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Abstract: Diabetes Mellitus is a chronic metabolic disorder characterized by persistent hyperglycemia due to impaired
insulin secretion, insulin action, or both, leading to serious complications affecting eyes, kidneys, nerves, and the
cardiovascular system. Major advancements in diabetes care began with the discovery of insulin in 1921, transforming
Type 1 Diabetes from a fatal disease to a manageable condition. However, conventional insulin therapy still struggles to
mimic precise physiological glucose—insulin regulation. To overcome this limitation, Artificial Intelligence (Al) has
emerged as a powerful tool in personalized insulin therapy, enabling real-time, data-driven treatment adjustments. Smart
Insulin Pumps, or Artificial Pancreas Systems, utilize CGM feedback combined with Al algorithms for automated insulin
delivery, significantly improving glycemic control and reducing hypoglycemia compared to traditional methods.
Continuous Glucose Monitoring (CGM) integrated with Al enhances glucose trend prediction and enables closed-loop
therapy for both Type 1 and Type 2 Diabetes patients. Al-based mobile health applications further support self-
management by offering real-time alerts, behavioral guidance, and remote clinician monitoring. Predictive analytics now
allow anticipation of hypo/hyperglycemia up to 120 minutes in advance, enabling personalized dose titration and reducing
clinical inertia. Additionally, Al-driven Clinical Decision Support Systems (Al-CDSS) improve inpatient and outpatient
insulin therapy safety by minimizing dosing errors and standardizing care workflows. Overall, integration of Al with
advanced delivery devices and digital platforms marks a transformative shift from reactive to predictive and preventive
diabetes management. These evolving technologies aim to achieve fully autonomous, closed-loop insulin therapy,
improving quality of life and long-term outcomes for individuals with diabetes.
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I INTRODUCTION confirmed the autoimmune nature of T1D through the
detection of islet autoantibodies. Current advancements

Diabetes is a metabolic disorder characterized by
persistent hyperglycemia due to impaired insulin secretion,
insulin action, or both. It affects the metabolism of
carbohydrates, fats, and proteins, and long-term
hyperglycemia can damage vital organs such as the eyes,
kidneys, nerves, and heart [1]. The disease has been
recognized for centuries—first described in ancient Egypt
around 1500 BCE [2], and later called Madhumeha (“honey
urine”) in ancient India [3]. Aretaeus introduced the term
“diabetes” in the 2nd century CE [4], and Thomas Willis
added “mellitus” in the 17th century [5]. The link to
pancreatic dysfunction was discovered in 1889 by
Minkowski and wvon Mering [6], followed by the
breakthrough discovery of insulin in 1921 by Banting and
Best, which transformed diabetes treatment [7].

Type 1 Diabetes mellitus (T1D) is an autoimmune
disorder that destroys pancreatic B-cells, resulting in total
insulin deficiency [8]. Before insulin therapy, T1D was often
fatal in children. The first therapeutic insulin was
successfully used in 1922, earning Banting and Macleod the
Nobel Prize in 1923 [9]. Research in the 1970s-80s
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(2020-2025) focus on genetics, immunotherapy, p-cell
regeneration, and artificial pancreas systems to improve
glycemic outcomes [10].

Type 2 Diabetes mellitus (T2D) is the most prevalent
form and involves insulin resistance with gradual B-cell
failure [11]. Major risk factors include obesity, sedentary
lifestyle, aging, genetics, and poor diet. If uncontrolled,
complications include neuropathy, retinopathy, nephropathy,
cardiovascular disease, and stroke [12]. Recent studies
emphasize roles of gut microbiota, epigenetic changes, fatty
liver, and circadian disruption in disease progression [13].
Management includes lifestyle changes, oral antidiabetics,
and sometimes insulin therapy.

Gestational Diabetes Mellitus (GDM) occurs during
pregnancy due to hormone-induced insulin resistance [14],
generally resolving postpartum but increasing future T2D
risk for mother and child [15]. First recognized as a distinct
condition in the 19th—20th centuries [16], diagnostic criteria
began with the O’Sullivan and Mahan OGTT method in
1964 [17] and later improved by international groups
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including WHO and IADPSG [18]. Poorly managed GDM
can result in complications like macrosomia, pre-eclampsia,
and neonatal hypoglycemia [19].

