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Abstract: Portable medical devices designed for continuous monitoring of physiological parameters face a critical trade-off 

between energy autonomy and monitoring quality. This study presents an adaptive energy management approach based 

on the Pareto Set Learning - Multi-Objective Reinforcement Learning (PSL-MORL) algorithm for a system powered by 

photovoltaic solar energy recovery. The proposed approach dynamically generates Duty Cycle (DC) modulated according 

to the wearer's National Early Warning Score 2 (NEWS2), simultaneously targeting 24-hour energy neutrality operational 

(ENO) and compliance with clinical recommendations. A comparative study using MATLAB simulation evaluates three 

strategies: the PSL-MORL algorithm, an intensive monitoring policy (D = 14.3%), and an energy-saving policy (DC = 

5.26%). The results demonstrate that the proposed approach guarantees 24-hours autonomy (+42.9% vs. intensive policy), 

improves the average NEWS2 compliance reward by 58.4% compared to the energy-saving policy, and optimizes the 

allocation of 142 measurements over clinically critical periods. These performances validate the effectiveness of the PSL-

MORL algorithm in reconciling the energy and clinical constraints of autonomous portable medical devices. 
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I. INTRODUCTION 
 

Wearable technologies coupled with artificial 

intelligence (AI) are playing an increasingly important role in 

the field of connected health, enabling early diagnosis and 

continuous remote monitoring of patients' health status [1], 

[2], [3]. However, the requirements associated with the 

acquisition, processing, and continuous transmission of 

physiological data demand increased computing power, 

resulting in significantly higher energy consumption [4]. 

Connected wearable devices, integrated into the Internet of 

Wearable Things (IoWT) ecosystem, are generally battery-

powered, which limits their operational autonomy [5]. In this 
context, optimizing energy efficiency is one of the major 

challenges in ensuring the viability and widespread adoption 

of IoWT systems in clinical and ambulatory settings [6]. 

Xcxx. 

II. SYSTEM MODEL 
 

The proposed system is based on an architecture 

consisting of four main components, illustrated in Fig 1: (i) a 

photovoltaic solar energy recovery module, (ii) an 

electrochemical storage element (battery), (iii) a set of 

physiological sensors constituting the system load, and (iv) a 

power management unit (PMU) responsible for optimizing 

the device's energy consumption [7]. The battery has a 

maximum capacity of. We consider that the sensor node has a 

variable operating cycle. The power management unit uses 

information on the current battery charge level, light 

intensity, and sensor data to establish the device's operating 
cycle. We also assume that a higher duty cycle results in 

increased energy consumption and higher performance of the 

sensor node [8]. 
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Fig 1 System Model 

 

 Solar Energy Harvester 

The energy harvester (EH) circuit is connected to a 

small 1W solar photovoltaic cell measuring 80×100 mm, 

with an energy conversion efficiency of 35% [9]. The 

monocrystalline panel has an open-circuit voltage of 8.2V, 

with a voltage and current of 6.4V and 170mA, respectively, 

at maximum power point. The EH circuit is based on the 

LT3652 monolithic buck converter, which operates with a 

minimum input voltage of 4.95 V. The LT3652 optimizes 
energy transfer from the photovoltaic panel to the battery. 

Once charging is complete, the LT3652 automatically enters a 

low-power standby mode, in which supply bias currents are 

minimized to 85 μA [10]. 

 

 Load Components 

 

 Microcontroller with BLE Module 

The NINA-B302 module includes a small, self-

contained Bluetooth Low Energy 5 circuit paired with the 

nRF52840 microcontroller [11]. It also incorporates a planar 

inverted-F antenna, which is tuned using a passive network 
consisting of inductors and capacitors, creating a perfectly 

matched transceiver system. The nRF52840 microcontroller 

includes an Arm Cortex-M4 processor, 1 MB of flash 

memory, and 256 KB of RAM. It also includes a CryptoCell 

CC310 cryptographic security unit and a fast 32 MHz SPI 

interface. This chip operates with a supply voltage range of 

1.7 to 5.5 V and has a current consumption of 0.6 μA in 

standby mode and 4.8 mA in TX mode at 0 dBm. 

 

 Heart Rate and SpO2-PPG Sensor 

The MAX30102, a clinical-grade sensor, integrates a 

pulse oximetry module and a heart rate module. The sensor 

incorporates internal LEDs, light detectors, optical elements, 

and low-noise electronic components that filter ambient light. 

