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Abstract: Accurate prediction of Test Rack Opening (TRO) pressure is essential for the optimal design and calibration of 

gas lift valves, directly affecting unloading stability, gas injection efficiency, and overall production performance. 

Traditional approaches relying on force-balance equations and iterative test-rack calibrations are often constrained by 

simplifying assumptions and sensitivity to operational variability. This study develops and benchmarks nineteen (19) 

machine learning models to predict TRO pressure using a field dataset comprising 328 valves from 20 wells. A rigorous 

workflow encompassing data cleaning, feature engineering, multicollinearity reduction, and systematic validation was 

implemented. Seventeen input parameters, including dome pressure, fluid gradients, and well depth measurements, were 

evaluated. Among the algorithms tested; including linear models, support vector regression, ensemble methods (Random 

Forest, Gradient Boosting, XGBoost, LightGBM, CatBoost), and neural networks. The Random Forest Regressor 

exhibited the best performance, achieving a test R² of 0.7437 and an Average Absolute Relative Error (AARE) of 8.87%. 

Feature importance analysis revealed Measured Depth, Dome Pressure, and Unloadable Gradient as the primary 

predictors, consistent with the physical mechanics of gas-lift systems. Time-series models (ARIMA, Prophet) performed 

poorly (R² < 0.03), confirming that TRO pressure is inherently a static design parameter rather than a dynamic variable. 

The proposed predictive framework minimizes reliance on repetitive physical calibration, enables rapid design iterations, 

and provides interpretable, data-driven insights for optimizing gas-lift systems and improving operational reliability. 
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I. INTRODUCTION 
 

The global energy landscape increasingly demands 

efficient hydrocarbon recovery amid declining reservoir 

pressures and rising operational costs. Artificial lift systems, 

particularly gas lift, are indispensable for maintaining and 

enhancing production, especially in offshore and high gas-oil 

ratio wells, due to their inherent flexibility and reliability [1]. 

Gas lift operates by injecting high-pressure gas into the 
production tubing, reducing the flowing bottom-hole pressure 

and facilitating fluid movement to the surface [2]. The 

effectiveness of this system largely depends on the precise 

performance of gas lift valves, which control gas injection at 

designated depths. 

 

A critical parameter in valve calibration is the Test 

Rack Opening (TRO) Pressure, defined as the pressure at 

which a valve opens under standardized laboratory conditions 

(60°F, zero tubing pressure) [3]. Accurate TRO prediction is 

essential for determining optimal valve spacing, ensuring 

stable well unloading sequences, and maximizing steady-

state production efficiency [4]. Traditionally, TRO 

determination has relied on mechanistic force-balance 

equations, such as those derived from the Thornhill-Craver 

formulation, and empirical correlations [5]. However, these 

conventional approaches often oversimplify complex valve 

mechanics, neglect temperature–pressure interactions, and 
are sensitive to manufacturing tolerances and operational 

variability. Consequently, calibration mismatches, inefficient 

gas injection patterns, and suboptimal system designs may 

occur, adversely affecting economic returns [6]. 

 

The digital transformation of the petroleum industry has 

accelerated the adoption of data-driven approaches and 

predictive analytics. Machine learning (ML), a subset of 

artificial intelligence, provides a powerful framework for 
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identifying complex, nonlinear relationships within large, 

multivariate datasets that traditional methods may overlook 

[7]. In recent years, ML applications have expanded across 

petroleum engineering domains, including reservoir 

characterization, drilling optimization, production 

forecasting, and artificial lift management [8], [9]. Ensemble 

learning methods and hybrid physics-informed ML models, 

in particular, have demonstrated remarkable success in 
analogous tasks such as production rate prediction and 

equipment performance forecasting [10], [11]. 

 

Despite these advances, a notable gap exists in the 

application of ML to directly predict TRO pressure; a 

parameter central to the initial design and calibration of gas 

lift valves. Existing research has largely focused on 

production forecasting [12], injection rate optimization [13], 

and valve failure detection [14], leaving a lack of systematic 

investigation into TRO-specific predictive modeling. 