Other specific types of diabetes include MODY, caused
by single-gene mutations and typically seen in younger
individuals [20], and diabetes due to pancreatic diseases,
endocrine disorders, infections, or long-term medication use
(e.g., glucocorticoids, antipsychotics) [21]. These require
accurate diagnosis to ensure appropriate personalized
treatment [22].

» Discovery of Insulin:

The discovery of insulin is one of medicine’s greatest
breakthroughs. Before insulin, diabetes was a fatal disease
managed only with strict starvation diets that slightly
extended life but caused severe malnutrition. Insulin
transformed diabetes from a deadly condition into a
manageable one.

Key discoveries in the late 19th and early 20th century
shaped our understanding of diabetes. In 1889, Minkowski
and von Mering showed that removing the pancreas in dogs
caused diabetes, proving its role in glucose control [23]. In
1901, Eugene Opie linked diabetes to damage of the islets of
Langerhans [24]. By 1910, Sharpey-Schafer proposed that
these cells produced a single substance—insulin—laying the
foundation for future breakthroughs [25]. In 1921, Banting
and Best successfully isolated insulin at the University of
Toronto, with guidance from Macleod. By using duct-ligated
dog pancreases, they extracted material that lowered blood
sugar in diabetic dogs. Collip later purified it for human use
[26]. In 1923, Eli Lilly began large-scale production of
animal-derived insulin, which worked well but sometimes
caused immune reactions due to differences from human
insulin [27].

In 1955, Frederick Sanger determined insulin’s full
amino acid sequence, showing it has A and B chains linked
by disulfide bonds. This first-ever protein sequencing earned
him the 1958 Nobel Prize and opened the path to synthetic
insulin [28]. In the 1960s—-70s, chemically synthesized and
highly purified insulins helped reduce allergic reactions. A
major milestone came in 1978 when Genentech used
recombinant DNA technology to produce human insulin in
E. coli, enabling large-scale production. This led to the FDA
approval of Humulin in 1982—the first biopharmaceutical
drug [29]. During the 1990s-2000s, insulin analogs were
developed to improve insulin action. Rapid-acting analogs
(lispro, aspart, glulisine) provided quicker, shorter effects
for meals, while long-acting analogs (glargine, detemir,
degludec) offered stable basal coverage for 24-42 hours
[30].

Insulin analogs greatly improved flexibility, glucose
control, and reduced hypoglycemia. With digital advances,
insulin pens (1980s) improved dosing accuracy, insulin
pumps (2000s) enabled continuous infusion, and CGM
devices added real-time glucose data. These innovations led
to closed-loop “artificial pancreas” systems that
automatically adjust insulin using smart algorithms [31]. In
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recent years, the incorporation of Artificial Intelligence (Al)
and Machine Learning (ML) into insulin therapy has
resulted in predictive glucose control systems that anticipate
glucose variations and automatically adjust insulin delivery.
Research has shown notable enhancements in time-in-range
and a decrease in hypoglycemic episodes. By 2025,
innovations will concentrate on oral and inhalable insulin
formulations, nanoparticle-based insulin delivery, and gene
or stem-cell therapies designed to restore natural insulin
production [32].

1. Al APPLICATIONS IN INSULIN THERAPY

» Smart Insulin Pumps (Artificial Pancreas Systems)

The Artificial Pancreas, or Smart Insulin Pump, is a
major innovation that monitors glucose and delivers insulin
in real time, imitating the natural pancreas. Its development
spans over 60 years, evolving from early continuous
infusion ideas to today’s advanced Al-based closed-loop
systems.

Before the 1960s, insulin therapy relied on multiple
daily injections, which poorly mimicked natural insulin
release. In 1963, Dr. Arnold Kadish introduced the first
automated insulin pump—a large, backpack-style device
that delivered continuous insulin and glucose [33]. In the
1970s, Dean Kamen developed the AutoSyringe (AS6C), the
first portable pump for continuous subcutaneous insulin
infusion. It provided basal and bolus doses but lacked real-
time glucose monitoring, so dosing still depended on manual
testing [34]. In the 1980s-1990s, Continuous Glucose
Monitoring (CGM) technology emerged using enzyme-
based sensors to measure glucose in interstitial fluid. In
1999, Medtronic MiniMed released the first commercial
CGM, recording glucose every five minutes for 72 hours
[35]. By the early 2000s, CGMs were paired with insulin
pumps to form sensor-augmented pumps (SAPs), which
provided real-time glucose data but still required users to
manually adjust insulin, keeping them as open-loop systems
[36].