This sensor is software-disabled, enabling low-power 
operation with high sampling rates and good signal-to-noise 

ratio. 

 

 Temperature Sensor 

The MAX30205 is a clinical-grade temperature sensor 

offering 16-bit resolution, ±0.1°C accuracy, an operating 

range of 0 to +50°C, and a supply voltage ranging from 2.7V 

to 3.3V. It consumes 600μA during normal operation and 

1.65μA in standby mode. This sensor complies with ASTM 

E1112 for digital electronic thermometers. 

 

 Sleep and Wake-up Algorithm 
The algorithm for sleep and wake functions of the 

portable device is shown in Fig 2. The system functions in 

two states: dormant and operational. Initially, the sensor 

device enters sleep mode. 
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Fig 2 Sleep-Wake Scheduling Algorithm 

 

Following that, two sensors measure the essential signs 

"temperature, heart rate, SpO2". This crucial data is 

subsequently transmitted to the server through the BLE 

module. The gathering and relay of crucial information occur 

during the  phase. Third, the sensors are disabled, after 

which the BLE module goes into sleep mode. Fourth, the 
medical device's microcontroller goes into sleep mode during 

 to save energy. Next, the microcontroller reactivates to 

enable all sensors and the BLE module during   , and this 

cycle continues. Ultimately, the phases of this algorithm are 

carried out in a repetitive cycle [12]. 

 

 Model Mathematique 

 

 Solar Energy Source 

The I–V curve of a single-diode photovoltaic model is 

described by equation 1. The photogenerated current varies 
according to irradiance and temperature. Its value is given by 

Eq 1. The saturation current of the diode depends on 

temperature T and is expressed by Eq 2. 

 

                               (1) 

 

                                     (2) 
 

                           (3) 

 

To represent the captured solar energy, we use the 

energy function, e(t), which is equivalent to the total amount 

of energy accumulated up to time t. It is represented by Eq 4 

[13]. 

 

                                                (4) 

 

 DC-DC Converter 

To ensure energy conversion, the system incorporates a 

buck converter. The conversion efficiency η of this converter 

is expressed by Eq 5 [14]. The energy produced is stored in a 

battery with capacity C. In each interval t ∈ T , the battery 

receives energy from the harvesting sources and a charging 

source, if charging is enabled. The harvested energy in an 

interval  is a random variable with uncertainty because 

environmental conditions can affect the harvested energy. We 

have a random variable for the energy harvested for each 

interval in T. Furthermore, the target application will draw 

energy from the battery to execute the required tasks. These 
dynamics of the battery can be captured in Eq 6 [15]. 

 

                                                                    (5) 
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                            (6) 

 

Where  and  are energy at the beginning of the 

current and next interval respectively,  is the energy harveter 

efficiency,  is the realization of harvested energy at 

interval   ,  is the battery charging flag,  is the 

charging  energy, and  is the energy consumed in the 

interval . 

 

 Power Consumption 

To model the energy required for the device to operate, 

we use the data line, , which represents the total energy 

required to measure, process, and transmit all information 

related to physical quantities [13]. 

 

                                                       (7) 

 

                                                           (8) 

 

Most health monitoring applications adopt a similar 

operating model: data is collected by sensors, analyzed in a 

processing unit, and then transmitted via a wireless module. 

This process is repeated over time, and the function of its 

duty cycle is essential in energy consumption: the shorter the 

duty cycle, which can be achieved by reducing the active 

time  or extending the inactive phases , the lower the 

average power consumption. In fact, the expression of power 

  as a function of duty cycle D is given by Eq 9, and the 

duty cycle D as a function of  is expressed in Eq 10. In 

most cases, power . 

 

                                               (9) 

 

                                                                  (10) 

 

For a multi-state system, the average power 

consumption is expressed by Eq 11. For which the sum of the 

duty cycles of   follows Eq  12. 
 

                                                                     (11) 

 

                                                                            (12) 

 

Subsequently, the energy required to operate a wireless 

sensor can be broken down into three essential blocks: for 

data detection or acquisition , for information processing 

, and for data communication or networking . In 

addition, a small portion of the available energy is devoted to 
system management functions, such as the operation of a 

real-time operating system (RTOS) or regular system wake-

up. The requirements associated with these management 

activities are grouped together in this contribution . 

