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Abstract: Accurate prediction of Test Rack Opening (TRO) pressure is essential for the optimal design and calibration of
gas lift valves, directly affecting unloading stability, gas injection efficiency, and overall production performance.
Traditional approaches relying on force-balance equations and iterative test-rack calibrations are often constrained by
simplifying assumptions and sensitivity to operational variability. This study develops and benchmarks nineteen (19)
machine learning models to predict TRO pressure using a field dataset comprising 328 valves from 20 wells. A rigorous
workflow encompassing data cleaning, feature engineering, multicollinearity reduction, and systematic validation was
implemented. Seventeen input parameters, including dome pressure, fluid gradients, and well depth measurements, were
evaluated. Among the algorithms tested; including linear models, support vector regression, ensemble methods (Random
Forest, Gradient Boosting, XGBoost, LightGBM, CatBoost), and neural networks. The Random Forest Regressor
exhibited the best performance, achieving a test R2 of 0.7437 and an Average Absolute Relative Error (AARE) of 8.87%.
Feature importance analysis revealed Measured Depth, Dome Pressure, and Unloadable Gradient as the primary
predictors, consistent with the physical mechanics of gas-lift systems. Time-series models (ARIMA, Prophet) performed
poorly (R2 < 0.03), confirming that TRO pressure is inherently a static design parameter rather than a dynamic variable.
The proposed predictive framework minimizes reliance on repetitive physical calibration, enables rapid design iterations,
and provides interpretable, data-driven insights for optimizing gas-lift systems and improving operational reliability.
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l. INTRODUCTION (60°F, zero tubing pressure) [3]. Accurate TRO prediction is
essential for determining optimal valve spacing, ensuring

The global energy landscape increasingly demands
efficient hydrocarbon recovery amid declining reservoir
pressures and rising operational costs. Artificial lift systems,
particularly gas lift, are indispensable for maintaining and
enhancing production, especially in offshore and high gas-oil
ratio wells, due to their inherent flexibility and reliability [1].
Gas lift operates by injecting high-pressure gas into the
production tubing, reducing the flowing bottom-hole pressure
and facilitating fluid movement to the surface [2]. The
effectiveness of this system largely depends on the precise
performance of gas lift valves, which control gas injection at
designated depths.

A critical parameter in valve calibration is the Test

Rack Opening (TRO) Pressure, defined as the pressure at
which a valve opens under standardized laboratory conditions
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stable well unloading sequences, and maximizing steady-
state production efficiency [4]. Traditionally, TRO
determination has relied on mechanistic force-balance
equations, such as those derived from the Thornhill-Craver
formulation, and empirical correlations [5]. However, these
conventional approaches often oversimplify complex valve
mechanics, neglect temperature—pressure interactions, and
are sensitive to manufacturing tolerances and operational
variability. Consequently, calibration mismatches, inefficient
gas injection patterns, and suboptimal system designs may
occur, adversely affecting economic returns [6].

The digital transformation of the petroleum industry has
accelerated the adoption of data-driven approaches and
predictive analytics. Machine learning (ML), a subset of
artificial intelligence, provides a powerful framework for
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identifying complex, nonlinear relationships within large,
multivariate datasets that traditional methods may overlook
[7]. In recent years, ML applications have expanded across
petroleum engineering domains, including reservoir
characterization, drilling  optimization, production
forecasting, and artificial lift management [8], [9]. Ensemble
learning methods and hybrid physics-informed ML models,
in particular, have demonstrated remarkable success in
analogous tasks such as production rate prediction and
equipment performance forecasting [10], [11].

Despite these advances, a notable gap exists in the
application of ML to directly predict TRO pressure; a
parameter central to the initial design and calibration of gas
lift valves. Existing research has largely focused on
production forecasting [12], injection rate optimization [13],
and valve failure detection [14], leaving a lack of systematic
investigation into TRO-specific predictive modeling.
Furthermore, comparative evaluations of diverse ML
algorithms for this regression task remain scarce, limiting
guidance for practitioners regarding model selection and
expected performance.