The Artificial Pancreas concept aims to mimic the
body’s natural insulin—glucose feedback using a closed-loop
system where CGM data is processed by an algorithm that
automatically adjusts insulin delivery [37]. Clinical trials in
the mid-2000s by researchers like Hovorka and Kovatchev
showed improved glucose control and reduced
hypoglycemia [38] . In 2013, the FDA approved the
Medtronic MiniMed 530G— the first pump with a
threshold-suspend feature—marking an early step toward
automated insulin therapy [39]. A major breakthrough came
in 2016 with FDA approval of the Medtronic 670G, the first
hybrid closed-loop insulin pump [40]. In 2020, the Tandem
t:slim X2 with Control-1Q advanced glucose control using
Dexcom G6 integration and MPC algorithms. That same
year, Medtronic’s 780G added automated correction boluses
and Bluetooth-based remote monitoring, further improving
automation and user convenience [41].

Since 2020, research has focused on fully closed-loop
systems where algorithms automatically manage all insulin
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doses. The CamAPS FX became the first fully adaptive
closed-loop system approved for all ages and pregnhancy
[31]. Open-source projects like OpenAPS, Loop, and
AndroidAPS also allow users to build DIY artificial
pancreas systems [42]. New dual-hormone systems
delivering both insulin and glucagon show major benefits,
reducing hypoglycemia by up to 70% compared to single-
hormone pumps [43]. Dual-hormone artificial pancreas
systems deliver insulin and glucagon, closely mimicking
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natural pancreatic function and reducing hypoglycemia by
up to 70% [44]. Al algorithms like fuzzy logic and neural
networks personalize insulin delivery. Systems such as
Tandem Control-1Q, CamAPS FX, and Beta Bionics iLet
offer cloud connectivity and remote monitoring [45].
Research is advancing toward nanotech insulin patches,
non-invasive sensors, and multi-hormone systems to achieve
fully automated, needle-free diabetes management by 2025
[32].

Table 1 Timeline Table Smart Insulin Pumps (Avrtificial Pancreas Systems)

Year Key Development Notes
Before Multiple Daily Injections (MDI) Inadequate imitation of natural insulin release.
1960s
1963 First automated insulin pump (Arnold Kadish) Large backpack-style; continuous insulin infusion concept
[33]
1970s AutoSyringe AS6C (Dean Kamen) First portable CSII pump; manual dosing [34]
1980s— Continuous Glucose Monitoring (CGM) Enzyme-based sensors for interstitial glucose [35]
1990s development
1999 Medtronic MiniMed — First commercial CGM 5-min glucose recording for 72 hours [35]
Early 2000s | Sensor-Augmented Pumps (SAPs) Open-loop systems — manual insulin adjustment [36]
Mid-2000s | Closed-loop clinical trials begin Improved glucose control, reduced hypoglycemia [38]
2013 Medtronic 530G FDA-approved Threshold-suspend insulin delivery [39]
2016 Medtronic 670G — First hybrid closed-loop Automated basal insulin adjustment [40]
2020 Tandem t:slim X2 Control-1Q Dexcom G6 + Al algorithm integration [41]
2020 Medtronic 780G Auto-correction boluses + remote monitoring [41]
2021-2023 | CamAPS FX approval Fully adaptive closed-loop for all ages & pregnancy [31]
2020s Dual-hormone APS (Insulin + Glucagon) ~70% | hypoglycemia [43,44]
2023-2025 | Al-based & DIY APS systems OpenAPS, Loop, AndroidAPS [42,45]
By 2025+ | Next-gen non-invasive nanotech & multi-hormone Toward fully autonomous control [32]
APS
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Fig 1 Here are some hybrid closed-loop systems that are currently available or in development: (A) MiniMed 670G with Guardian
Link 3 sensor/transmitter , (B) Omnipod Horizon featuring a patch pump, (C) CamAPS FX algorithm operating on Android, (D)
Tandem t:slim X2 pump combined with Dexcom G6 sensor, (E) Diabeloop DLBG1 algorithm integrated with Kaleido patch pump

and Dexcom G6 sensor
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» Continuous Glucose Monitoring (CGM) with Al :

Continuous  Glucose  Monitoring (CGM) has
transformed diabetes care by enabling real-time glucose
tracking and supporting closed-loop insulin systems. Over
five decades, CGM has evolved from early prototypes to Al-
integrated devices, becoming a major advancement in
diabetes management.

