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Abstract: Portable medical devices designed for continuous monitoring of physiological parameters face a critical trade-off
between energy autonomy and monitoring quality. This study presents an adaptive energy management approach based
on the Pareto Set Learning - Multi-Objective Reinforcement Learning (PSL-MORL) algorithm for a system powered by
photovoltaic solar energy recovery. The proposed approach dynamically generates Duty Cycle (DC) modulated according
to the wearer's National Early Warning Score 2 (NEWS2), simultaneously targeting 24-hour energy neutrality operational
(ENO) and compliance with clinical recommendations. A comparative study using MATLAB simulation evaluates three
strategies: the PSL-MORL algorithm, an intensive monitoring policy (D = 14.3%), and an energy-saving policy (DC =
5.26%0). The results demonstrate that the proposed approach guarantees 24-hours autonomy (+42.9% vs. intensive policy),
improves the average NEWS2 compliance reward by 58.4% compared to the energy-saving policy, and optimizes the
allocation of 142 measurements over clinically critical periods. These performances validate the effectiveness of the PSL -
MORL algorithm in reconciling the energy and clinical constraints of autonomous portable medical devices.
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I INTRODUCTION 1. SYSTEM MODEL

Wearable technologies coupled with artificial The proposed system is based on an architecture

intelligence (Al) are playing an increasingly important role in
the field of connected health, enabling early diagnosis and
continuous remote monitoring of patients' health status [1],
[2], [3]. However, the requirements associated with the
acquisition, processing, and continuous transmission of
physiological data demand increased computing power,
resulting in significantly higher energy consumption [4].
Connected wearable devices, integrated into the Internet of
Wearable Things (IoWT) ecosystem, are generally battery-
powered, which limits their operational autonomy [5]. In this
context, optimizing energy efficiency is one of the major
challenges in ensuring the viability and widespread adoption
of IoOWT systems in clinical and ambulatory settings [6].
XCXX.
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consisting of four main components, illustrated in Fig 1: (i) a
photovoltaic solar energy recovery module, (ii) an
electrochemical storage element (battery), (iii) a set of
physiological sensors constituting the system load, and (iv) a
power management unit (PMU) responsible for optimizing
the device's energy consumption [7]. The battery has a
maximum capacity of. We consider that the sensor node has a
variable operating cycle. The power management unit uses
information on the current battery charge level, light
intensity, and sensor data to establish the device's operating
cycle. We also assume that a higher duty cycle results in
increased energy consumption and higher performance of the
sensor node [8].
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Fig 1 System Model

» Solar Energy Harvester

The energy harvester (EH) circuit is connected to a
small 1W solar photovoltaic cell measuring 80x100 mm,
with an energy conversion efficiency of 35% [9]. The
monocrystalline panel has an open-circuit voltage of 8.2V,
with a voltage and current of 6.4V and 170mA, respectively,
at maximum power point. The EH circuit is based on the
LT3652 monolithic buck converter, which operates with a
minimum input voltage of 4.95 V. The LT3652 optimizes
energy transfer from the photovoltaic panel to the battery.
Once charging is complete, the LT3652 automatically enters a
low-power standby mode, in which supply bias currents are
minimized to 85 pA [10].

» Load Components

e Microcontroller with BLE Module

The NINA-B302 module includes a small, self-
contained Bluetooth Low Energy 5 circuit paired with the
nRF52840 microcontroller [11]. It also incorporates a planar
inverted-F antenna, which is tuned using a passive network
consisting of inductors and capacitors, creating a perfectly
matched transceiver system. The nRF52840 microcontroller
includes an Arm Cortex-M4 processor, 1 MB of flash
memory, and 256 KB of RAM. It also includes a CryptoCell
CC310 cryptographic security unit and a fast 32 MHz SPI
interface. This chip operates with a supply voltage range of
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1.7 to 5.5 V and has a current consumption of 0.6 pA in
standby mode and 4.8 mA in TX mode at 0 dBm.