This study addresses this gap by conducting a
comprehensive analysis of multiple ML models for TRO
pressure prediction. Leveraging a curated field dataset, the
research objectives are to: (1) preprocess and analyze
operational data to identify key predictive features, (2)
develop, train, and validate a broad suite of ML algorithms,
ranging from linear models to advanced ensemble methods
and neural networks, and (3) rigorously evaluate and
compare model performance using statistical metrics to
identify the most robust and accurate predictive framework.
The resulting ML tool provides an interpretable, data-driven
solution to enhance gas lift valve calibration, reduce
dependence on repetitive physical testing, and support more
efficient and reliable artificial lift system design.

1. LITERATURE REVIEW

» Conventional TRO Prediction and its Limitations

The theoretical foundation for gas lift valve
performance has historically relied on force-balance
equations and standardized test-rack procedures. The
Thornhill-Craver equation, adapted from orifice flow
calculations, has become an industry standard for estimating
valve throughput [15]. APl Recommended Practices 11V5
and 11V6 established formal procedures for testing and
calibrating gas-lift valves under controlled conditions [3],
[16]. These conventional methods calculate TRO using
parameters such as dome charge pressure, bellows effective
area, and port size, all based on static force-balance
principles [5].

However, significant discrepancies often exceeding 25—
30% have been observed between theoretically predicted and
actual field-measured valve performance [6], [17]. These
deviations arise from inherent limitations of traditional
approaches: (1) oversimplification of dynamic valve
mechanics, including neglecting bellows stacking, stem
friction, and fluid dynamic forces; (2) incomplete accounting
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for high-temperature and high-pressure effects on nitrogen
charge and material properties [18]; and (3) assumptions of
ideal gas behavior and isentropic flow, which diverge from
actual operational conditions. Altarabulsi and Waltrich [18]
demonstrated that ignoring silicone thermal expansion in
nitrogen-charged valves under high-pressure, high-
temperature conditions can result in TRO calculation errors
of 15-25%. Collectively, these limitations highlight the
necessity for more robust and adaptable prediction
methodologies.

» The Rise of Data-Driven Methods in Petroleum
Engineering

The digital transformation of the oil and gas industry,
driven by extensive sensor deployment and real-time data
acquisition systems, has created fertile ground for data-driven
analytics [19]. Machine learning (ML) has emerged as a
transformative tool capable of identifying complex, nonlinear
patterns  within  large,  multidimensional  datasets.
Comprehensive reviews by Tariq et al. [7] and Jo et al. [20]
underscore the widespread adoption of ML in upstream
petroleum applications, including reservoir characterization,
production forecasting, drilling optimization, and equipment
failure prediction. Ensemble methods, such as Random
Forest and gradient boosting algorithms (XGBoost,
LightGBM), are frequently reported as top-performing
regression models due to their robustness to noise and ability
to capture intricate feature interactions [20], [21].

» Machine Learning Applications in Gas Lift Optimization

In the context of artificial lift, ML applications have
predominantly aimed to optimize production outcomes.
Algorithms such as Random Forest, Support Vector
Regression (SVR), and Artificial Neural Networks (ANNS)
have been employed to predict optimal gas injection rates and
forecast well production rates based on operational data [12],
[22]. For example, Ma et al. [12] achieved high predictive
accuracy (R2 > 0.98) for oil production in gas-lifted wells
using Random Forest, identifying key predictors including
water cut (BS&W) and choke size. Additional studies have
applied ML techniques for gas lift valve failure diagnosis and
performance classification [14], [23].

A particularly promising development is the creation of
hybrid physics-informed ML models, which integrate
fundamental physical principles with data-driven learning.
This approach enhances model interpretability and
generalization, particularly in data-scarce scenarios [24],
[25]. Physics-informed neural networks (PINNSs), for
instance, enforce governing equations as constraints during
model training, producing outputs that are both physically
consistent and highly accurate [25].

> ldentified Research Gap

Despite the extensive use of ML in gas lift operations, a
focused gap persists: there is limited research applying
machine learning specifically to predict Test Rack Opening
(TRO) pressure. Most existing studies focus on operational
outcomes (e.g., production rates) or high-level system
diagnostics, neglecting this fundamental calibration
parameter critical to initial valve performance. Moreover, no
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prior study has systematically compared a broad spectrum of
ML algorithms for this static, valve-level regression task.
Addressing this gap presents an opportunity to streamline gas
lift design, reduce calibration costs, and enhance system
reliability from the onset. The present study aims to directly
address this need.

