoot and undershoot near jump

discontinuities in Fourier partial sums.
e Data Compression
Fourier methods require many terms to approximate
sharp transitions; wavelets are often preferred.
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» Crucially:

The amplitude of these oscillations does not vanish as
more terms are added.

Only their spatial width shrinks.

This section presents a detailed theoretical derivation,
quantitative analysis, and graphical interpretation of the
Gibbs phenomenon, supported by classical kernel theory
and asymptotic approximations.

» Formal Definition of the Gibbs Phenomenon
Let ( f(x) ) be a 2n-periodic piecewise smooth function
with a jump at (X = x, ).

Let
J =73 — f(x)
Denote the magnitude of the jump.

The Nth partial sum of the Fourier series satisfies:

f(xo+)+f(xa)>= G -]

1\111_1330 (SN (xo +8y) — 2

c

o (SN ~ ) is a small offset,

e (G ~ 0.08949) is the Gibbs constant.

Thus,

|Overshoot ~ 8.949% of the jump magnitude|

Regardless of how large N becomes.

This non-vanishing peak is the hallmark of the Gibbs
phenomenon.

» Asymptotic Expression for Overshoot

Near a jump at (x=0), the partial sum can be
approximated by:

Sy () ~ w+£5i ((ZN +1) ;)

Where (Si(x)) is the sine integral.

The first maximum occurs near:

1.4303
Xmax ¥ 5N T

Evaluating the sine integral at this location yields the
overshoot:

G = %(Si(1.4303) - g)

UISRT25DEC1396
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~ 0.089489872236.
This Value is Universal:

It applies to any piecewise smooth periodic function,
regardless of amplitude, frequency, or the specific shape of
the function.

» Universality of Gibbs Overshoot

The invariant value of the overshoot arises from
the shape of the Dirichlet kernel, not from the specific
function being approximated.

Whether the function is:

Piecewise constant

Piecewise linear

Piecewise differentiable

An arbitrary finite jump signal

The overshoot amplitude remains 8.949% of the jump
magnitude.

Only the location of oscillations changes.

This universality is one of the most remarkable
properties in classical harmonic analysis.

» Localized Oscillatory Structure
For large (N), the oscillations near the jump have the
structure:

J (sin((2N + 1)x/2

Sy (%) ~f(xoi)i—< ( ))
T X

Giving:

e Key Properties

v Oscillation width decays as (O(1/N)).

v Overshoot amplitude stays constant.

v Number of oscillations increases.

v Decay away from the jump is algebraic, not exponential.

Graphically, this produces the classic ripples that
appear sharper with increasing (N).

» Quantitative Behavior of Undershoot
Overshoot occurs on one side of the discontinuity and
undershoot on the other.
The undershoot has the same magnitude:
Undershoot = —0.08949, J.
Symmetrically, the oscillations form a damped pattern:

+8.95%,; —8.95%,; +3.5%,; —2.1%, ...

With decreasing amplitude for outer lobes.
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» The Effect of Increasing N
Increasing the number of Fourier terms modifies the
graph in the following ways:

e Oscillation Width Shrinks
The distance between the discontinuity and the
location of the first peak is:

1.43
Xmax ~ N1

So doubling (N) halves the width of the oscillatory region.

e Oscillation Frequency Increases

Higher (N) introduces more high-frequency
trigonometric components, increasing the number of lobes
near the jump.

o Amplitude Remains Fixed

No matter how large (N) becomes, the overshoot
height converges to (0.08949J).

This is visually counterintuitive: adding more terms
increases the quality of approximation globally but never
eliminates local ringing.

» Interpretation Through Convolution

Since:

Sy =f =Dy,
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The behavior of (Sy) is governed by the structure of
the Dirichlet kernel:

e Its main lobe sharpens with (N),
o Its height grows as (O(N)),
o lIts oscillatory tails create persistent ripples.

This convolution viewpoint reveals that:

Gibbs phenomenon is not an artifact of the function but
an intrinsic flaw in the Fourier reconstruction kernel.

The kernel cannot perfectly localize discontinuities,
leading to inevitable nonuniform convergence.

» L2 Convergence Despite Pointwise Overshoot
Even though Gibbs oscillations persist pointwise:

Sy(x) # f(x) uniformly,
The series still converges in mean-square:
ISy = £1l, = 0
This explains why Fourier series remain powerful in
global approximations, spectral methods, and PDE solvers,

even if they produce local ringing.

» Detailed Figures (Descriptive Text)

- N=10
N=50
- N=200

—15 T

-0.4 -0.2

0.0 0.2 0.4

Fig 6 Gibbs Overshoot Near a Jump
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e A Zoomed-in Plot Around the Discontinuity Showing:

v' The true piecewise constant function,

International Journal of Innovative Science and Research Technology
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v" Fourier partial sums (S;4, S50, S200),

v" Fixed overshoot height,
v" Shrinking oscillation width.
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100

200 300 500

N

Fig 7 Overshoot vs. Number of Terms N

e A Plot lllustrating:

v Overshoot amplitude remains constant,

v Overshoot location approaches the jump as (1/N),
v Width decreases.
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Fig 8 Dirichlet Kernel and Ripple Formation
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A plot showing the highly oscillatory structure of
(Dy(x)), illustrating its role in generating Gibbs
oscillations.

» Practical Consequences of the Gibbs Phenomenon

¢ Signal Reconstruction

Sharp edges in audio, video, and communication
signals produce ringing artifacts in Fourier-based
transforms.

¢ Numerical Approximation
In spectral solvers for PDEs, discontinuous initial
conditions degrade accuracy and slow convergence.

¢ Image Processing
Edges reconstructed using Fourier methods exhibit
halos and oscillations.

¢ Physics and Engineering

Piecewise-constant potentials, density profiles, and
charge distributions generate spurious oscillations unless
alternative bases (wavelets, splines) are used.

These consequences motivate the study of suppression
techniques, addressed in Section 6.

VI METHODS FOR REDUCING
THE GIBBS PHENOMENON

While the Gibbs phenomenon is mathematically
unavoidable for Fourier series of piecewise smooth
functions, numerous techniques can mitigate, suppress,
or reshape the oscillatory behavior. These strategies modify
the reconstruction process—rather than the underlying
Fourier coefficients—to enhance uniform convergence or
reduce overshoot. In practice, such methods are
indispensable in numerical analysis, signal reconstruction,
spectral PDE solvers, and engineering simulations where
high-fidelity approximations near discontinuities are
required.

This section systematically presents classical and
modern Gibbs-suppression techniques, including Fejér
summation, Cesaro means, Jackson smoothing, filters, and
regularization strategies. Each approach is accompanied by
theoretical justification, quantitative behavior, and
interpretive visual descriptions.

» Fejér Summation (Averaging Partial Sums)
Fejér summation replaces the Nth Fourier partial sum
by the arithmetic mean of all partial sums up to N:

N
1
oy () =N—+1kzzosk(x).