e Heart Rate and SpO2-PPG Sensor

The MAX30102, a clinical-grade sensor, integrates a
pulse oximetry module and a heart rate module. The sensor
incorporates internal LEDs, light detectors, optical elements,
and low-noise electronic components that filter ambient light.
This sensor is software-disabled, enabling low-power
operation with high sampling rates and good signal-to-noise
ratio.

e Temperature Sensor

The MAX30205 is a clinical-grade temperature sensor
offering 16-bit resolution, +0.1°C accuracy, an operating
range of 0 to +50°C, and a supply voltage ranging from 2.7V
to 3.3V. It consumes 600puA during normal operation and
1.65pA in standby mode. This sensor complies with ASTM
E1112 for digital electronic thermometers.

> Sleep and Wake-up Algorithm

The algorithm for sleep and wake functions of the
portable device is shown in Fig 2. The system functions in
two states: dormant and operational. Initially, the sensor
device enters sleep mode.
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Fig 2 Sleep-Wake Scheduling Algorithm

Following that, two sensors measure the essential signs
"temperature, heart rate, SpO2". This crucial data is
subsequently transmitted to the server through the BLE
module. The gathering and relay of crucial information occur
during the To~ phase. Third, the sensors are disabled, after
which the BLE module goes into sleep mode. Fourth, the
medical device's microcontroller goes into sleep mode during
Torr to save energy. Next, the microcontroller reactivates to
enable all sensors and the BLE module during Tow, and this
cycle continues. Ultimately, the phases of this algorithm are
carried out in a repetitive cycle [12].

» Model Mathematique

e Solar Energy Source

The 1-V curve of a single-diode photovoltaic model is
described by equation 1. The photogenerated current varies
according to irradiance and temperature. Its value is given by
Eq 1. The saturation current of the diode depends on
temperature T and is expressed by Eq 2.

VAIRg IR,
I = Ly(G,T) — I(T) (e S 1) v J}; hR o
G
Iph(GvT) = [Iph,rcf + (!(T - T‘rcf)} N Pel .
)
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To represent the captured solar energy, we use the
energy function, e(t), which is equivalent to the total amount
of energy accumulated up to time t. It is represented by Eq 4
[13].

t

€narvest (t) = L Prarvest(u)du (4)

e DC-DC Converter

To ensure energy conversion, the system incorporates a
buck converter. The conversion efficiency n of this converter
is expressed by Eq 5 [14]. The energy produced is stored in a
battery with capacity C. In each interval t € T , the battery
receives energy from the harvesting sources and a charging
source, if charging is enabled. The harvested energy in an

interval ff is a random variable with uncertainty because
environmental conditions can affect the harvested energy. We
have a random variable for the energy harvested for each
interval in T. Furthermore, the target application will draw
energy from the battery to execute the required tasks. These
dynamics of the battery can be captured in Eq 6 [15].

Voutlout
Vinlin+Pioss

7= (5)
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Efyy = Ef + n§l' + E[BQ) —Ef, teT (6)

Where Ef and EF are energy at the beginning of the
current and next interval respectively, 7 is the energy harveter

efficiency, &£ € Ef is the realization of harvested energy at
interval t € T | B(&) is the battery charging flag, E{ is the

charging energy, and Ef is the energy consumed in the
interval t.

e Power Consumption

To model the energy required for the device to operate,
we use the data line, E,,,, which represents the total energy
required to measure, process, and transmit all information
related to physical quantities [13].