The concept of Continuous Glucose Monitoring
(CGM) emerged in the 1960s, aiming to track glucose
continuously rather than through periodic blood tests. A
major step came in 1982 when Shichiri et al. developed the
first implantable CGM sensor using glucose oxidase [46].
Through the 1980s-1990s, improvements in biosensor
technology enhanced accuracy and biocompatibility,
introducing  microdialysis sampling and advanced
electrochemical sensors [47]. The first commercial CGM
prototype emerged in the 1990s from MiniMed (later
Medtronic), capturing glucose data for up to 72 hours [48].
In 1999, Medtronic’s MiniMed CGMS became the first
FDA-approved CGM for clinical use, providing glucose
readings every five minutes [49] . Later, real-time systems
like Dexcom STS (2004), Abbott FreeStyle Navigator, and
Medtronic Guardian REAL-Time introduced live alerts and
wireless data transmission, greatly improving glucose
control and diabetes management [50].

Advancements in CGM technology improved sensor
accuracy and reduced calibration needs. Devices like
Dexcom G4 (2012) and G5 (2015) brought MARD below
10%, making CGM readings close to lab accuracy [51].
Factory-calibrated sensors removed the need for daily finger
pricks. Integration with insulin pumps led to sensor-
augmented pump (SAP) systems, which provide predictive
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alerts and semi-closed-loop insulin delivery—moving closer
to fully automated diabetes management [52]. Medtronic’s
Guardian Connect (2018) introduced Al-based alerts that
predict high or low glucose levels 10-60 minutes before
they happen. Dexcom G6 (2018) added cloud connectivity
and smartphone sharing for real-time monitoring [53].
Machine learning models like RNNs and LSTMs analyze
CGM data along with insulin, meals, and activity to predict
future glucose trends and support better diabetes control
[54].

Al has helped link CGM devices with digital health
platforms for personalized treatment and remote monitoring.
Systems like Tandem t:slim Control-1IQ and CamAPS FX
use predictive Al to automatically adjust insulin delivery
[55] . From 2023-2025, development has focused on small,
non-invasive sensors and fully automated monitoring
systems. Examples include FreeStyle Libre 3, Dexcom G7,
and the long-lasting Eversense implant, all with Bluetooth
connectivity for continuous data sharing [56]. Al-powered
CGM systems can now predict glucose levels 60-120
minutes in advance with over 90% accuracy. These systems
use cloud-trained algorithms based on millions of glucose
readings, improved through federated learning [57]. They
also connect with wearables like activity and heart-rate
monitors, along with nutrition apps, to build a patient
“Digital Twin”—a virtual model that helps prevent glucose
problems before they happen [32].

By 2025, CGM combined with Al will enable fully
closed-loop insulin therapy, real-time remote monitoring for
clinicians, and predictive analytics to improve diabetes care
at the population level.

Table 2 Evolution of Continuous Glucose Monitoring (CGM) with Al

Year Major Milestone

1960s Concept of continuous glucose tracking emerges [46]

1982 Shichiri et al. develop first implantable CGM sensor (Glucose oxidase-based) [46]
1990s Biosensor technology improves (microdialysis + electrochemical sensors) [47]
1990s First MiniMed continuous glucose monitoring prototype (72-hour data) [48]
1999 MiniMed CGMS — first FDA-approved CGM, readings every 5 minutes [49]
2004 Dexcom STS: first real-time CGM with alert system [50]

2008 Abbott FreeStyle Navigator & Guardian REAL-Time introduced [50]
2012 Dexcom G4 brings accuracy <10% MARD [51]

2015 Dexcom G5 — wireless sharing with smartphones [51]

2018 Guardian Connect — Al-based prediction alerts 10-60 min ahead [52]
2018 Dexcom G6 — factory-calibrated, cloud-connected CGM [53]

2020 Al algorithms (RNN/LSTM) predict glucose trends automatically [54]
2021 Tandem Control-1Q & CamAPS FX Al closed-loop insulin delivery [55]
2023-2025 Libre 3, Dexcom G7, Eversense — ultra-small sensors + remote monitoring [56]
2024-2025 60-120 min predictive accuracy >90% with ML + federated learning [32]

2025 CGM + Al supports digital twin & population-level diabetes prediction [57]
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Fig 2 The study overview includes several important terms: CGM refers to Continuous Glucose Monitor, CSII stands for
Continuous Subcutaneous Insulin Infusion, and HbAlc denotes Glycated Hemoglobin. Additionally, HCL is used for Hybrid
Closed-Loop, MDI signifies Multiple Daily Insulin Injections, and SMS represents Short Messaging Service [31].