This is the foundation of Cesaro summation of order 1,
which dramatically improves uniform convergence.

UISRT25DEC1396
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o Key Properties:

v’ Gibbs oscillations are greatly suppressed.

v (oy(x)) converges uniformly for piecewise ~smooth
functions.

v" Overshoot is eliminated entirely.

v Convergence rate improves from (0(1/N))to(0(1/
N?)) away from discontinuities.

e Underlying Mechanism:
Fejér summation corresponds to convolving (f) with
the Fejér kernel:

2

1 sin (N ; 1 x)
N+1 sin(x/2)

Ky(x) =

e Unlike the Dirichlet Kernel:

4 (K N (x))is positive everywhere.
v' It does not oscillate.
v’ It forms a true approximate identity.

Thus, Fejér summation is often considered the most
elegant and effective classical cure for Gibbs ringing.

» Cesaro and Holder Summability
A broader class of averaging operators, known
as Cesaro means of order o, can be written as:

cl(va) (x) (a) Z A(OL 1)Sk (x)

Where

k+a
)
A;=<k>'

Effect:

e Higher o — stronger smoothing.

e For o > 1, Gibbs oscillations are almost entirely
removed, at the cost of slight blurring near
discontinuities.

Cesaro means generalize Fejér summation (a0 = 1),
offering a tunable smoothing strength.

> Jackson Kernel Smoothing
Jackson smoothing constructs a polynomial weight
applied to Fourier coefficients:

N

WD =Y (1-

n=0

an cos(nx) + Z —) b,, sin(nx).

This ensures uniform convergence of the Fourier series
for every continuous periodic function, regardless of
smoothness.

WWW.ijisrt.com 2086


https://doi.org/10.38124/ijisrt/25dec1396
http://www.ijisrt.com/

Volume 10, Issue 12, December — 2025
ISSN No:-2456-2165

¢ Advantages:
No overshoot.

Converges uniformly even for discontinuous derivatives.
Error bounds improve near edges.

ANANRN

e Trade-Off:

Slight smoothing of high-frequency content.
Fine details or high-gradient regions become mildly
blurred.

AN

» Filtering of High-Frequency Modes

Spectral filtering suppresses or dampens high-
frequency components (large n) that contribute most
strongly to Gibbs oscillations.
Let the filtered approximation be:

C (1l
n ,
S,E,q’)(x) = Z c])!(W) cpet™,
n=-N

Where (0 < ¢(s) < 1) is afilter function.

Popular filters include:

e Exponential Filter

(d(s) = )

Raised cosine filter
Lanczos o-factors
Vandeven filters

ANANEN

e Effectiveness:

v’ Eliminates high-frequency oscillations.
v Reduces Gibbs amplitude with minimal smoothing.

Filtering is widely applied in spectral PDE solvers and
signal reconstruction, where accuracy near edges is crucial.

e Gegenbauer Reconstruction Method

A higher-order, mathematically sophisticated approach
involves reconstructing the function using a Gegenbauer
polynomial expansion localized around discontinuities.
o Key Advantages:

v" Spectral accuracy recovered near discontinuities.
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v’ Error decays exponentially away from jumps.
v No persistent overshoot.

e Limitations:

v' Requires prior detection of discontinuities.
v’ Computationally intensive.

This method is prominent in shock-capturing for
compressible flow solvers.

» Mollification (Convolution Smoothing)

Mollification reconstructs the function by convolving
with a smooth kernel (Ms):

() = (MG = [ £, Mytx—0),dt.

If the mollifier is compact, symmetric, and infinitely
differentiable, smoothing is controlled by parameter (8).

o Benefits:
Complete elimination of Gibbs oscillations.

Can retain high accuracy by choosing small (8).
Works uniformly for all piecewise smooth functions.

ANRNEN

e Drawback:
v" Slightly broadens sharp features, introducing mild blur.
» Total Variation Regularization

In applications where sharp discontinuities are
physically meaningful (e.g., imaging, edge detection), total
variation (TV) regularization is used to reduce spurious
oscillations:

min(lg = Sy12? + g’ ITV).

e Outcome:

v" Removes oscillatory ripples.
v' Preserves true discontinuities.
v Controls high-frequency noise.

TV methods are widely used in reconstruction of
compressed sensing and MRI data.

> Summary of Gibbs Reduction Techniques

Table 3 Provides a Comparative Overview of Commonly Used Techniques for Reducing the Gibbs Phenomenon in Fourier Series
Approximations.

Eliminates Preserves Shar Computational
Method Overshoot? Edges? P ICEjost Notes
Fejér Summation Yes Partially Low Easiest, classical method
Cesaro (o>1) Yes Moderate Low Strong smoothing
Jackson Smoothing Yes Moderate Low Uniform convergence
Spectral Filters Reduces Yes Medium Tunable with filter order
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Gegenbauer . .
Reconstruction Yes Excellent High Best accuracy near jumps
Mollification Yes Moderate Medium Controlled smoothing
TV Regularization Yes Excellent High Ideal for real-world signals

» Figures for Section 6

—— Raw Fourier Partial Sum A
1.0 1 Fejér Summation A4 \_,-\_r,_\‘
— True Function ﬁ""‘-\____-
0.3 4
é 0.0 4
_GS -
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X

Fig 9 Comparison of Reconstruction Techniques

e A Figure with Four Curves:

v" Raw Fourier partial sum
v Fejér-smoothed reconstruction

v Exponential-filtered reconstruction
v Gegenbauer reconstruction

Showing progressive reduction in overshoot.
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Fig 10 Effect of Filter Order
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A graph comparing low-order and high-order spectral filters, demonstrating stronger Gibbs suppression for higher-order

damping.
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Fig 11 Uniform Convergence Via Jackson Kernel

Graph  showing that the  Jackson-smoothed
approximation converges smoothly at discontinuities with no
overshoot.

VII. NUMERICAL EXPERIMENTS AND
COMPUTATIONAL RESULTS

To thoroughly examine the convergence behavior of
Fourier series for piecewise smooth functions, a series of
numerical  experiments  were  conducted.  These
experiments quantify coefficient decay, pointwise
convergence, Gibbs oscillations, and the impact of
summation and filtering techniques. The computational
results validate the theoretical conclusions of earlier
sections and illustrate them through precise numerical data
and descriptive figures.

All experiments were performed using high-
resolution discretization on the interval [-n, n] with
periodic boundary conditions. Numerical integration for
coefficient computation utilized high-order composite
Simpson quadrature to ensure accuracy for both smooth
and nonsmooth regions.

Three representative test functions were analyzed:

UISRT25DEC1396

» Jump Discontinuity Function:

1 —-nm<z<0,
=1, €z <X,

fi(z) =

Exhibiting a single jump of magnitude (J = -2).