Furthermore, comparative evaluations of diverse ML 
algorithms for this regression task remain scarce, limiting 

guidance for practitioners regarding model selection and 

expected performance. 

 

This study addresses this gap by conducting a 

comprehensive analysis of multiple ML models for TRO 

pressure prediction. Leveraging a curated field dataset, the 

research objectives are to: (1) preprocess and analyze 

operational data to identify key predictive features, (2) 

develop, train, and validate a broad suite of ML algorithms, 

ranging from linear models to advanced ensemble methods 

and neural networks, and (3) rigorously evaluate and 
compare model performance using statistical metrics to 

identify the most robust and accurate predictive framework. 

The resulting ML tool provides an interpretable, data-driven 

solution to enhance gas lift valve calibration, reduce 

dependence on repetitive physical testing, and support more 

efficient and reliable artificial lift system design. 

 

II. LITERATURE REVIEW 
 

 Conventional TRO Prediction and its Limitations 

The theoretical foundation for gas lift valve 
performance has historically relied on force-balance 

equations and standardized test-rack procedures. The 

Thornhill-Craver equation, adapted from orifice flow 

calculations, has become an industry standard for estimating 

valve throughput [15]. API Recommended Practices 11V5 

and 11V6 established formal procedures for testing and 

calibrating gas-lift valves under controlled conditions [3], 

[16]. These conventional methods calculate TRO using 

parameters such as dome charge pressure, bellows effective 

area, and port size, all based on static force-balance 

principles [5]. 

 
However, significant discrepancies often exceeding 25–

30% have been observed between theoretically predicted and 

actual field-measured valve performance [6], [17]. These 

deviations arise from inherent limitations of traditional 

approaches: (1) oversimplification of dynamic valve 

mechanics, including neglecting bellows stacking, stem 

friction, and fluid dynamic forces; (2) incomplete accounting 

for high-temperature and high-pressure effects on nitrogen 

charge and material properties [18]; and (3) assumptions of 

ideal gas behavior and isentropic flow, which diverge from 

actual operational conditions. Altarabulsi and Waltrich [18] 

demonstrated that ignoring silicone thermal expansion in 

nitrogen-charged valves under high-pressure, high-

temperature conditions can result in TRO calculation errors 

of 15–25%. Collectively, these limitations highlight the 
necessity for more robust and adaptable prediction 

methodologies. 

 

 The Rise of Data-Driven Methods in Petroleum 

Engineering 

The digital transformation of the oil and gas industry, 

driven by extensive sensor deployment and real-time data 

acquisition systems, has created fertile ground for data-driven 

analytics [19]. Machine learning (ML) has emerged as a 

transformative tool capable of identifying complex, nonlinear 

patterns within large, multidimensional datasets. 
Comprehensive reviews by Tariq et al. [7] and Jo et al. [20] 

underscore the widespread adoption of ML in upstream 

petroleum applications, including reservoir characterization, 

production forecasting, drilling optimization, and equipment 

failure prediction. Ensemble methods, such as Random 

Forest and gradient boosting algorithms (XGBoost, 

LightGBM), are frequently reported as top-performing 

regression models due to their robustness to noise and ability 

to capture intricate feature interactions [20], [21]. 

 

 Machine Learning Applications in Gas Lift Optimization 

In the context of artificial lift, ML applications have 
predominantly aimed to optimize production outcomes. 

Algorithms such as Random Forest, Support Vector 

Regression (SVR), and Artificial Neural Networks (ANNs) 

have been employed to predict optimal gas injection rates and 

forecast well production rates based on operational data [12], 

[22]. For example, Ma et al. [12] achieved high predictive 

accuracy (R² > 0.98) for oil production in gas-lifted wells 

using Random Forest, identifying key predictors including 

water cut (BS&W) and choke size. Additional studies have 

applied ML techniques for gas lift valve failure diagnosis and 

performance classification [14], [23]. 
 