Together, these elements constitute the overall expression of 

the system's power consumption , which is formulated 

by Eq 13 [16]. Thus, we obtain the average power  from Eq 

14 by combining Eq 11 with Eq 13. 

 

                                 (13) 

 

   (14) 

 

 

 
Fig 3 Power Consumption Profile 
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The power  is formulated in Eq 15, since a sensor 

node consists of an active sensor, an op-amp, and an analog-

to-digital converter (ADC). 

 

                                                             (15) 

 

                                       (16) 

 

The power  is formulated in Eq 17. In this model, 

it is a function of the average packet throughput per second λ. 

 

                                                      (17) 

 

 is the power consumed by the BLE radio module 

to transmit (Tx) and receive (Rx) packets. It is expressed by 
Eq 18. This model depends on the data rate D and the RF 

power . 

 

(18) 

 

III. ADAPTIVE DUTY CYCLE 
 

 Multi-Objective RL Problem 

The energy management problem can be modelled as a 

Multi-Objective Markov Decision Process (MOMDP) [17], 

represented by a tuple  , where S is the state 

space, A is the action space,  is a 

probabilistic transition function,  

 is a discount factor vector,  is a 

probability distribution over initial states, and 

  is a vector-valued 
reward function, specifying the immediate reward for each of 

the considered  objectives [18]. In MOMDPs, an 

agent behaves according to a policy  ∈ Π, where Π is the 

set of all possible policies. A policy is a mapping  

, which selects an action according to a certain 

probability distribution for any given state [19]. For brevity, 

we use  to denote  . The performance of the policy is 

measured by the associated vector of expected returns, i.e.,  

 with : 

 

                                      (19) 

 

The MORL problem is then formulated in Eq 20. 

 

                                     (20) 

 

In MORL, there exists no single optimal policy that can 
maximize all the objectives simultaneously, and we need the 

following Pareto concepts [20], [21]. 

 

 Definition 1 (Pareto Dominance). For  ∈ Π,  is said 

to weakly dominate  if and only 

, ;  is said to dominate 

 if and only if  and 

. 

 

 Definition 2 (Pareto Optimality). A solution  ∈ Π is 

Pareto optimal  ∈ Π such that . 

 

 Definition 3 (Pareto Set/Front). The set of all Pareto 

optimal solutions is called the Pareto set, and the image of 

the Pareto set in the objective space is called the Pareto 

front. 
 

Each Pareto solution represents an optimal trade-off 

among the objectives, and it is impossible to further improve 

one of the objectives without deteriorating any other 

objectives [21]. 

 

 PSL-MORL for ENO-Sensing Priority 

E. Liu et al. propose a novel MORL method called 

PSL-MORL, which, to the best of their knowledge, is the 

first MORL method that covers all preferences over multiple 

objectives and outputs a personalized policy network for each 
preference [19]. PSL-MORL is a general framework that can 

be integrated with any single-objective RL algorithm. As part 

of this research, this model was used to solve the energy 

management problem of a portable medical device, with the 

aim of ensuring energy autonomy while meeting the wearer's 

requirements. With this in mind, Figure 1 presents the basic 

PSL-MORL algorithm. 
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Fig 4 PSL-MORL Algorithm 

 

 State’s Definition 

The state of the system at instant  is expressed ( , , , ) ∈ S. 

 

 is the state of charge of battery 

 

Table 1 Battery State of Charge Classification Levels 

Battery’s SOC 
 

SOC < 15% Critical 

SOC < 40% Low 

SOC < 70% Medium 

SOC < 90% Good 

SOC > 90% Full 

 

 is illuminance (0 to 1000W/m2) 

 
Table 2 Solar Irradiance Classification Levels 

Power Illumination 

G < 50 W/m2 Dark 

G < 200 W/m2 Low 

G < 500 W/m2 Medium 

G < 800 W/m2 Strong 

G > 8000 W/m2 Very Strong 

 

 is the priority of measurements, classified according to the NEWS standard (0 to 3). 
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Table 3 NEWS Score Clinical Priority Classification 

NEWS Score Priority 

0 Monitoring 

1 Normal 

2 Urgent 

3 Critical 

 

 is the distance from the initial battery level. 