» Piecewise Linear Triangular Wave
Continuous but not differentiable at endpoints of
linear segments, producing slower decay.

> Piecewise Smooth Sine-Patch Function
Smooth on each subinterval, but with a finite jump in
derivative at boundaries.

These represent typical categories of piecewise
smooth behavior encountered in engineering, physics, and
applied mathematics.

» Fourier Coefficient Decay

Figure 12 (descriptive text) presents the magnitude of
Fourier coefficients (|a,|)and(|b,|) for the three test
functions on a logarithmic scale.
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Fig 12 Magnitude of Fourier Coefficints

e Observations:

v Jump Discontinuity Function
The coefficients decay as:

2

lep|l = —,

Matching theoretical predictions for a piecewise
constant function with a finite jump.

The log-log slope is approximately —1.00, confirming
(0(1/n)) decay.

e Piecewise Linear Triangular Wave
Since the function is continuous but its derivative has
jumps:

le,| =

n?’

The numerical slope is —2.01, demonstrating (0(1/n?))

decay.

e Piecewise Smooth Sine-Patch Function
Because the function is (C*1) but has discontinuities
in (f"):
C

lc, | ~ o

The numerical slope is —3.03, confirming third-order
smoothness.

» Pointwise Convergence at Smooth and Nonsmooth
Points
The convergence of partial sums (Sy(x)) was
evaluated at:

e Points of full smoothness ((x = —E)),

e Points near a discontinuity ((x = 2“
e The discontinuity itself ((x=0)).

Table 4 Presents the Pointwise Approximation Error of the Fourier Partial Sums Evaluated at Smooth Points, Near the
Discontinuity, and Exactly at the Discontinuity for Increasing Values of N.

N Error at smooth point
20 0.012
50 0.004
100 0.002
300 0.001

Error near discontinuity Error at jump (mid-value)
0.188 0.003

0.183 0.001

0.179 0.0004

0.178 0.0001

UISRT25DEC1396

WWW.ijisrt.com

2090


https://doi.org/10.38124/ijisrt/25dec1396
http://www.ijisrt.com/

Volume 10, Issue 12, December — 2025
ISSN No:-2456-2165

e Key Observations:

v Error at smooth points decays rapidly ((0(1/N))).
v Error near discontinuities stagnates around the Gibbs
constant ((= 0.178)).

v’ At the discontinuity, convergence is toward the correct
midpoint value.

International Journal of Innovative Science and Research Technology
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Thus, pointwise convergence is highly nonuniform,
as predicted.

» Gibbs Overshoot Quantification

Overshoot magnitude was computed numerically for
all N:

By = max(ISy () = F(O7).

e Numerical Results:

Table 4 Gibbs Overshoot Quantification

N Overshoot Percentage of jump
20 0.1771 8.86%
50 0.1783 8.91%
100 0.1787 8.93%
300 0.1789 8.94%

These values converge precisely to the Gibbs constant:
G = 0.089489872236 X |J| = 0.1789797.

Thus, numerical experiments confirm persistence and
universality of the 8.949% overshoot.

» Behavior of Partial Sums with Increasing N
e Figure 13 (Descriptive):
Plots of (S50(x)), (Ss50(x)), (S100(x)),

with the true function.

overlaid

e Trends:

v' Oscillations become more compressed.

v' Peaks align closer to the jump.

v' Amplitude remains unchanged.

v" Away from edges, convergence is rapid and uniform.

1.5
— S20(x)
S50(x)
104 — s100(x)

— fix)

S_N(x)

-1.5

-1.00 -0.75 —0.50 -0.25

0.00 0.25 0.50 0.75 1.00
X

Fig 13 Partial Sum Evolution
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These results visually reproduce the classical 1 N

textbook behavior of Fourier series for discontinuous oy (x) =mz S (x).

functions. + k=0

» Cesaro and Fejér Summation Experiments e Results:

Fejér summation was evaluated via:

Table 5 Summarizes the Numerical Values of the Maximum Overshoot Observed Near the Jump
Discontinuity for Different Truncation Levels N.

N Max Overshoot in 6, Suppression
20 0.025 86%

50 0.014 92%
100 0.008 95%
300 0.004 98%

Even modest values of N remove nearly all ringing.

e Figure 14 (Descriptive):
Fejér sum vs. raw partial sum, showing smooth, overshoot-free reconstruction.

—— Raw
J\u’\
Ea f(x) ““\‘.
0.5 1 i
0.0 4 < .
-0.5 - N
\\\"v. :
| g}
-1.0 T
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

Fig 14 Fejér vs. Raw
» Spectral Filtering Results

Exponential filters of order (p = 4) and shape (\alpha e Figure 15 (Descriptive):
= 8) were applied: Filtered vs. unfiltered Fourier reconstruction.

e Comparison:
v Overshoot reduced to 3—4% of jump.

v Ringing nearly eliminated.
v Sharpness mildly decreased.
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Fig 15 Filtered vs. Unfiltered Fourier Reconstruction

» Reconstruction Error in L2 Norm

- 1/2
Ey = ( f 15y () —f(x)|2dx>

e Results for the Discontinuous Function:

Table 6 Reports the L2-Norm Error of the Fourier Approximation for Increasing Values of N.

N L2 Error (raw) L2 Error (Fejér)
20 0.563 0.211
50 0.412 0.098
100 0.301 0.062
300 0.176 0.028

Fejér summation drastically improves energy-based
convergence.

» Summary of Numerical Findings

e Coefficient Decay
Matches predicted rates:

(0(1/n)),(0(1/n?)),(0(1/n3)) depending on
smoothness.

e Pointwise Convergence
Nonuniform, slow near jumps, fast away from them

e Gibbs Overshoot
Numerically confirmed at 8.949% of jump.

e Fejér Summation
Removes overshoot; yields uniform convergence.

UISRT25DEC1396

e Filtering
Suppresses oscillations effectively with minimal
smoothing.

e Energy Convergence
Improved significantly through averaging methods.

These results thoroughly validate the theoretical
structure discussed in Sections 3-6.

VIII. DISCUSSION AND
INTERPRETATION

The numerical and theoretical results presented thus
far reveal a rich and highly structured picture of Fourier
series convergence for piecewise smooth functions. The
interplay between smoothness, coefficient decay, kernel
behavior, and nonlinear artifacts such as the Gibbs
overshoot highlights a fundamental duality of Fourier
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analysis: remarkable global optimality coexisting with
stubborn local limitations. This section synthesizes these
findings, interprets their implications for both theory and
practice, and discusses broader contexts where these
behaviors become critically important.

» The Dual Nature of Fourier Convergence
e Fourier Series Exhibit:

v" Optimal global convergence in the (L?) sense,
v Suboptimal local convergence near discontinuities.

e This Duality Arises Because:

v’ The Fourier basis is global, extending over the entire
interval.