A particularly promising development is the creation of 

hybrid physics-informed ML models, which integrate 

fundamental physical principles with data-driven learning. 

This approach enhances model interpretability and 

generalization, particularly in data-scarce scenarios [24], 

[25]. Physics-informed neural networks (PINNs), for 

instance, enforce governing equations as constraints during 

model training, producing outputs that are both physically 

consistent and highly accurate [25]. 

 

 Identified Research Gap 

Despite the extensive use of ML in gas lift operations, a 

focused gap persists: there is limited research applying 

machine learning specifically to predict Test Rack Opening 

(TRO) pressure. Most existing studies focus on operational 

outcomes (e.g., production rates) or high-level system 

diagnostics, neglecting this fundamental calibration 

parameter critical to initial valve performance. Moreover, no 
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prior study has systematically compared a broad spectrum of 

ML algorithms for this static, valve-level regression task. 

Addressing this gap presents an opportunity to streamline gas 

lift design, reduce calibration costs, and enhance system 

reliability from the onset. The present study aims to directly 

address this need. 

 

III. MATERIALS AND METHODS 
 

 Research Design and Data Acquisition 

A structured, data-driven methodology was employed, 

as illustrated in the proposed framework (Fig. 1). The study 

utilized a census-based dataset comprising historical gas lift 

design and calibration records, ensuring relevance to real-

world operational conditions. The original dataset contained 

392 records with 17 features, collected from 20 wells. 

Following preprocessing to address missing target values, the 

final modeling dataset consisted of 328 complete records. 

 

 
Fig 1 Proposed Data-Driven Modeling Framework for Test 

Rack Opening (TRO) Pressure Prediction. 

 

Key variables included valve identifiers (Well ID, 

Valve #, Valve Type), depth measurements (Measured 

Depth, True Vertical Depth), pressure parameters (Tubing 

Pressure, Valve Opening/Closing Pressure, Dome Pressure, 

Casing Head Pressures), fluid characteristics (Unloadable 

Gradient), and valve specifications (Manufacturer, Type). 

The target variable was the measured Test Rack Opening 

(TRO) Pressure. 
 

 Data Preprocessing and Feature Engineering 

A multi-stage preprocessing pipeline was implemented 

to ensure data quality and model readiness. 

 

 Handling Missing Data: Records with missing TRO 

values (16.33%) were removed. For missing values in 

feature columns, numerical variables were imputed with 

the median, and categorical variables were imputed with 

the mode (Fig. 2). 

 Categorical Encoding: Categorical variables (e.g., Valve 
Type, Manufacturer) were converted to numerical format 

using Label Encoding to enable processing by ML 

algorithms. 

 Multicollinearity Analysis and Feature Reduction: Initial 

correlation analysis revealed severe multicollinearity 

among several pressure and depth variables (Fig. 3 & 4). 

Variance Inflation Factor (VIF) analysis confirmed this, 

with values exceeding 10 for most features. An automated 

iterative removal process eliminated features with 

correlation > 0.80 or VIF > 10, prioritizing retention of 

features exhibiting higher correlation to the target. This 
resulted in the removal of 9 features (e.g., Valve Opening 

Pressure, Dome Pressure, True Vertical Depth). 

 Engineered Features: A new feature, Depth_per_Valve, 

was created to capture the interaction between well depth 

and valve count: 

 

𝐷𝑒𝑝𝑡ℎ_𝑝𝑒𝑟_𝑉𝑎𝑙𝑣𝑒 =  
𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝐷𝑒𝑝𝑡ℎ (𝑓𝑡) 

𝑉𝑎𝑙𝑣𝑒 # +  1
 

 

 Final Feature Set and Splitting: The final set of 7 features 

for modeling was: Valve #, Valve Type, Measured Depth 

(ft), Unloadable Gradient (psi/ft), Manufacturer, 

Specification, and Depth_per_Valve. The dataset was 

randomly split into 80% for training (262 samples) and 

20% for hold-out testing (66 samples). All numerical 
features were standardized using Z-score normalization. 
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Fig 2 Percentage of Missing Values in the Original Dataset before Preprocessing. 