3

Epgy(t) = LPDEV(u)du @

EDEV(t) = Pav.q * 1 (8)

Most health monitoring applications adopt a similar
operating model: data is collected by sensors, analyzed in a
processing unit, and then transmitted via a wireless module.
This process is repeated over time, and the function of its
duty cycle is essential in energy consumption: the shorter the
duty cycle, which can be achieved by reducing the active
time t,y or extending the inactive phases t,gr, the lower the
average power consumption. In fact, the expression of power
P,,, asa function of duty cycle D is given by Eq 9, and the

avg
duty cycle D as a function of ¢, is expressed in Eq 10. In
most cases, power Porr << Poy-

Papg = DPoy + (1 — D)Pyry (9)
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_ Lon
ton + torrF (10)

For a multi-state system, the average power
consumption is expressed by Eq 11. For which the sum of the
duty cycles of D; follows Eq 12.

k
Paug = ZDL'PL'
i=1
k
S
i=1

Subsequently, the energy required to operate a wireless
sensor can be broken down into three essential blocks: for
data detection or acquisition P, for information processing
Pprc, @nd for data communication or networking Pygr. In
addition, a small portion of the available energy is devoted to
system management functions, such as the operation of a
real-time operating system (RTOS) or regular system wake-
up. The requirements associated with these management
activities are grouped together in this contribution Pgys.
Together, these elements constitute the overall expression of
the system’s power consumption P,g,, which is formulated
by Eq 13 [16]. Thus, we obtain the average power from Eq
14 by combining Eq 11 with Eq 13.

1)

(12)

Pppy = Psys + Paco + Ppre + Pupr (13)

Povg = DsysPsys + DacoPacg + DprcPrre + DyerPuer (14)
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Fig 3 Power Consumption Profile
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The power P, is formulated in Eq 15, since a sensor

node consists of an active sensor, an op-amp, and an analog-
to-digital converter (ADC).

Paco = Veclacg an (15)

Lacg atr = Isens + Laop + Lanc (16)

The power Ppg. is formulated in Eq 17. In this model,
it is a function of the average packet throughput per second A.

Ppcr = AVpplpretpre a7

Pygr 1S the power consumed by the BLE radio module
to transmit (Tx) and receive (Rx) packets. It is expressed by
Eq 18. This model depends on the data rate D and the RF
power P, ..

D
PNET(Df Pﬂu.t) = VDD W [Iwake twake T IthRx + ITx(Pau.t)th](ls)
ata

I1. ADAPTIVEDUTY CYCLE

» Multi-Objective RL Problem

The energy management problem can be modelled as a
Multi-Objective Markov Decision Process (MOMDP) [17],
represented by a tuple (S, 4. T.v, i, R) | where S is the state
space, A is the action space, T: S x A X S = [0,1] js a
probabilistic ~ transition  function, ¥ = [¥i,¥2-- ¥ml
€ [0,1]™ js a discount factor vector, #: S = [0,1] is a
probability  distribution  over initial  states, and
R = [rl,rZ,...,rm]T : S XA xS > R™js a vector-valued
reward function, specifying the immediate reward for each of
the considered m (m = 2) objectives [18]. In MOMDPs, an
agent behaves according to a policy @e € II, where II is the
set of all possible policies. A policy is a mapping
mg: S — A which selects an action according to a certain
probability distribution for any given state [19]. For brevity,
we use T to denote Tg . The performance of the policy is
measured by the associated vector of expected returns, i.e.,
[F(T[) = ]” = U{ril’;{f:]; ]T with :

JF=E [Z }’ik?’i(sk'akrskﬂ) |7,
L (19)

The MORL problem is then formulated in Eq 20.

max F(m) = max[J7,J5,.... J5 17
T prd

(20)
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In MORL, there exists no single optimal policy that can
maximize all the objectives simultaneously, and we need the
following Pareto concepts [20], [21].

e Definition 1 (Pareto Dominance). For T ' e I, 7 is said
to weakly dominate T (TZ=T') if and only
if Vi € {1,...,m} JF = JF: T is said to dominate
m'(mr>w) if and only if TZm  and
3 € {1,...,m}, JF >

e Definition 2 (Pareto Optimality). A solution T e llis
Pareto optimal I/ AT € [T such that T > T

o Definition 3 (Pareto Set/Front). The set of all Pareto
optimal solutions is called the Pareto set, and the image of
the Pareto set in the objective space is called the Pareto
front.