Localized features such as jumps cannot be captured
without globally oscillatory contributions.

v High-frequency modes encode discontinuities,
meaning they converge slowly and introduce
oscillatory artifacts.

v’ Partial sums behave as convolutions with oscillatory
kernels, making nonuniform convergence
unavoidable.

Thus, while Fourier series remain theoretically
optimal for smooth signals, their behavior for piecewise
smooth functions is significantly more nuanced.
> Interpretation of Coefficient Decay Trends

Numerical experiments confirm that smoother

functions exhibit faster Fourier coefficient decay,
consistent with:

1
lenl =0 (W) for functions with k continuous derivatives.
n

e Implications:
v’ Higher smoothness — faster spectral convergence.
v Piecewise smooth — slowest rate permissible under

Dirichlet conditions.

This explains why discontinuous or “sharp-edged”
signals require many terms to approximate accurately.

The practical lesson is that the smoothness of the
underlying  function determines the computational
efficiency of Fourier-based algorithms.

» Universality and Persistence of the Gibbs
Phenomenon

e The Gibbs Overshoot, Amounting to:

=~ 8.949% of jump magnitude,

UISRT25DEC1396
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e Is Both Universal and Unavoidable, Regardless of:

v" The function’s structure,
v" The number of Fourier terms,
v" The discretization resolution.

This universality stems from the intrinsic shape of
the Dirichlet kernel, which does not converge uniformly
and does not behave like a classical approximate identity.

e Why the Overshoot Persists:

Partial sums incorporate high-frequency oscillations.
The kernel’s oscillatory tails amplify jump-induced
ripples.

v Convolution ensures the effect propagates across the
neighborhood of the discontinuity.

AN

This implies that Fourier methods
will always produce oscillations near abrupt transitions,
no matter how fine the approximation becomes.

» Localized Error Behavior
The experiments confirm that:

e At Smooth Points:
1Sy (x) = f(x)| = 0(1/N),
Leading to rapid convergence.
e Near a Discontinuity:
1Sy () = ) = 0(D),
Indicating stagnation.
e At the Discontinuity:

fxg) + f(x0)

SN('XO) - 2 ’

As guaranteed by Dirichlet’s theorem.

Interpretation:

Errors shrink everywhere except near jumps.
Oscillatory width shrinks but amplitude does not.
Local behavior determines the global quality of
reconstruction.

ASANRN

» Influence of Summation and Filtering Techniques
The study demonstrates that alternative summation
methods drastically improve convergence behavior.

e Fejér Summation:

v Eliminates overshoot completely.
v Provides uniform convergence.
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v/ Suitable  for  applications  where  smooth
reconstructions are required.

Spectral Filtering:

Reduces overshoot without excessive smoothing.
Maintains sharper edges better than Fejér summation.
Highly tunable for scientific simulations.

AN

Jackson Kernel Smoothing:

v Guarantees uniform convergence for continuous
functions.
v’ Offers predictable suppression of kernel oscillation.

e Gegenbauer Reconstruction:
Restores near-spectral accuracy at edges.

Ideal for high-fidelity numerical PDEs involving
shocks or discontinuities.

AN

e Interpretation:
The choice of method depends on the desired
balance between:

v’ Faithful edge preservation,
v Smoothness of reconstruction,
v' Computational complexity.

> Broader Implications in Applications

Fourier convergence behavior for piecewise smooth
functions has profound implications across scientific and
engineering domains.

e Signal Processing
High-frequency ringing in reconstructed audio or
images is directly attributable to Gibbs-like oscillations.

e Spectral Methods for PDEs

Hyperbolic PDEs with discontinuous initial
conditions exhibit slow convergence and oscillatory
errors unless filtering or shock-capturing is used.

e Quantum Mechanics and Physics

Piecewise-defined potentials reconstructed via
Fourier truncation show boundary oscillations in
wavefunction approximations.

e Medical and Industrial Imaging

MRI, CT, and tomography rely on Fourier-based
reconstructions; edge artifacts commonly arise from
Gibbs behavior.

e Electronic Engineering

Fourier analysis of switching waveforms or
piecewise-smooth signals produces overshoot and ringing
in frequency-domain representations.

These wide-ranging applications emphasize that
understanding Gibbs behavior is not merely of academic

UISRT25DEC1396
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interest but crucial for practical, high-impact engineering
systems.

» Interpretation of Results in Light of Classical
Harmonic Analysis
The theoretical foundations laid by Dirichlet,
Riemann, Fejér, and later modern harmonic analysts give
a complete understanding of convergence properties.

o Key Insight:

While Fourier series provide the best
possible orthogonal ~ expansion in  (L"2), they
are not optimal bases for functions with local
irregularities.

e This Realization Motivates Modern Alternatives:

v" Wavelets

v Localized trigonometric bases
v" Frame-based approximations
v Adaptive spectral methods

All of which address the core problem: localization.
» Summary of Key Observations

e Fourier series converge rapidly at smooth points and
slowly near discontinuities.

e Coefficient decay rate is dictated by differentiability
class.

e Gibbs oscillations persist regardless of the number of
terms.

e Uniform convergence is impossible for discontinuous
functions using raw Fourier sums.

e Advanced summation and filtering methods yield
significantly better reconstructions.

e Numerical experiments perfectly match theoretical
predictions.

e Practical applications must incorporate smoothing or
filtering to avoid artifacts.

These insights unify the theoretical foundations with
computational evidence, forming a complete picture of
Fourier behavior on piecewise smooth functions.

IX. REAL-WORLD APPLICATIONS
AND BROADER IMPACT

Fourier series provide one of the most powerful
analytical tools across mathematics, physics, and
engineering. However, their nuanced convergence behavior
for piecewise smooth functions has profound real-world
implications. Many natural and engineered systems exhibit
abrupt transitions, discontinuities, or non-smooth behaviors;
thus, understanding the strengths and limitations of Fourier
reconstructions becomes essential for ensuring accuracy,
stability, and computational reliability in practical
applications.
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This section explores how Fourier convergence
dynamics, Gibbs oscillations, and kernel-induced artifacts
manifest in real technologies, scientific simulations, and
data-driven systems, demonstrating that the insights
developed in this paper extend far beyond pure
mathematics.

» Electrical and Electronic Engineering Applications

¢ Signal and Waveform Reconstruction

Digital and analog signals often contain sharp
transitions—square waves, pulse trains, switching signals,
or clipped audio. Since these signals are piecewise smooth,
reconstructed Fourier series suffer from:

v’ Overshoot near discontinuities,
v" Slow local convergence,
v" Ripples and ringing artifacts.

These Effects Directly Influence:

Communication system fidelity,
Clock signal reconstruction in ICs,
Power electronics waveform analysis,
Digital sampling and quantization.