» Al-Based Mobile App:

The first mobile applications designed for diabetes
management appeared in the early 2000s. These initial tools
were basic logging systems to track blood glucose levels,
insulin doses, dietary intake, and physical activity [58].
These applications largely depended on manual input and
provided limited feedback or decision-making assistance.
However, the introduction of smartphones in 2007
revolutionized this landscape by granting apps access to
real-time data, cloud storage, and internet connectivity. This
advancement enabled developers to connect glucose meters
through Bluetooth and automate the process of data capture
[59]. During the period from 2010 to 2015, artificial
intelligence (Al) and machine learning (ML) techniques
started to be integrated into mobile diabetes applications.
These apps facilitated predictive analysis of blood glucose
trends [60]. Automated alerts were also provided for
impending hypoglycemia or hyperglycemia [61]. Early
research indicated that Al-driven applications could enhance
patient adherence, engagement, and glycemic control when
compared to traditional manual logging systems [60].

The incorporation of continuous glucose monitoring
(CGM) data has significantly improved these applications,

allowing for  personalized insulin and lifestyle
recommendations tailored to each patient [62]. Since 2017,
Al-driven mobile applications have advanced into complex
platforms that integrate continuous glucose monitoring
(CGM), insulin pumps, wearable activity sensors, and
predictive analytics [63]. Modern applications like mySugr,
Glooko, DreaMed Advisor, and BlueStar utilize machine
learning to tailor their functions to each patient's unique
patterns. This includes aspects such as glucose variability,
meal consumption, physical activity, and sleep [64]. Al-
powered platforms are capable of predicting glucose
fluctuations up to 60 to 120 minutes in advance [65]. They
can recommend adjustments to insulin dosages. They offer
behavioral coaching and enable clinicians to monitor
patients remotely [66]. Recent research carried out in 2025
emphasizes the significance of employing Al-driven digital
twins and cloud-based models to customize therapy,
improve time-in-range, and reduce the likelihood of
hypoglycemia [67].

Such applications have become vital in precision
diabetes care, seamlessly combining continuous monitoring,
real-time analytics, and tailored recommendations to
enhance patient outcomes.

Table 3 Mobile Apps & Al for Diabetes Management

Year / Development / Milestone Notes / Significance
Period

Early First mobile applications for diabetes (logging: glucose, Basic digital version of manual logs; limited
2000s insulin, diet, activity) feedback [58].

2007 Release of smartphones (e.g. iPhone) — enabling better Enabled cloud sync, meter/Bluetooth integration,
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mobile health apps

real-time data [59]

2010- Introduction of Al / machine-learning (ML) in diabetes apps Apps began offering predictions (hyper-

2015 for predictive glucose-trend analysis /hypoglycemia risk) and early decision-support [60]
~2012— Integration of CGM and device data with apps; linking Enabled personalized insulin/lifestyle

2018 pumps/sensors to mobile platforms recommendations; closer to closed-loop ideas [63]

2017 Advanced Al-driven platforms combining CGM, pump data,

Personalized care; trend prediction; remote

onward wearables, predictive analytics monitoring [64]

2018- Use of ML-based analytics for lifestyle factors (meals, More holistic diabetes management beyond just
2022 activity, sleep) to estimate glucose variation glucose logging [65]

2023- Emerging “Digital Twin” and cloud-Al models to customize High accuracy predictions; population-level data;
2025 therapy, improve time-in-range, reduce hypoglycemia precision diabetes care [68]

CGM with Smartphone APP
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Fig 3 This Study Focuses on Continuous Glucose Monitoring (CGM) and Explores Virtual Continuous Glucose Monitoring
(V-CGM) as well from Mobile App [57].