Each Pareto solution represents an optimal trade-off
among the objectives, and it is impossible to further improve
one of the objectives without deteriorating any other
objectives [21].

» PSL-MORL for ENO-Sensing Priority

E. Liu et al. propose a novel MORL method called
PSL-MORL, which, to the best of their knowledge, is the
first MORL method that covers all preferences over multiple
objectives and outputs a personalized policy network for each
preference [19]. PSL-MORL is a general framework that can
be integrated with any single-objective RL algorithm. As part
of this research, this model was used to solve the energy
management problem of a portable medical device, with the
aim of ensuring energy autonomy while meeting the wearer's
requirements. With this in mind, Figure 1 presents the basic
PSL-MORL algorithm.
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Algorithm 1 : PSL-MORL

Input: Preference distribution 4, environment £, number E of episodes, number K of
weights per episode, replay buffer D, batch size N
Output: Hypernetwork parameters ¢ and primary policy network parameters 8,
Initialize the hypernetwork parameters ¢ and policy network parameters 6,;
Initialize replay buffer D;
for episodee = 1toFE do
for each step in the episode do
// Parallel child processes for k € {1, 2, ..., K}
wy ~ SamplePreference(A);
Generate parameters of the policy network by hypernetwork, i.e.,

0> = P(ws);
Obtain the mixed 6 using the Parameter Fusion method on 8, and
65

Observe state s; select action a by the policy mg;
Execute action a in environment E, and observe reward r and next
state s';
Store transition (s, a,r,s’,d, w;) in D;
// Main process
Sample N transitions from D;
Update ¢ and 8, by conducting a single-objective RL algorithm to
maximize the scalarized return by weight w;, i € {1,2,3, ..., N}
end for
end for

Fig 4 PSL-MORL Algorithm

» State’s Definition
The state of the system at instant tx is expressed (Svace (t), Sittu(tic), Ssens (ti) Saise (t)) € S.

Spare (tie) is the state of charge of battery

Table 1 Battery State of Charge Classification Levels

Battery’s SOC Spate ()
SOC < 15% Critical
SOC < 40% Low
SOC < 70% Medium
SOC < 90% Good
SOC > 90% Full

Siu (L) is illuminance (0 to 1000W/m2)

Table 2 Solar Irradiance Classification Levels

Power IHlumination
G <50 W/m2 Dark
G <200 W/m2 Low
G <500 W/m2 Medium
G < 800 W/m2 Strong
G > 8000 W/m2 Very Strong

Ssens (L) js the priority of measurements, classified according to the NEWS standard (0 to 3).
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Table 3 NEWS Score Clinical Priority Classification

NEWS Score Priority
0 Monitoring
1 Normal
2 Urgent
3 Critical
Saist(ti) s the distance from the initial battery level.
Table 4 Energy Distance Classification Levels
Edist Range Priority
Edist < -30% Severe_deficit
Edist < -15 Moderate deficit
Edist < -5 Slight_deficit
Edist< 5 Neutral
Edist < 15 Slight_excess
Edist < 30 Slight_moderate
Edist > 30 Slight_significant

» Action’s Space

The set of actions, A, determines the agent's possible
choices. In this study, the scope of action is defined by a set of
five Duty cycle, denoted by A=
{5.26%,6.25%,7.7%,10%,14.3%}. To save energy, the
smallest value of A must be chosen. But in our case, we are
talking about a medical device. Thus, the ideal value of A is
governed by the NEWS2 standard. These two concepts are
therefore paradoxical. Consequently, the objective is not to
identify an ideal solution, but a set of relevant compromises.
In this sense, we have chosen to apply the multi-objective
approach with Pareto Front to evaluate the adequacy of action

A with state Ssens (tx) [13]

» Adaptive Composite Reward Function

To solve the bi-objective optimization problem inherent
in the energy management of portable devices under clinical
constraints, we propose an adaptive weighted scalarization
function based on the patient's condition. This approach falls
within the framework of Multi-Objective Reinforcement
Learning (MORL) with state-dependent preferences [22].
The composite reward function is defined by the Eq 21.