 

 
Fig 3 Correlation Matrix Heatmap Showing Strong Linear Relationships (Multicollinearity) Among Original Numerical Features. 
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Fig 4 Bar Chart of the Top 15 Features Most Correlated with the Target Variable (Test Rack Opening Pressure). 

 

 Model Development and Training 

Nineteen machine learning models, spanning diverse 

algorithmic families, were implemented using Python’s 
scikit-learn, XGBoost, LightGBM, CatBoost, and 

Keras/TensorFlow libraries (Table 1). 

 

Hyperparameter tuning was performed for the top tree-

based models (XGBoost, LightGBM, CatBoost, Random 

Forest, Decision Tree) using RandomizedSearchCV with 3-

fold cross-validation. A final advanced ensemble, 

Ensemble_Tuned, was constructed by combining the 

predictions of the five individually tuned models. 

 

 Model Evaluation Framework 

Model performance was evaluated on an unseen test 

dataset using a comprehensive suite of statistical accuracy 
and error metrics to ensure a robust and objective assessment. 

The coefficient of determination (R²) was employed to 

quantify the proportion of variance in Test Rack Opening 

(TRO) pressure explained by each model, providing an 

overall measure of goodness-of-fit. Complementing this, the 

root mean square error (RMSE) was used to capture the 

dispersion of prediction errors in psi, thereby emphasizing 

the impact of larger deviations, while the mean absolute error 

(MAE) quantified the average magnitude of prediction errors 

without bias toward their direction. 

 
Table 1 Implemented Machine Learning Models and their Descriptions 

Model 

Category 
Specific Models Key Characteristics 

Linear Models Linear Regression, Lasso Regression (L1) 
Baseline models; Lasso performs feature selection 

via regularization. 

Tree-Based 

Models 
Decision Tree Regressor, Random Forest Regressor 

Capture non-linear patterns; Random Forest is an 

ensemble for robustness. 

Gradient 

Boosting 

AdaBoost Regressor, Gradient Boosting Regressor, 

XGBoost, LightGBM, CatBoost 

Sequential error correction; advanced 

implementations for speed and accuracy. 

Kernel Method Support Vector Regressor (SVR) with RBF kernel 
Effective for high-dimensional spaces and non-

linear relationships. 

Neural 

Networks 

Multi-Layer Perceptron (MLP), 1D Convolutional Neural 

Network (CNN) 

Deep learning approaches for complex pattern 

recognition. 

Ensemble 

Models 

Voting Regressor (Ensemble), Voting Regressor with 

Tuned models (Ensemble_Tuned) 

Combine predictions of multiple base models to 

improve stability and accuracy. 

 

https://doi.org/10.38124/ijisrt/25dec1210
http://www.ijisrt.com/


Volume 10, Issue 12, December – 2025                              International Journal of Innovative Science and Research Technology 

ISSN No:-2456-2165                                                                                                             https://doi.org/10.38124/ijisrt/25dec1210 

 

 

IJISRT25DEC1210                                                              www.ijisrt.com                                                                             1692 

In addition to absolute error metrics, relative error 

measures were incorporated to reflect operational relevance 

and facilitate comparison across different pressure ranges. 

The average absolute relative error (AARE) was calculated to 

express prediction errors as a percentage of measured values, 

offering insight into model reliability from a practical 

engineering perspective. Similarly, the mean absolute 

percentage error (MAPE) was used as a normalized metric to 
further assess relative predictive accuracy, particularly 

important for evaluating model performance under varying 

operating conditions. 