I1. MATERIALS AND METHODS

» Research Design and Data Acquisition

A structured, data-driven methodology was employed,
as illustrated in the proposed framework (Fig. 1). The study
utilized a census-based dataset comprising historical gas lift
design and calibration records, ensuring relevance to real-
world operational conditions. The original dataset contained
392 records with 17 features, collected from 20 wells.
Following preprocessing to address missing target values, the
final modeling dataset consisted of 328 complete records.

DATA COLLECTION
Data Processing

DATA PROCESSING
Feature Engineering

PREPROCESSING
Standardizing numrict features

MODEL DEVELOPMENT
Lincar Regression, Decision Tree,
Random Forest, XGBoost, and CagtBoost

SENSITIVITY ANALYSIS

Local and globsl sensitivity techrniques

YOO QN

..l FEATURE RANKING
AN 2D and 3D plots
VISUALIZATION

Fig 1 Proposed Data-Driven Modeling Framework for Test
Rack Opening (TRO) Pressure Prediction.
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Key variables included valve identifiers (Well ID,
Valve #, Valve Type), depth measurements (Measured
Depth, True Vertical Depth), pressure parameters (Tubing
Pressure, Valve Opening/Closing Pressure, Dome Pressure,
Casing Head Pressures), fluid characteristics (Unloadable
Gradient), and valve specifications (Manufacturer, Type).
The target variable was the measured Test Rack Opening
(TRO) Pressure.

> Data Preprocessing and Feature Engineering
A multi-stage preprocessing pipeline was implemented
to ensure data quality and model readiness.

e Handling Missing Data: Records with missing TRO
values (16.33%) were removed. For missing values in
feature columns, numerical variables were imputed with
the median, and categorical variables were imputed with
the mode (Fig. 2).

e Categorical Encoding: Categorical variables (e.g., Valve
Type, Manufacturer) were converted to numerical format
using Label Encoding to enable processing by ML
algorithms.

e Multicollinearity Analysis and Feature Reduction: Initial
correlation analysis revealed severe multicollinearity
among several pressure and depth variables (Fig. 3 & 4).
Variance Inflation Factor (VIF) analysis confirmed this,
with values exceeding 10 for most features. An automated
iterative removal process eliminated features with
correlation > 0.80 or VIF > 10, prioritizing retention of
features exhibiting higher correlation to the target. This
resulted in the removal of 9 features (e.g., Valve Opening
Pressure, Dome Pressure, True Vertical Depth).

e Engineered Features: A new feature, Depth_per Valve,
was created to capture the interaction between well depth
and valve count:

Measured Depth (ft)
Valve # + 1

Depth_per_Valve =

o Final Feature Set and Splitting: The final set of 7 features
for modeling was: Valve #, Valve Type, Measured Depth
(ft), Unloadable Gradient (psi/ft), Manufacturer,
Specification, and Depth_per_Valve. The dataset was
randomly split into 80% for training (262 samples) and
20% for hold-out testing (66 samples). All numerical
features were standardized using Z-score normalization.
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Fig 3 Correlation Matrix Heatmap Showing Strong Linear Relationships (Multicollinearity) Among Original Numerical Features.
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Fig 4 Bar Chart of the Top 15 Features Most Correlated with the Target Variable (Test Rack Opening Pressure).

» Model Development and Training

Nineteen machine learning models, spanning diverse
algorithmic families, were implemented using Python’s
scikit-learn,  XGBoost, LightGBM, CatBoost, and
Keras/TensorFlow libraries (Table 1).

Hyperparameter tuning was performed for the top tree-
based models (XGBoost, LightGBM, CatBoost, Random
Forest, Decision Tree) using RandomizedSearchCV with 3-
fold cross-validation. A final advanced ensemble,
Ensemble_Tuned, was constructed by combining the
predictions of the five individually tuned models.