 

Table 4 Energy Distance Classification Levels 

Edist Range Priority 

Edist < -30% Severe_deficit 

Edist < -15 Moderate_deficit 

Edist < -5 Slight_deficit 

Edist < 5 Neutral 

Edist < 15 Slight_excess 

Edist < 30 Slight_moderate 

Edist > 30 Slight_significant 

 

 Action’s Space 

The set of actions, A, determines the agent's possible 

choices. In this study, the scope of action is defined by a set of 

five Duty cycle, denoted by A= 

{5.26%,6.25%,7.7%,10%,14.3%}. To save energy, the 

smallest value of A must be chosen. But in our case, we are 

talking about a medical device. Thus, the ideal value of A is 
governed by the NEWS2 standard. These two concepts are 

therefore paradoxical. Consequently, the objective is not to 

identify an ideal solution, but a set of relevant compromises. 

In this sense, we have chosen to apply the multi-objective 

approach with Pareto Front to evaluate the adequacy of action 

A with state   [13]. 

 

 Adaptive Composite Reward Function 

To solve the bi-objective optimization problem inherent 

in the energy management of portable devices under clinical 

constraints, we propose an adaptive weighted scalarization 
function based on the patient's condition. This approach falls 

within the framework of Multi-Objective Reinforcement 

Learning (MORL) with state-dependent preferences [22]. 

The composite reward function is defined by the Eq 21. 

 

        (21) 

 

where  represents the patient's 

NEWS2 score, ,    denotes the sensor's 
wake time, α and β are the scaling factor and centering term, 

respectively.  The adaptive weights w₁(s) and w₂(s) satisfy 

the normalization constraint    and are 

dynamically adjusted according to clinical severity [23], [24]. 

For non-critical states (s=0), the system prioritizes energy 

efficiency with , while for critical states 

(s=3), priority is given to monitoring with 

. This state-dependent scalarization 

allows the Pareto front to be explored efficiently while 

respecting the clinical constraints imposed by the NEWS2 

protocol [17], [25]. The parameters α=20 and β=-10 were 

chosen to center the reward function around zero, thus 

facilitating the convergence of the reinforcement learning 

algorithm [26]. 

 

 The Two Conflicting Objectives are Formalized as 

Follows: 

 
 Objective 1 - Clinical Monitoring Quality: T 

he function   evaluates the compliance of the 

measurement frequency with the NEWS2 recommendations, 

defined in pieces according to the criticality of the condition: 

 

  (22) 

 

 Objective 2 - Energy Efficiency:  

The  quantifies energy savings by promoting 

extended standby times. 

 

                                                                (23) 
 

IV. RESULTS 

 

To validate the effectiveness of the PSL-MORL 

algorithm in the adaptive management of sleep cycles for a 

wearable physiological monitoring system, a comparative 

study was conducted with two reference policies. This 

evaluation aims to demonstrate the ability of the proposed 

approach to simultaneously satisfy two fundamental 

objectives: ensuring device energy neutrality over a 24-hour 

cycle and maintaining an acquisition frequency compliant 
with NEWS2 score recommendations. 

 

The three evaluated strategies differ in their 

management philosophy. The policy (D = 14.3%) adopts an 

intensive monitoring approach independent of the patient's 

clinical status, there by maximizing measurement frequency 
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at the expense of energy efficiency. Conversely, the policy 
(D = 5.26%) prioritizes energy savings by spacing out 

acquisitions, potentially compromising the quality of 

physiological monitoring. The PSL-MORL algorithm, for its 

part, implements a self-adaptive duty cycle dynamically 

modulated according to the NEWS2 score, aiming for an 

optimal trade-off between clinical monitoring and energy 

autonomy. 

 

The simulation protocol was executed in MATLAB 
over a 26-hours duration, with a solar irradiance of 500 W/m² 

maintained for 6 hours, an initial state of charge B₀ = 40%, 

and a time constant Tₒₙ = 50 s. The clinical data used 

correspond to the NEWS scores of a patient in a pathological 

state, thus constituting a test scenario representative of real-

world operating conditions. 

 

 Comparison of Energy Profiles 

ENO is characterized by  

 

 
Fig 5 State of Charge Variation Profiles for Different Energy Management Policies. 