R(s,a) = C'v-[Wl- Qsurv (s, @) + wy. Qeff(su a) ] + B (21)

where s € 8§ ={0,1,2,3} represents the patient's
NEWS?2 score, , a € A = [0,Thax]  denotes the sensor's
wake time, a and B are the scaling factor and centering term,
respectively. The adaptive weights wi(s) and wa(s) satisfy
the normalization constraint wj(s)+ ws(s) =1 and are
dynamically adjusted according to clinical severity [23], [24].
For non-critical states (s=0), the system prioritizes energy
efficiency with (wy, w,) = (0.3,0.7), while for critical states
(s=3), priority is given to  monitoring  with
(wy,wy) = (0.9,0.1). This state-dependent scalarization
allows the Pareto front to be explored efficiently while
respecting the clinical constraints imposed by the NEWS2
protocol [17], [25]. The parameters 0=20 and B=-10 were
chosen to center the reward function around zero, thus
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facilitating the convergence of the reinforcement learning
algorithm [26].

e The Two Conflicting Objectives are Formalized as
Follows:

v" Objective 1 - Clinical Monitoring Quality: T

he function Qg (s,a) evaluates the compliance of the
measurement frequency with the NEWS2 recommendations,
defined in pieces according to the criticality of the condition:

a
min ( , l) si s = 0(Low risk)
min

‘a' - Topt(5)| , ) .
Qsurp(s,0) =11 — ————— sis € {1,2}(Medium risk)
Tcpt(s)
max (O,l __° ) si s = 3 (Severe risk)

crit (22)
v Objective 2 - Energy Efficiency:

The Q.(a) quantifies energy savings by promoting
extended standby times.

Qrr@ =7 23)

V. RESULTS

To validate the effectiveness of the PSL-MORL
algorithm in the adaptive management of sleep cycles for a
wearable physiological monitoring system, a comparative
study was conducted with two reference policies. This
evaluation aims to demonstrate the ability of the proposed
approach to simultaneously satisfy two fundamental
objectives: ensuring device energy neutrality over a 24-hour
cycle and maintaining an acquisition frequency compliant
with NEWS2 score recommendations.

The three evaluated strategies differ in their
management philosophy. The policy (D = 14.3%) adopts an
intensive monitoring approach independent of the patient's
clinical status, there by maximizing measurement frequency
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at the expense of energy efficiency. Conversely, the policy
(D = 5.26%) prioritizes energy savings by spacing out
acquisitions, potentially compromising the quality of
physiological monitoring. The PSL-MORL algorithm, for its
part, implements a self-adaptive duty cycle dynamically
modulated according to the NEWS2 score, aiming for an
optimal trade-off between clinical monitoring and energy
autonomy.
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The simulation protocol was executed in MATLAB
over a 26-hours duration, with a solar irradiance of 500 W/m?
maintained for 6 hours, an initial state of charge Bo = 40%,
and a time constant Ton, = 50 s. The clinical data used
correspond to the NEWS scores of a patient in a pathological
state, thus constituting a test scenario representative of real-
world operating conditions.

» Comparison of Energy Profiles
ENO is characterized by Edist(t) = By — B(t)

T _,\,-..-\.—\__\__\444\,\_&_\_\
e
P

P

A
S R R R

™ " "IUJ Mapp sy

Fig 5 State of Charge Variation Profiles for Different Energy Management Policies.

Table 5 Comparative Evaluation of Energy Autonomy Metrics

Metric 1 (D = 14.3%) m, (D=5.26%) PSL-MORL Gain vs 4 Gain vs m,
Autonomy (h) 16.8 24.0 24.0 +42.9% 0%
ASoC Range (%) [-30%,+21%)] [-9%,+27%)] [-309%,23%] +64% -56%

The comparative evaluation of energy profiles
demonstrates the superior performance of the PSL-MORL
algorithm. In terms of autonomy, the proposed approach
guarantees continuous operation for 24 hours, thereby
satisfying the objective of energy neutrality over a daily
cycle. This result, equivalent to that obtained by policy P2,
represents a 42.9% improvement compared to policy P1,
whose 16.8-hour autonomy proves insufficient to ensure
uninterrupted monitoring.