» Model Evaluation Framework

Model performance was evaluated on an unseen test
dataset using a comprehensive suite of statistical accuracy
and error metrics to ensure a robust and objective assessment.
The coefficient of determination (R2) was employed to
quantify the proportion of variance in Test Rack Opening
(TRO) pressure explained by each model, providing an
overall measure of goodness-of-fit. Complementing this, the
root mean square error (RMSE) was used to capture the
dispersion of prediction errors in psi, thereby emphasizing
the impact of larger deviations, while the mean absolute error
(MAE) quantified the average magnitude of prediction errors
without bias toward their direction.

Table 1 Implemented Machine Learning Models and their Descriptions

Model

Category Specific Models

Key Characteristics

Linear Models

Linear Regression, Lasso Regression (L1)

Baseline models; Lasso performs feature selection
via regularization.

Tree-Based - Capture non-linear patterns; Random Forest is an
Decision Tree Regressor, Random Forest Regressor
Models ensemble for robustness.
Gradient AdaBoost Regressor, Gradient Boosting Regressor, Sequential error correction; advanced
Boosting XGBoost, LightGBM, CatBoost implementations for speed and accuracy.

Kernel Method

Support Vector Regressor (SVR) with RBF kernel

Effective for high-dimensional spaces and non-
linear relationships.

Neural Multi-Layer Perceptron (MLP), 1D Convolutional Neural Deep learning approaches for complex pattern
Networks Network (CNN) recognition.
Ensemble Voting Regressor (Ensemble), Voting Regressor with Combine predictions of multiple base models to

Models

Tuned models (Ensemble_Tuned)

improve stability and accuracy.
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In addition to absolute error metrics, relative error
measures were incorporated to reflect operational relevance
and facilitate comparison across different pressure ranges.
The average absolute relative error (AARE) was calculated to
express prediction errors as a percentage of measured values,
offering insight into model reliability from a practical
engineering perspective. Similarly, the mean absolute
percentage error (MAPE) was used as a normalized metric to
further assess relative predictive accuracy, particularly
important for evaluating model performance under varying
operating conditions.

To examine model stability and generalizability, a 5-
fold cross-validation procedure was applied to the training
dataset, ensuring that performance outcomes were not
dependent on a single random data split. Furthermore, a
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supplementary  time-series  forecasting analysis  was
conducted using ARIMA, Prophet, and selected high-
performing machine learning models on a chronologically
segmented dataset. This analysis was designed to investigate
potential temporal dependencies in the TRO pressure data
and to validate whether time-dependent modeling approaches
offered any advantage over static regression-based methods.

V. RESULTS

» Overall Model Performance

The predictive outcomes of the nineteen developed
models on the independent test dataset are presented in Table
2. The results indicate substantial variability in model
accuracy, with test R? values ranging between 0.5024 and
0.7437.

Table 2 Performance of the Model Trained and Tested

Rank Model Test R? Test MSE Test RMSE Test MAE Test AARE
1 Random Forest 0.7436 38859.4464 197.1279 112.5514 8.8729
2 CatBoost 0.7432 — 197.3053 118.1248 9.6736
3 SVR 0.7417 39150.8157 197.8656 127.2089 10.8073
4 RandomForest_Tuned 0.7327 — 201.2909 114.6724 9.0375
5 AdaBoost 0.7303 40875.0469 202.1757 121.3402 9.1945
6 Ensemble Tuned 0.7285 — 202.8498 122.3402 9.7324
7 CatBoost_Tuned 0.7216 — 205.4443 125.0663 9.9209
8 Gradient Boosting 0.7141 43344.5747 208.1935 109.8054 9.1515
9 Ensemble 0.7086 — 210.1873 118.7507 9.5526
10 Decision Tree 0.7068 44451.3941 210.8349 110.6837 9.0938
11 LightGBM_Tuned 0.7036 — 211.9540 133.2498 10.7899
12 DecisionTree_Tuned 0.7034 — 212.0286 127.5196 10.1409
13 Lasso Regression 0.6888 47178.6155 217.2063 171.1938 15.4783
14 Linear Regression 0.6887 47185.4102 217.2220 171.2144 15.4820
15 XGBoost_Tuned 0.6880 — 217.4793 132.3307 10.7737
16 MLP-ANN 0.6779 48818.8265 220.9498 160.4472 13.7520
17 XGBoost 0.6314 — 236.3780 142.1000 11.3338
18 LightGBM 0.6297 — 236.9279 146.7810 115714
19 CNN 0.5023 75441.5926 274.6663 219.0419 18.9785

As seen in Table 2, ensemble models based on decision
trees demonstrated superior predictive capability compared to
other algorithmic categories. The Random Forest Regressor
emerged as the best-performing model, recording the highest
test R2 of 0.7437 alongside the lowest RMSE of 197.13 psi.
Its AARE of 8.87% reflects an average deviation of less than
9% from measured TRO values, underscoring its suitability
for practical engineering deployment. CatBoost and SVR
followed closely, exhibiting comparable levels of accuracy.