» Predictive Analytics

The application of predictive analytics in insulin
dosing started with rule-based computerized protocols and
evolved throughout the 2010s into sophisticated Al and
machine learning systems. These modern systems combine
various data streams—such as continuous glucose
monitoring (CGM), insulin history, meal information,
activity levels, sleep patterns, and stress factors—to
accurately estimate near-term insulin requirements and
recommend safer, personalized dosing [68]. Early
advancements in machine learning demonstrated the
potential to predict short-term glucose levels and identify
impending hypo- or hyperglycemia from continuous glucose
monitoring (CGM) data. This capability facilitated trend
forecasting and allowed for proactive dose adjustments [69].

Clinical proof-of-concept studies have shown that Al-
assisted insulin-titration decision support systems (iNCDSS)
can meet or surpass traditional weight-based titration
methods in managing glucose levels for inpatients [70].
Hospital implementation studies have demonstrated that

iNCDSS can deliver safe and effective outpatient glycemic
contraol that is comparable to clinician-guided titration, all
while not raising the risk of hypoglycemia [71].
Reinforcement learning and model-based RL frameworks,
developed between 2022 and 2023, have enhanced
algorithms' ability to learn optimal insulin regimens from
longitudinal patient data, thereby optimizing both safety and
time spent within the target range [72]. In 2024, a
comprehensive review validated that Al-driven insulin
management systems enhanced therapy personalization and
facilitated safer dose adjustments by evaluating continuous
physiological and behavioral data [73].

A real-world study conducted in 2025 demonstrated
that explainable machine-learning models provided
consistent dosing recommendations and effectively reduced
clinical inertia in everyday care environments [74]. A
randomized controlled trial conducted in 2025, utilizing a
digital-twin-enhanced decision-support system, showed
enhanced post-meal glucose regulation and outcomes that
were on par with those achieved by expert clinicians [75].

Table 4 Predictive Analytics in Insulin Dosing

Year / Period Key Development
2010s Shift from rule-based protocols to Al/ML for insulin dosing [68]
Early 2010s ML used to predict glucose trends and hypo/hyperglycemia [69]
2018-2020 iINCDSS clinical pilot studies showing improved inpatient control [70]
2020s Hospital and outpatient adoption of Al titration tools [71]
2022-2023 Reinforcement learning for optimized, personalized dosing [82]
2024 Reviews validating Al-based insulin dosing as safer and personalized [73]
2025 (Real-world) Explainable ML reducing clinical inertia [74]
2025 (RCT) Digital-twin system achieving clinician-level dosing outcomes [75]
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» Decision Support Systems for Doctors: on real patient continuous glucose monitoring (CGM) and
Decision Support Systems for Clinicians: A Journey insulin data, marking a significant transition from in-silico
from Rule-Based Protocols to Al-Driven Solutions. Initially, studies to clinical validation [77]. Large contemporary
decision support systems for clinicians were based on rule- reviews illustrate how Al-driven Clinical Decision Support
based computerized insulin protocols. They have now Systems (AI-CDSS) integrate predictive models, clinical
transformed into Al-driven clinical decision support systems guidelines, and explainable machine learning to aid
(AI-CDSS) that evaluate multi-source patient data, including physicians in both inpatient and outpatient environments,
CGM, SMBG, EHR, medications, comorbidities, activity, ultimately helping to address clinical inertia [78]. Recent
and nutrition logs. This evolution enables personalized randomized multicenter implementation studies have
recommendations for insulin initiation and titration plans, demonstrated that real-time Al-assisted insulin titration tools
ultimately minimizing dosing errors and standardizing can perform comparably to seasoned endocrinologists in
patient care [84]. Early systematic reviews and technical adjusting dosages. Furthermore, these tools may enhance
assessments have demonstrated the feasibility and safety of time-in-range without raising the risk of hypoglycemia,
both automated and semi-automated advisors for insulin thereby supporting their safe clinical application [79].
adjustments. These evaluations indicate enhancements in Finally, the ongoing efforts from 2023 to 2025 will
workflow and a decrease in hypoglycemia when compared concentrate on several key areas: regulatory pathways,
to unguided care [76]. ensuring explainability, integrating with hospital electronic
health records (EHRs), and conducting prospective trials.
In 2020, a groundbreaking proof-of-concept Al-DSS These trials aim to showcase the benefits in clinical
demonstrated that machine learning models can provide outcomes and cost-effectiveness prior to broader adoption
reliable basal/bolus recommendations and guidance to [80].