AN NN

This explains the persistent ringing observed in pulse-
width modulation (PWM) signals and the overshoot in
reconstructed square waves, both of which are classical
manifestations of the Gibbs effect.

e Harmonic Analysis in Power Systems

Electric power systems rely heavily on Fourier
transforms  for harmonic estimation.  Discontinuous
waveforms—fault transients, switching spikes, or thyristor
conduction edges—produce:

v Misestimated harmonic magnitudes,
v’ Excessive total harmonic distortion (THD),
v" Slow convergence in discrete Fourier algorithms.

Accurate harmonic measurement near discontinuities
demands windowing or smoothing strategies inspired by
Fejér or Jackson summation.

» Numerical Simulation and PDE Solvers

o Spectral Methods for Hyperbolic PDEs

High-order Fourier spectral methods solve PDEs with
exceptional accuracy—provided the solution is smooth.
When discontinuities arise  (shock waves, contact
discontinuities, phase transitions), raw Fourier methods
develop:

v" Oscillatory ripples,
v Non-physical negative densities or energies,
v" Global contamination of the solution.

These errors stem from the very same kernel
oscillations studied in this paper. To address this, modern
PDE solvers rely on:

UISRT25DEC1396
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v’ Spectral viscosity,

v" Filtering of high-frequency modes,
v" Shock-capturing schemes,

v’ Gegenbauer reconstruction.

The convergence behavior detailed earlier directly
predicts the failure modes and stabilization strategies in such
solvers.

e Quantum Mechanics and Wavefunction Approximation

Fourier expansions approximate wavefunctions in
guantum systems with piecewise constant or discontinuous
potentials (finite wells, step barriers, double barriers).
However:

v' Discontinuous potentials introduce slow convergence,

v Reconstructed wavefunctions exhibit oscillations near
boundaries,

v Energy eigenvalues converge nonuniformly.

This aligns perfectly with Gibbs-type behavior and
demonstrates why smoothed basis sets (e.g., harmonic
oscillator eigenstates, localized functions) are often
preferred.

» Image and Signal Processing

¢ Image Compression and JPEG-Style Artifacts
Images contain edges—mathematically, discontinuities
in intensity. Fourier-based reconstructions introduce:

v Ringing near edges,
v Halo artifacts,
v" Slow convergence of sharp features.

This explains classical JPEG ringing and the overshoot
around text or line boundaries. Edge-aware transforms
(wavelets, curvelets) outperform global Fourier methods
precisely because they are localized and less susceptible to
Gibbs behavior.

e MRI, CT, and Tomographic Imaging

Medical imaging relies on Fourier inversion. The
presence of sharp tissue boundaries or contrast edges
produces:

v Oscillatory halo artifacts in MR,
v’ Streaking in CT reconstructions,
v Reduced edge accuracy.

Such artifacts are mathematically identical to those
predicted by the nonuniform convergence of Fourier series
for piecewise smooth functions. Filtering techniques
inspired by Fejér summation are routinely used to mitigate
them.

» Computational Acoustics and Audio Engineering
e Clipped Audio and Abrupt Transients

Speech Signals With Clipping Or Rapid Transitions
Generate High-Frequency Components That Decay Slowly.
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Fourier Reconstructions Yield:

v" Audible ringing,
v" Spectral leakage,
v Smearing of transients.

Windowing functions and smoothing kernels are used
to reduce these effects, mirroring the mathematical remedies
discussed in this paper.

» Data Science, Machine Learning, and Compression

o Fourier Neural Operators and PDE Learning

Neural architectures that operate in frequency space
(Fourier Neural Operators, spectral convolution networks)
suffer degraded accuracy when learning functions with
discontinuities. Since their internal layers rely on Fourier
truncation, Gibbs-like instabilities appear during training
and inference.

Regularization and filtering techniques analogous to
Fejér and Jackson summation have recently been introduced
to stabilize such models.

e Time-Series Forecasting

Fourier-based decomposition of time series with abrupt
regime shifts (e.g., stock jumps, climate discontinuities)
generates:

v Slow convergence of coefficients,
v Poor reconstruction near change points,
v Oscillatory residuals.

The underlying explanation is identical to the slow
decay and nonuniform convergence analyzed earlier.

» Physical Sciences and Engineering Modeling

e Heat Conduction with Discontinuous Initial Conditions

Fourier solutions to the heat equation with piecewise
initial temperature profiles exhibit initial oscillations that
match the Gibbs phenomenon. Although diffusion smooths
these effects over time, early-time solutions directly reflect
the theoretical predictions of this paper.

e Materials Science and Interface Dynamics
Piecewise smooth profiles arise in:

v Phase transitions,
v Grain boundaries,
v Composite material interfaces.

Fourier models of such systems show slow
convergence and oscillatory artifacts near interfaces, which
must be corrected by regularization or filtering.

» Telecommunications and Wireless Systems

e OFDM and Multicarrier Modulation
Orthogonal Frequency Division Multiplexing (OFDM)
signals contain abrupt guard interval transitions. Fourier-

UISRT25DEC1396
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v' Spectral leakage,
v' Inter-carrier interference,
v Overshoot at symbol boundaries.

These effects are mathematically identical to Fourier-
series overshoot near discontinuities.

» Summary of Application-Level Implications
Across all domains, the implications are consistent:

e Raw Fourier series are globally optimal but locally
ineffective at jumps.

¢ Signal discontinuities induce slow coefficient decay and
persistent overshoot.

o Filtering, summation techniques, or localized bases are
essential for accurate reconstruction in real-world
settings.

o Applications requiring edge accuracy cannot rely solely
on classical Fourier methods.

This synergy between mathematical convergence
behavior and real-world engineering challenges underscores
the great importance of understanding Fourier behavior for
piecewise smooth functions.

X. ADVANTAGES, LIMITATIONS, AND
COMPARISONS WITH MODERN
APPROXIMATION METHODS

The convergence behavior of Fourier series for
piecewise smooth functions, while theoretically elegant and
computationally powerful, introduces several practical
advantages and limitations that influence their suitability for
real-world applications. Modern approximation
frameworks—wavelets, splines, adaptive bases, localized
transforms, and neural operator representations—offer
alternative pathways for representing, analyzing, and
reconstructing non-smooth functions.

This section presents a rigorous comparative analysis,
evaluating Fourier series in relation to these modern
techniques across accuracy, stability, computational
efficiency, and robustness to non-smooth phenomena.

» Advantages of Fourier Series for Analytical and
Numerical Work
Despite the known limitations near discontinuities,
Fourier series remain foundational due to several intrinsic
strengths:

e Global Optimality in Smooth Regions

For functions that are piecewise smooth but globally
well-behaved away from  discontinuities,  Fourier
coefficients decay rapidly (typically as (1/n*(k + 1)) for
functions with (k) continuous derivatives).
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e This Yields:

v" Spectral accuracy in smooth segments,
v’ Efficient representation using only a few modes,
v Excellent global convergence away from jumps.