The analysis of state of charge (SoC) variation relative
to the initial value Bo confirms the effectiveness of the
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proposed strategy. The PSL-MORL algorithm exhibits a
fluctuation range of [-30%, +23%], demonstrating judicious
utilization of storage capacity comparable to that of P1 [-
30%, +21%].

In contrast, policy P2 displays a more restricted range [-
9%, +27%], revealing underutilization of energy resources in
favor of excessively conservative management. These results
indicate that the PSL-MORL algorithm succeeds in
reconciling complete energy autonomy with dynamic battery
utilization, thereby validating its ability to simultaneously
optimize the system's energy and operational constraint.
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» Comparison of NEWS2 Compliance
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Fig 6 Reward Evolution Comparison Across Energy Management Policies.

Table 6 Comparative Evaluation of NEWS2 Compliance Metrics

Metric m, (D =14.3%) 1, (D=5.26%) PSL-MORL Gain vs iy Gain vs m,
Reward Range [-6.17, 0.33] [-9.0,3.0] [[9.33,550] | - | e
Average Reward -1.54 -4.45 -1.85 -20% +58.4%
Number of Measurements 173 91 142 -17.9% +56%
The evaluation of NEWS2 protocol compliance powered by solar energy harvesting. Experimental results

reveals the effectiveness of the PSL-MORL algorithm in
clinical monitoring. With a reward range of [-9.33, +5.50],
the proposed approach presents the highest maximum value
among the three strategies, reflecting better adaptation to
critical phases requiring intensive monitoring.

The average reward obtained by PSL-MORL (-1.85)
represents a 58.4% improvement compared to 5 (-4.45),
whose spaced measurement strategy proves inadequate for
clinical requirements. The 20% gap with z; (-1.54) remains
acceptable given the energy gains achieved. In terms of
acquisitions, the PSL-MORL algorithm performs 142
measurements, 56% more than m, while reducing the
number required by m; by 17.9%. This distribution
demonstrates optimized resource allocation, concentrating
measurements during clinically relevant periods while
preserving the system's energy balance.

V. CONCLUSION

This study presented an adaptive energy management
approach based on the PSL-MORL algorithm for
autonomous wearable medical devices. The objective was to
address the inherent trade-off between energy efficiency and
clinical monitoring quality in the context of IOWT systems
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demonstrate that the PSL-MORL algorithm achieves 24-
hour autonomy, ensuring system energy neutrality over a
complete daily cycle, representing a 42.9% improvement
compared to the intensive monitoring policy. Concurrently,
the proposed approach maintains satisfactory compliance
with the NEWS2 protocol, with a 58.4% improvement in
average reward compared to the energy-saving strategy,
while reducing the number of measurements by 17.9%
relative to the intensive policy.

The originality of this contribution lies in the
integration of an adaptive composite reward function, whose
weights are dynamically modulated according to the
patient's NEWS2 score. This state-dependent scalarization
enables efficient exploration of the Pareto front,
concentrating measurement resources during clinically
critical periods while preserving overall energy balance.

However, this study has some limitations. The model
relies on constant solar irradiance conditions during sunlight
phases, without accounting for real-world weather
variations.  Furthermore, validation was performed
exclusively through numerical simulation in MATLAB,
without experimentation on a physical prototype. Finally,
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the discrete action space limited to five duty cycle values
may restrict the system's adaptation granularity.

Nevertheless, this work opens promising perspectives

for the large-scale deployment of autonomous physiological
monitoring devices in ambulatory settings. Future research
will focus on extending the model to hybrid energy
harvesting sources, integrating variable irradiance profiles,
and conducting experimental validation under real clinical
conditions.
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