 

Table 5 Comparative Evaluation of Energy Autonomy Metrics 

Metric (D = 14.3%) D=5.26%) PSL-MORL Gain vs  Gain vs  

Autonomy (h) 16.8 24.0 24.0 +42.9% 0% 

ΔSoC Range (%) [-30%,+21%] [-9%,+27%] [-30%,23%] +64% -56% 

 

The comparative evaluation of energy profiles 

demonstrates the superior performance of the PSL-MORL 

algorithm. In terms of autonomy, the proposed approach 
guarantees continuous operation for 24 hours, thereby 

satisfying the objective of energy neutrality over a daily 

cycle. This result, equivalent to that obtained by policy P2, 

represents a 42.9% improvement compared to policy P1, 

whose 16.8-hour autonomy proves insufficient to ensure 

uninterrupted monitoring. 

 

The analysis of state of charge (SoC) variation relative 

to the initial value B₀ confirms the effectiveness of the 

proposed strategy. The PSL-MORL algorithm exhibits a 

fluctuation range of [-30%, +23%], demonstrating judicious 

utilization of storage capacity comparable to that of P1 [-
30%, +21%]. 

 

In contrast, policy P2 displays a more restricted range [-

9%, +27%], revealing underutilization of energy resources in 

favor of excessively conservative management. These results 

indicate that the PSL-MORL algorithm succeeds in 

reconciling complete energy autonomy with dynamic battery 

utilization, thereby validating its ability to simultaneously 

optimize the system's energy and operational constraint. 
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 Comparison of NEWS2 Compliance 
 

 
Fig 6 Reward Evolution Comparison Across Energy Management Policies. 

 

Table 6 Comparative Evaluation of NEWS2 Compliance Metrics 

Metric (D = 14.3%) D=5.26%) PSL-MORL Gain vs  Gain vs  

Reward Range [-6.17 , 0.33] [-9.0 , 3.0 ] [-9.33 , 5.50] ------------- ------------- 

Average Reward -1.54 -4.45 -1.85 -20% +58.4% 

Number of Measurements 173 91 142 -17.9% +56% 

 

The evaluation of NEWS2 protocol compliance 

reveals the effectiveness of the PSL-MORL algorithm in 

clinical monitoring. With a reward range of [-9.33, +5.50], 

the proposed approach presents the highest maximum value 
among the three strategies, reflecting better adaptation to 

critical phases requiring intensive monitoring. 

 

The average reward obtained by PSL-MORL (-1.85) 

represents a 58.4% improvement compared to  (-4.45), 

whose spaced measurement strategy proves inadequate for 

clinical requirements. The 20% gap with  (-1.54) remains 

acceptable given the energy gains achieved. In terms of 

acquisitions, the PSL-MORL algorithm performs 142 

measurements, 56% more than  while reducing the 

number required by by 17.9%. This distribution 

demonstrates optimized resource allocation, concentrating 

measurements during clinically relevant periods while 

preserving the system's energy balance. 

 

V. CONCLUSION 

 

This study presented an adaptive energy management 

approach based on the PSL-MORL algorithm for 

autonomous wearable medical devices. The objective was to 
address the inherent trade-off between energy efficiency and 

clinical monitoring quality in the context of IoWT systems 

powered by solar energy harvesting. Experimental results 

demonstrate that the PSL-MORL algorithm achieves 24-

hour autonomy, ensuring system energy neutrality over a 

complete daily cycle, representing a 42.9% improvement 
compared to the intensive monitoring policy. Concurrently, 

the proposed approach maintains satisfactory compliance 

with the NEWS2 protocol, with a 58.4% improvement in 

average reward compared to the energy-saving strategy, 

while reducing the number of measurements by 17.9% 

relative to the intensive policy. 

 

The originality of this contribution lies in the 

integration of an adaptive composite reward function, whose 

weights are dynamically modulated according to the 

patient's NEWS2 score. This state-dependent scalarization 
enables efficient exploration of the Pareto front, 

concentrating measurement resources during clinically 

critical periods while preserving overall energy balance. 

 

However, this study has some limitations. The model 

relies on constant solar irradiance conditions during sunlight 

phases, without accounting for real-world weather 

variations. Furthermore, validation was performed 

exclusively through numerical simulation in MATLAB, 

without experimentation on a physical prototype. Finally, 
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the discrete action space limited to five duty cycle values 
may restrict the system's adaptation granularity. 

 

Nevertheless, this work opens promising perspectives 

for the large-scale deployment of autonomous physiological 

monitoring devices in ambulatory settings. Future research 

will focus on extending the model to hybrid energy 

harvesting sources, integrating variable irradiance profiles, 

and conducting experimental validation under real clinical 

conditions. 
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