prevent hypoglycemia. This achievement involved training
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Accurate identification Al interventions Auxiliary clinical practice
"Fingerprint" collection of Personalized Improving decision
CGM data management support

Fig 4 The illustration shows three key processes: accurate identification of glucose “fingerprint” data using CGM, Al-driven
personalized interventions, and enhanced clinical decision support. CGM technology collects detailed glucose readings to form a
unique data profile for each patient. These data are then analyzed by advanced Al models to identify patterns and guide
individualized management strategies. Together, this integrated approach enables more precise care, smarter clinical decisions,
and more effective overall diabetes management.[62].
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Personalized Remote monitoring Shared
Management Plan and Intervention Decision making
Fig 5 The diagram highlights how Personalized Management Plans, Remote Monitoring, and Shared Decision Making work
together in modern healthcare. It begins with a Personalized Management Plan created by analyzing each patient’s health status,
lifestyle, and preferences. Remote Monitoring then provides continuous, real-time data, allowing healthcare providers to detect
changes quickly and adjust treatment when needed. At the top, Shared Decision Making ensures open communication, enabling
patients and doctors to discuss options together based on personalized plans and monitoring data. This integrated approach
improves treatment adherence, strengthens trust, and supports more effective patient-centered care [62].
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» Future Prospects of Al in Personalized Insulin Therapy:

The future of Al-driven insulin therapy is focused on
achieving fully autonomous management of diabetes,
significantly reducing the burden on both patients and
healthcare providers. Al-enhanced insulin delivery systems
will combine multi-hormone control, non-invasive sensors,
and adaptive algorithms to more accurately replicate the
natural functions of the pancreas [81]. Advancements in
Digital Twin modeling will facilitate real-time optimization
of therapy, enabling the prediction of personalized glucose
responses to meals, exercise, and stress [82]. Additionally,
federated learning and cloud-integrated platforms will
facilitate insights at the population level while ensuring the
protection of patient privacy[83].

Al-driven Decision Support Systems (DSS) are set to
further integrate into everyday clinical care. They will offer
clear, evidence-based insulin recommendations while
ensuring real-time synchronization with Electronic Health
Records (EHR) [84]. Future mobile applications will
integrate behavioral coaching and mental health analytics to
enhance adherence and achieve better long-term glycemic
results [85]. The integration of Al with smart wearables,
nanotech patches, and implantable biosensors is anticipated
to enable needle-free, closed-loop treatments. This
advancement  promises to  significantly  decrease
complications and enhance the quality of life for individuals
living with diabetes [86].

1. CONCLUSION

Artificial Intelligence has become a significant
transformative tool in managing diabetes, particularly in the
realm of personalized insulin therapy. Over the years,
diabetes has transitioned from a life-threatening disease to a
manageable chronic condition, thanks to crucial
advancements such as the discovery of insulin and
innovations in  insulin  delivery  technologies.The
incorporation of digital technologies—such as Smart Insulin
Pumps, Continuous Glucose Monitoring (CGM), Al-based
mobile applications, predictive analytics, and Al-driven
clinical decision support systems—has greatly enhanced
glucose management. These advancements have lowered the
risk of hypoglycemia and improved the overall quality of
life for individuals living with diabetes.

Today's Al-driven closed-loop systems closely
replicate natural pancreatic activity by automatically
regulating insulin delivery based on real-time glucose data.
This innovative approach shows significantly better results
than conventional care methods.Moreover, mobile and
wearable health technologies have facilitated remote
monitoring, proactive treatment modifications, and
heightened patient engagement, thereby enhancing precision
therapy that is customized to individual metabolic
differences. In addition, sophisticated predictive models and
decision-support systems assist clinicians in optimizing
therapy plans, increasing workflow efficiency while
reducing treatment errors.
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Looking forward, advancements like digital twins,
non-invasive monitoring, nanotechnology-based delivery
systems, and multi-hormonal artificial pancreas devices hold
the promise of enhanced accuracy, safety, and
personalization in diabetes care. Therefore, incorporating Al
into diabetes management not only reflects current
advancements but also paves the way toward a future of
fully automated, highly precise, and patient-centered
diabetes therapies, which could significantly lessen long-
term complications and alleviate the global healthcare
burden.
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