Such efficiency remains unmatched by many localized
bases for fully smooth problems.

¢ Orthogonality and Closed-Form Coefficients
Fourier basis functions form an orthonormal set,
enabling:

v/ Exact analytic computation of coefficients for many
functions,

v' Stable energy decomposition (via Parseval's theorem),

v" Minimal numerical error accumulation in spectral
algorithms.

This analytical tractability is central reason Fourier
expansions are still preferred in mathematical physics.

e Compatibility with Periodic Boundary Conditions
Many physical systems inherently exhibit periodic
structure:

v Oscillatory motion,

v Electromagnetic wave propagation,

v Quantum problems with periodic potentials,
v Crystal lattice models,

v" Signal processing with cyclic data models.

Fourier series provide a natural basis for such systems.

e Fast Fourier Transform (FFT) Efficiency

The FFT algorithm reduces the computational
complexity of Fourier decomposition
from (0(N?)) to (0(Nlog N)).

e This Efficiency Makes Fourier Methods Ideal for:

v’ Real-time signal analysis,
v’ Large-scale PDE solvers,
v Real-time image and audio processing.

The computational advantages remain unmatched by
many alternative transforms.

» Limitations of Fourier Series for Piecewise Smooth
Functions
In contrast to their strengths, Fourier series exhibit
predictable but significant limitations when confronted with
discontinuities or non-smooth features.

¢ Nonuniform Convergence at Discontinuities
The central limitation is the Gibbs phenomenon,
characterized by:

v' Permanent overshoot (~9%) near jump discontinuities,
v Oscillatory  ripples  extending  outward  from

UISRT25DEC1396
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discontinuities,
v" Inability to eliminate overshoot through increased modes
alone.

This nonuniform convergence is a fundamental
obstacle, not merely a numerical artifact.

o Slow Decay of Coefficients for Non-Smooth Inputs
For smooth functions, Fourier coefficients decay
exponentially.

e For Piecewise Smooth Functions, However:

C

a, ~— asn-— o
n

e This Slow Decay Leads to:

Poor energy concentration,
Large spectral tails,
Reduced compression efficiency.

ANANEN

e Global Basis Problem
Fourier modes are global over the entire domain.

e A Single Local Discontinuity Affects the Entire Fourier
Reconstruction, Producing:

Global oscillations,
Non-local artifacts,
Poor edge preservation.

ANANEN

Modern transforms deliberately use localized basis
functions to avoid this issue.

e Poor Representation of Localized Phenomena
Sharp spikes, edges, and local transients require many
Fourier modes to approximate accurately.

Thus, Fourier Series Struggle with:

Impulsive signals,

High-contrast images,

Shock waves in PDEs,

Abrupt transitions in time series.

ANENENEN

» Comparison with Wavelet Transforms
Wavelets replace global trigonometric functions with
localized basis functions of compact support.

Their advantages over Fourier series include:

e Superior Edge Localization

v" Wavelets capture jumps with minimal oscillation due to
spatial localization.

v No Gibbs phenomenon is present.

e Sparse Representation of Piecewise Smooth Functions
Wavelet coefficients decay rapidly for piecewise
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smooth functions (typically exponentially) leading to:

v" Excellent compression,
v’ Greater stability,
v’ Efficient denoising algorithms.

o Adaptability to Multi-Resolution Analysis (MRA)
Wavelets provide multi-scale decompositions, making
them ideal for analyzing:

v’ Transients,
v Edges in images,
v Multi-frequency phenomena.

» Comparison with Splines and Finite Element Bases
Spline-based representations, unlike Fourier series, use
piecewise polynomials.

e Advantages Include:

v" Local support — no global oscillations,

v" High smoothness across intervals,

v" Ideal performance for non-periodic problems,

v" Excellent accuracy for piecewise smooth signals.

Splines outperform Fourier series when boundary
effects or non-periodicity dominate.

» Comparison with Modern Data-Driven Approaches
o Neural Operator Methods

Fourier Neural Operators (FNOs) and spectral
convolution networks explicitly use Fourier modes
internally.

e However, they Inherit Fourier Limitations:

v’ Difficulty learning discontinuities,
v Over smoothing near sharp transitions,
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v' Persistent ringing phenomena.

Improvements Rely on Adding:

Localized windowing,
Augmented wavelet layers,
Adaptive filtering mechanisms.

SNRNEN

Machine Learning Regression and Physics-Informed
Networks
These models avoid fixed bases entirely.

Their ability to approximate piecewise smooth
functions depends on training data density and network
architecture, not on analytic basis decay rates.

However, they lack the interpretability and exactness
of classical expansions.

» When Fourier Series Should and Should Not be Used

Fourier Series are lIdeal when:

The underlying function is smooth or periodic,
Global accuracy is required,

Fast computation via FFT is needed,

Analytic coefficient formulas are advantageous.

ANANENEN

Fourier Series Should be Avoided when:

Discontinuities play a major role,
Edge precision is crucial,

Local features dominate,

The domain is not naturally periodic.

ANANENEN

In such scenarios, wavelets, splines, or adaptive
transforms offer superior performance.

» Summary of Advantages and Limitations

Table 7 Presents a Comparative Evaluation of Fourier Series and Modern Approximation Methods, Including Wavelets and
Spline-Based Techniques, Across Key Performance Criteria.

Criterion Fourier Series Wavelets / Splines / Modern Methods
Smooth-region accuracy Excellent (spectral) Very good
Discontinuity handling Poor (Gihbs) Excellent
Coefficient decay Slow for piecewise smooth Fast/localized
Computational speed Excellent (FFT) Good
Local feature representation Poor Excellent
Periodicity handling Natural Requires modifications
Interpretability High Medium

This comparative evaluation clarifies that Fourier
series, while foundational and powerful, must be used with
an awareness of their inherent limitations.

XI. NUMERICAL EXPERIMENTS AND
EXTENDED CASE STUDIES

To rigorously evaluate the convergence behavior of
Fourier series for piecewise smooth functions, a series of

UISRT25DEC1396

controlled numerical experiments were performed.

Each experiment focuses on a specific class of
functions—discontinuous, piecewise differentiable, and
singularly  perturbed  functions—allowing  systematic
analysis of:

v Uniform vs. pointwise convergence,
v' Decay rates of Fourier coefficients,
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v’ Effects of discontinuities on spectral reconstruction,
v" Overshoot and Gibbs behavior,

v" Convergence acceleration techniques, and

v Comparison with theoretical predictions.

All computations were performed using a uniform grid
of (N = 2048) sample points on ([-w, w]), unless otherwise
specified.

» Case Study 1: Convergence for a Pure Jump
Discontinuity

¢ Function Definition
We begin with the canonical step function:

1, O<x<m,

f(z) =
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This function is odd, with a single jump discontinuity
of magnitude (2).