In contrast, more complex deep learning approaches
(MLP and CNN) and certain gradient boosting models
implemented with default hyperparameters (XGBoost and
LightGBM) delivered weaker performance. The CNN
produced the lowest accuracy (R? = 0.5024), which can be
attributed to the relatively limited dataset size, rendering deep
architectures ineffective for learning robust representations
from tabular data. The relationship between training and test
R2 values across all models is illustrated in Fig. 5. The results
indicate that leading models such as Random Forest and
CatBoost maintained consistent performance across datasets,
suggesting strong generalization and limited overfitting.

NISRT25DEC1210

» Detailed Model Analysis and Residual Diagnostics

Predicted-versus-actual TRO pressure scatter plots were
generated for all models, with a representative subset. These
visualizations corroborate the numerical evaluation results. In
particular, the Random Forest model exhibits a tight
clustering of points along the 45° reference line (y = X),
indicating high predictive accuracy across the full pressure
range. The red dashed line indicates perfect prediction.

Residual diagnostics were further performed for the
Random Forest model to assess systematic bias and error
structure (Fig. 6). The residuals plotted against predicted
values displayed no apparent trend and were symmetrically
distributed around zero. The residual histogram closely
resembled a normal distribution centered near zero, while the
Q-Q plot showed strong alignment with the theoretical
normal line. Collectively, these diagnostics confirm the
robustness of the model, the absence of systematic bias, and
the random nature of prediction errors.
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» Feature Importance Analysis

An examination of feature importance derived from the
optimized Random Forest model is presented in Fig. 7.
Measured Depth (ft) was identified as the most influential
variable, contributing approximately 79% of the total
explanatory power. This finding is consistent with
established petroleum engineering principles, as hydrostatic
pressure is fundamentally depth-dependent. Unloadable
Gradient (psi/ft) and the engineered Depth_per_Valve feature
ranked second and third, emphasizing the role of fluid
properties and valve spacing normalization. Other variables,
including Manufacturer, Specification, and Valve #,
contributed moderately, while Valve Type exhibited minimal
importance, indicating redundancy within the selected feature
subset.
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» Time-Series Forecasting Results

To evaluate whether TRO pressure demonstrates
temporal behavior, time-series forecasting techniques were
applied to data ordered using an engineered date variable.
Both traditional statistical models (ARIMA and Prophet) and
machine-learning-based forecasters (CatBoost, Ensemble,
Ensemble_Tuned) showed extremely poor predictive
capability (Fig. 8). The highest-performing forecasting
approach, Ensemble_Tuned, achieved an R? of only 0.0205,
while ARIMA and Prophet yielded negative R? values,
indicating performance inferior to a naive mean predictor.
Forecast outputs were largely flat or erratic and failed to
track observed values. These results conclusively confirm
that TRO pressure is not a time-dependent variable but rather
a static design parameter governed by fixed well and valve
characteristics at installation.

Measured Depth (ft)

Unloadable Gradient (psi/ft)

Depth_per_Valve .

Specification

Features

Manufacturer

Valve #

Valve Type

04 05 06 07 08
Importance

Fig 7 Feature Importance Scores from the optimized Random Forest Model
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V. DISCUSSION

The results conclusively demonstrate the superiority of
tree-based ensemble methods, particularly Random Forest,
for predicting TRO pressure from static well and valve
parameters. The achieved test R? of 0.7437 represents a
substantial predictive capability, explaining nearly three-
quarters of the variance in TRO. This performance is
particularly significant given the inherent noise and
variability in field-measured calibration data. The 8.87%
AARE suggests the model's predictions are within an
operationally acceptable error margin, potentially reducing
the need for multiple test-rack calibration cycles.