 

To examine model stability and generalizability, a 5-

fold cross-validation procedure was applied to the training 

dataset, ensuring that performance outcomes were not 

dependent on a single random data split. Furthermore, a 

supplementary time-series forecasting analysis was 

conducted using ARIMA, Prophet, and selected high-

performing machine learning models on a chronologically 

segmented dataset. This analysis was designed to investigate 

potential temporal dependencies in the TRO pressure data 

and to validate whether time-dependent modeling approaches 

offered any advantage over static regression-based methods. 

 

IV. RESULTS 

 

 Overall Model Performance 

The predictive outcomes of the nineteen developed 

models on the independent test dataset are presented in Table 

2. The results indicate substantial variability in model 

accuracy, with test R² values ranging between 0.5024 and 

0.7437. 

 

Table 2 Performance of the Model Trained and Tested 

Rank Model Test_R² Test_MSE Test_RMSE Test_MAE Test_AARE 

1 Random Forest 0.7436 38859.4464 197.1279 112.5514 8.8729 

2 CatBoost 0.7432 — 197.3053 118.1248 9.6736 

3 SVR 0.7417 39150.8157 197.8656 127.2089 10.8073 

4 RandomForest_Tuned 0.7327 — 201.2909 114.6724 9.0375 

5 AdaBoost 0.7303 40875.0469 202.1757 121.3402 9.1945 

6 Ensemble_Tuned 0.7285 — 202.8498 122.3402 9.7324 

7 CatBoost_Tuned 0.7216 — 205.4443 125.0663 9.9209 

8 Gradient Boosting 0.7141 43344.5747 208.1935 109.8054 9.1515 

9 Ensemble 0.7086 — 210.1873 118.7507 9.5526 

10 Decision Tree 0.7068 44451.3941 210.8349 110.6837 9.0938 

11 LightGBM_Tuned 0.7036 — 211.9540 133.2498 10.7899 

12 DecisionTree_Tuned 0.7034 — 212.0286 127.5196 10.1409 

13 Lasso Regression 0.6888 47178.6155 217.2063 171.1938 15.4783 

14 Linear Regression 0.6887 47185.4102 217.2220 171.2144 15.4820 

15 XGBoost_Tuned 0.6880 — 217.4793 132.3307 10.7737 

16 MLP-ANN 0.6779 48818.8265 220.9498 160.4472 13.7520 

17 XGBoost 0.6314 — 236.3780 142.1000 11.3338 

18 LightGBM 0.6297 — 236.9279 146.7810 11.5714 

19 CNN 0.5023 75441.5926 274.6663 219.0419 18.9785 

 

As seen in Table 2, ensemble models based on decision 
trees demonstrated superior predictive capability compared to 

other algorithmic categories. The Random Forest Regressor 

emerged as the best-performing model, recording the highest 

test R² of 0.7437 alongside the lowest RMSE of 197.13 psi. 

Its AARE of 8.87% reflects an average deviation of less than 

9% from measured TRO values, underscoring its suitability 

for practical engineering deployment. CatBoost and SVR 

followed closely, exhibiting comparable levels of accuracy. 

 

In contrast, more complex deep learning approaches 

(MLP and CNN) and certain gradient boosting models 

implemented with default hyperparameters (XGBoost and 
LightGBM) delivered weaker performance. The CNN 

produced the lowest accuracy (R² = 0.5024), which can be 

attributed to the relatively limited dataset size, rendering deep 

architectures ineffective for learning robust representations 

from tabular data. The relationship between training and test 

R² values across all models is illustrated in Fig. 5. The results 

indicate that leading models such as Random Forest and 

CatBoost maintained consistent performance across datasets, 

suggesting strong generalization and limited overfitting. 

 Detailed Model Analysis and Residual Diagnostics 
Predicted-versus-actual TRO pressure scatter plots were 

generated for all models, with a representative subset. These 

visualizations corroborate the numerical evaluation results. In 

particular, the Random Forest model exhibits a tight 

clustering of points along the 45° reference line (y = x), 

indicating high predictive accuracy across the full pressure 

range. The red dashed line indicates perfect prediction. 