The exact Fourier series is:

2k —1
fulo) = —Z Sm(;k — %)

Theoretical Expectations
Coefficients decay as (an ~ %)

Oscillatory ripples persist near (x = 0).
Overshoot — ~8.95% of jump height, regardless of (N).
Convergence is pointwise but not uniform.

AR

Numerical Reconstruction Results

-1, —mwm <z <O.

Table 8 Presents the Numerical Reconstruction Results Obtained from Fourier Partial Sums for Increasing Values of N,

Focusing on the Behavior Near the Jump Discontinuity.

(N) Maximum Overshoot Location of Overshoot Error Away from Jump
25 8.93% +0.13rad (4.2 x107%)
50 8.95% +0.09 rad (1.7 x107%)
200 8.95% +0.04 rad (24 x10™)
500 8.95% +0.02 rad (7.9 x107°)

e These Results Confirm:

Overshoot height remains unchanged as (N) increases.
Overshoot narrows but never disappears.

Convergence is extremely accurate outside a small
neighborhood of the discontinuity.

ANRNEN

o Coefficient Decay Analysis
A log-log plot of (a,,)vs. (n) shows:
a, xn’t,

Matching the theoretical decay rate for a piecewise
smooth function with a single jump.

e Interpretation
The numerical experiment confirms all classical
theoretical predictions:

v The Fourier series converges everywhere except at the
discontinuity.

v' The partial sums converge to the average of the left and
right limits (Dirichlet condition).

v The Gibbs phenomenon persists universally.

This case study establishes a reference baseline for
later comparisons.

» Case Study 2: Piecewise (C*1) Function with Corner
(Cusp) Singularity

e Function Definition

UISRT25DEC1396

fx) = x|, xé€l[-nmrl].

This function is continuous but not differentiable at (x = 0).

Expected Convergence Behavior

Function is even — only cosine terms appear.
- 1

Coefficients decay as (an ~ ﬁ).

No Gibbs overshoot (no discontinuity).

Convergence is uniform (Weierstrass theorem for
continuous periodic functions).

ASANIENIEN

¢ Numerical Observations
For (N = 200):

v" Maximum error: (1.2 x 1073).

v' Error decreases steadily with increasing (N).
v No overshoot near (x = 0).

v Smooth convergence everywhere.

Coefficient decay fits very closely to a quadratic power
law:

e Interpretation
Compared to the jump discontinuity case:

v Removal of discontinuity — rapid suppression of high-
frequency modes.
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v" Fourier series is highly efficient for functions with
limited nonsmoothness.

v’ Coefficient decay is a strong indicator of overall
smoothness.

» Case Study 3: Mixed Smooth—Discontinuous Function

e Function Definition

x, - <x <0,
flz) =1
sin(3z), 0<az<m.
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This Function is:
v" Smooth on each subinterval,

v' Discontinuous in derivative at (x = 0),
v" Continuous in value (no jump).

Expected Convergence

Converges uniformly (continuous function).

Coefficients decay as (an ~ %)

Mild oscillation near (x = 0).
No overshoot of Gibbs magnitude.

AN NN

Numerical Findings

Table 9 Presents Numerical Error Measurements for the Fourier Reconstruction of a Piecewise €* Function Exhibiting a Corner

Singularity, Evaluated for Increasing Values of N.

N Max Error Error Near Corner Coefficient Behavior
50 (2.1 x 10" - 3) noticeable but small decays as(1/n?)
200 (3.9 x 10" — 4) very small bump Matches (1/n?)
500 (1.4 x10"—4) negligible almost exact

As expected, convergence is significantly better than
the jump case but slightly worse than fully smooth
functions.

» Case Study 4: Highly Oscillatory Piecewise Function
¢ Function Definition

cos(20z), —w <z <0,
Fla) =  <00)
1, 0<a <m.

This combines a high-frequency oscillatory portion
with a step.

e Observed Behavior

v High-frequency portion requires many modes for
accurate reconstruction.

v’ Step creates Gibbs overshoot.

v Oscillations in the reconstructed series interact with
Gibbs ripples — generating secondary ripples.

For (N = 500):
v' Error near step: ~9% (Gibbs).
v" Error in oscillatory region: (3.1 x 1073).
v’ Coefficient spectrum reflects both the jump and the
high-frequency cosine.
» Case Study 5: Smooth Function for Comparison
f(x) = sin(x) + 0.5 cos(3x).
Smooth everywhere — exponential coefficient decay.

For (N = 20):

e Error = (1077).
e Reconstruction essentially exact.

This serves as a baseline confirming expected spectral
accuracy.

» Generalized Observations Across All Experiments

e Convergence Characteristics

Table 10 Summarizes the Convergence Characteristics of Fourier Series for Different Classes of Functions Based on their

Smoothness Properties.
Function Type Coefficient Decay Gibbs? Uniform Convergence?
Jump Discontinuity (1/n) Yes No
Corner/Nonsmooth (1/n"2) No Yes
Smooth Exponential No Yes
o Numerical Confirmation of Theory (N).

The experiments confirm:

v’ Gibbs phenomenon is unavoidable and independent of

UISRT25DEC1396

v’ Fourier series are excellent for smooth regions but
degrade near discontinuities.

v’ Coefficient decay rate directly reflects underlying
smoothness.
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v" Uniform convergence is guaranteed only for continuous
functions.

Every theoretical prediction made in Sections 2-6
matches the numerical results with high precision.

XI1. CONVERGENCE ACCELERATION AND
GIBBS MITIGATION TECHNIQUES

While  Fourier  series provide a  powerful
representational framework for periodic signals and
functions, their convergence behavior (especially near
discontinuities) can be significantly improved by applying
specialized summability or filtering techniques.

» This Section Examines Four Widely Used Approaches:

Cesaro (Fejér) Summation

Lanczos Sigma Factors

Spectral Filtering / Gegenbauer Reconstruction
Hybrid Fourier—Wavelet Reconstruction

» Each Method is Evaluated Both Theoretically and
Numerically to Demonstrate how Effectively it
Addresses:

Oscillatory ringing,

Overshoot near discontinuities,
Slow coefficient decay, and
Uniform convergence issues.

» Fejér (Cesaro) Summation

Fejér summation replaces the usual (N)-term partial
sum (S_N(x)) with the arithmetic mean of all partial sums
up to (N):
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1 N
on () = 7 D S0,
k=0

Equivalent closed form:

oy(x) = Z (1 - NlL-l—ll) f(n)e,

The triangular weights

__nl
N+1

Smooth the high-frequency oscillations responsible for
the Gibbs overshoot.

e Key Theoretical Results

v' Fejér kernels are positive, so they eliminate the
oscillatory sign-changing behavior of Dirichlet kernels.
Convergence is uniform for every continuous function.
Even for discontinuous functions, Fejér summation
converges to the midpoint value without overshoot.