The dominance of Measured Depth in feature
importance (Fig. 8) strongly corroborates the underlying
physics of gas lift systems, where downhole pressure is
fundamentally governed by the hydrostatic head of the fluid
column [2], [15]. The secondary importance of Unloadable
Gradient further emphasizes the role of fluid properties.
Interestingly, dome pressure; a central component in
theoretical force-balance equations [5] was removed during
feature selection due to its extreme collinearity with valve
opening/closing pressures. This suggests that while
physically critical, its predictive information is contained
within other directly correlated pressure measurements in an
operational dataset. The success of ensemble methods like
Random Forest lies in their ability to model complex, non-
linear interactions between these geophysical and operational

NISRT25DEC1210

Fig 8 Performance of Time-Series Forecasting Models (ARIMA, Prophet, ML-Based)

parameters without assuming a predefined functional form, a
limitation of traditional analytical methods [24].

The failure of deep learning models (CNN, MLP) is an
important finding. It underscores that “big data” techniques
are not universally superior; their effectiveness is contingent
on large sample sizes. With 328 samples, the relatively high
parameter count of neural networks led to poor
generalization. This reinforces the principle of selecting
model complexity appropriate to data availability [20].
Similarly, the poor performance of time-series models (Fig.
9) provides critical insight: TRO is not a parameter that
meaningfully evolves over short timescales under normal
operation. It is a calibration setting. Attempts to forecast it
using its own history are fundamentally misguided. This
directs future optimization efforts towards static predictive
modeling or condition-based prediction using indicators of
valve wear, rather than temporal forecasting.

The practical implication of this research is the
development of a data-driven decision support tool.
Engineers can input key known parameters (depth, fluid
gradient, valve specs) to obtain a reliable TRO estimate prior
to physical testing. This can streamline design workflows,
enable rapid evaluation of different valve configurations, and
serve as a quality-check against measured test-rack values,
flagging potential anomalies. The interpretability of the
model via feature importance also provides valuable
engineering insight, guiding focus towards the most
influential design and operational factors.
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VI. LIMITATIONS AND FUTURE WORK

This study is based on data from 20 wells. While
sufficient for robust model comparison, broader validation
across diverse fields (different geologies, fluid types, valve
brands) is necessary to ensure generalizability. Future work
should focus on:

e Expanding the Dataset: Incorporating more wells and
additional features like valve age, specific bellows
characteristics, and detailed temperature profiles.

e Hybrid Physics-Informed ML: Integrating fundamental
force-balance equations as constraints or features within
the ML architecture (e.g., Physics-Informed Neural
Networks) could improve extrapolation accuracy and
physical consistency [25].

¢ Real-Time Application: Developing the model into a real-
time or near-real-time advisory system integrated with
field data historians to provide continuous calibration
insights.

e Uncertainty Quantification: Implementing methods like
conformal prediction or Bayesian modeling to provide
prediction intervals, offering a measure of confidence
crucial for operational decision-making [26].

VIL. CONCLUSION

This study developed and systematically evaluated a
broad range of machine learning models for the prediction of
Test Rack Opening (TRO) pressure in gas lift systems. Out of
the nineteen algorithms assessed, the Random Forest
Regressor emerged as the most effective, achieving a test R2
of 0.7437 and an average absolute relative error of 8.87%.
The model demonstrated a strong ability to capture the
complex and non-linear relationships that govern gas lift
valve behavior. Feature importance analysis further revealed
that Measured Depth and Unloadable Gradient are the most
influential predictors, thereby reinforcing the consistency
between data-driven outcomes and established petroleum
engineering fundamentals. The findings also confirm that
TRO pressure is inherently a static design parameter, as
demonstrated by the poor performance of time-series
forecasting models. The proposed predictive framework
represents a substantial improvement over conventional
iterative calibration techniques by offering a fast, accurate,
and interpretable alternative. Its application can minimize
dependence on repeated physical testing, shorten design
cycles, and improve the overall reliability of gas lift
installations. By effectively integrating machine learning
with core petroleum engineering concepts, this research
provides a practical and scalable approach for enhancing
artificial lift system design and supporting more efficient and
sustainable hydrocarbon production.
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