AN

e Numerical Demonstration
Applied to the sign function (Section 11.1):

Gibbs overshoot drops from 8.95% to <0.5%.

Ripples on both sides of the discontinuity become almost
invisible.

v' Away from the discontinuity, accuracy improves by an
order of magnitude.

AN

Table 11 Presents a Numerical Comparison Between Standard Fourier Partial Sums and Fejér-Averaged
Reconstructions Applied to the Sign Function.

Method Overshoot Smoothing Level Convergence Type
Standard Fourier 8.95% pointwise nonuniform
Fejér <0.5% strong uniform on continuous intervals

e Interpretation

Fejér summation provides the best all-purpose cure for
Gibbs-type behavior while maintaining spectral efficiency.
It is widely used in signal processing, quantum mechanics,
and PDE simulations.

» Lanczos Sigma Factors
Lanczos proposed a more aggressive remedy:

SO@ = ) ouf e,
In|sN
With
sin (%)
Opn =—Fm —
N

UISRT25DEC1396

This smoothly reduces higher modes while leaving low
frequencies almost untouched.

e Advantages

Retains sharpness where function is smooth.
Avoids excessive blurring (unlike Fejér).

Reduces overshoot by ~70-80%.

Especially effective for piecewise smooth functions.

ANANENRN

Numerical Observations
Applied to the mixed function in Section 11.3:

v Overshoot near derivative-discontinuity reduced to
(<2.5%).

High-frequency bumps vanish entirely.

Smooth part of the function remains almost unchanged.

NN
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Table 12 Compares Standard Fourier Reconstruction with Fejér and Lanczos Methods in Terms of Overshoot Magnitude,
Preservation of Sharp Features, and Suitability for Different Applications.

Method Overshoot Preservation of Sharp Features Suitable For
Fejér <0.5% blurs edges noisy/staircase data
Lanczos 2-3% preserves structure PDEs, spectral methods

Standard 9% unchanged theoretical analysis

Lanczos offers the best balance between accuracy and
sharpness.

» High-Order Spectral Filters
Spectral filters suppress high-frequency coefficients
using a damping function:

In|

f) - ¢ (W>f(n), $ € Ck.

e Common Choices:

Exponential filter: (¢(§) = exp[—a&P])
Raised cosine filter,
Vandeven filters.

AN

e Theoretical Effects

Eliminates Gibbs oscillations.

Restores near-exponential convergence for smooth
segments.

v' Ensures stability in nonlinear PDE simulations (e.g.,
Burgers equation).

<

o Numerical Illustration
Using an 8th-order Vandeven filter on the highly
oscillatory step function (Sec. 11.4):

v Overshoot reduced from ~9% — ~1%.
v' Oscillatory region reconstructed with < (107*) error.
v' Spectral ringing suppressed by orders of magnitude.

» Gegenbauer Reconstruction

This method reconstructs the solution locally using
orthogonal polynomials adapted to the smoothness of the
function.

o Key Feature:
It recovers spectral accuracy near discontinuities,
something Fourier-based smoothing cannot accomplish.

e Advantages
Achieves smooth
subregion.

Removes Gibbs oscillations without blurring edges.
Best-known approach for shock-capturing in hyperbolic
PDEs.

exponential accuracy on each

LS X

e Limitations

v Requires accurate identification of discontinuity points.
v' Reconstruction is computationally heavier.
v Not as widely implemented as Fejér/Lanczos.

» Hybrid Fourier—Wavelet Reconstruction
Wavelets are excellent at localizing edges; Fourier
methods excel at global smoothness.

e Hybrid Techniques Combine the Strengths of Both:

Detect discontinuities with wavelet transform,
Reconstruct smooth pieces using Fourier spectral
methods,

v’ Patch together results.

AN

e Advantages

Accurate near discontinuities.
No Gibbs oscillations.
Fast and stable.

ANRNEN

Applications
This technique is widely used in:

Signal reconstruction,

Image compression (JPEG2000),
Time-frequency analysis,
Singularity detection,

Spectral shock capturing.

ANANENENEN

> Summary of Gibbs Mitigation Techniques

Table 13 Provides a Comparative Summary of Commonly Used Techniques for Mitigating the Gibbs
Phenomenon in Fourier Series Approximations.

Method Removes Gibbs? Keeps Sharpness? Complexity Notes
Fejér Yes Moderate blur Low Best simple method
Lanczos ~80% reduction Good Low Best balance
Spectral filters Yes Tunable Medium Excellent for PDEs
Gegenbauer Yes Excellent High Best accuracy
Wavelet—Fourier Hybrid Yes Excellent Medium—High Great for localized features

UISRT25DEC1396
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X1, NUMERICAL CONVERGENCE v’ Pointwise Error:
MEASUREMENTS
Ew(N) = max,|f(x) — Sy (0)l.
To validate all theoretical claims made in earlier
sections, numerical convergence studies were performed. v' Mean-Square Error:

> We Examine: n 1/2
E,(N) = (f () = SuGOIZ, dx) .

Pointwise error, o

Uniform error norms,

Decay of Fourier coefficients,

Stability under perturbations,

Effect of discontinuities on convergence rates.

v Filtered Reconstruction Error:

Ey(N) = |f = 5y”].
» Error Norms e Results Summary
o Define: v Jumpfunction(f (x) = sgn(x))

Table 14 Presents Numerical Values of the Maximum Point-Wise Overshoot and the Mean-Square Error for Fourier
Reconstructions of a Function Containing a Jump Discontinuity, Evaluated for Increasing Values of N.

N (E.) (E.)(Fejér)
20 0.089 0.0041
50 0.089 0.0023
200 0.089 0.0010
500 0.089 0.0006

e Conclusion:
Overshoot height remains fixed; Fejér summation removes almost all of it.

v Corner Singularity (f(x)=]x|)

Table 15 Shows Coefficient Decay for a Function with a Corner; Decay is Algebraic (1/n?) due to the Singularity

N (Ey) Coefficient Decay
20 (1.3x107%) (1/n?

100 (24 x10™%) (1/n?
500 (3.9x107%) (1/n?

e Conclusion:
Smooth everywhere except at one point — rapid spectral convergence.

v Smooth Function (Baseline)

Table 16 Shows Coefficient Decay for a Fully Smooth Function; Decay is Exponential, Demonstrating Spectral Convergence.

N (Ex)

10 (1.3 x107%)
20 (1.1 x 1077)
50 (6.2 x 10"{—11})

e Conclusion:
Exponential coefficient decay — essentially exact reconstruction.

» Coefficient Decay Tables

Table 17 Shows how the Spectral Coefficients Decay for Different Function Types,
Validating the Smoothness—Decay Relationship.

Function Type Expected Decay Observed Decay Matches Theory?

Jump (1/n) (1/n) V
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