 

Residual diagnostics were further performed for the 

Random Forest model to assess systematic bias and error 

structure (Fig. 6). The residuals plotted against predicted 

values displayed no apparent trend and were symmetrically 
distributed around zero. The residual histogram closely 

resembled a normal distribution centered near zero, while the 

Q–Q plot showed strong alignment with the theoretical 

normal line. Collectively, these diagnostics confirm the 

robustness of the model, the absence of systematic bias, and 

the random nature of prediction errors. 
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Fig 5 Bar Chart Comparing Training R² (Blue) and Test R² (Orange) Scores Across Models. 

 

 
Fig 6 Residual Analysis for the Random Forest Model: (a) Residuals vs. Predicted Values, (b) Histogram of Residuals, (c) Q–Q 

Plot for Normality Check. 
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 Feature Importance Analysis 

An examination of feature importance derived from the 
optimized Random Forest model is presented in Fig. 7. 

Measured Depth (ft) was identified as the most influential 

variable, contributing approximately 79% of the total 

explanatory power. This finding is consistent with 

established petroleum engineering principles, as hydrostatic 

pressure is fundamentally depth-dependent. Unloadable 

Gradient (psi/ft) and the engineered Depth_per_Valve feature 

ranked second and third, emphasizing the role of fluid 

properties and valve spacing normalization. Other variables, 

including Manufacturer, Specification, and Valve #, 

contributed moderately, while Valve Type exhibited minimal 
importance, indicating redundancy within the selected feature 

subset. 

 

 Time-Series Forecasting Results 

To evaluate whether TRO pressure demonstrates 
temporal behavior, time-series forecasting techniques were 

applied to data ordered using an engineered date variable. 

Both traditional statistical models (ARIMA and Prophet) and 

machine-learning-based forecasters (CatBoost, Ensemble, 

Ensemble_Tuned) showed extremely poor predictive 

capability (Fig. 8). The highest-performing forecasting 

approach, Ensemble_Tuned, achieved an R² of only 0.0205, 

while ARIMA and Prophet yielded negative R² values, 

indicating performance inferior to a naïve mean predictor. 

Forecast outputs were largely flat or erratic and failed to 

track observed values. These results conclusively confirm 
that TRO pressure is not a time-dependent variable but rather 

a static design parameter governed by fixed well and valve 

characteristics at installation. 

 

 
Fig 7 Feature Importance Scores from the optimized Random Forest Model 
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Fig 8 Performance of Time-Series Forecasting Models (ARIMA, Prophet, ML-Based) 

 

V. DISCUSSION 

 

The results conclusively demonstrate the superiority of 
tree-based ensemble methods, particularly Random Forest, 

for predicting TRO pressure from static well and valve 

parameters. The achieved test R² of 0.7437 represents a 

substantial predictive capability, explaining nearly three-

quarters of the variance in TRO. This performance is 

particularly significant given the inherent noise and 

variability in field-measured calibration data. The 8.87% 

AARE suggests the model's predictions are within an 

operationally acceptable error margin, potentially reducing 

the need for multiple test-rack calibration cycles. 

 

The dominance of Measured Depth in feature 
importance (Fig. 8) strongly corroborates the underlying 

physics of gas lift systems, where downhole pressure is 

fundamentally governed by the hydrostatic head of the fluid 

column [2], [15]. The secondary importance of Unloadable 

Gradient further emphasizes the role of fluid properties. 

Interestingly, dome pressure; a central component in 

theoretical force-balance equations [5] was removed during 

feature selection due to its extreme collinearity with valve 

opening/closing pressures. This suggests that while 

physically critical, its predictive information is contained 

within other directly correlated pressure measurements in an 
operational dataset. The success of ensemble methods like 

Random Forest lies in their ability to model complex, non-

linear interactions between these geophysical and operational 

parameters without assuming a predefined functional form, a 

limitation of traditional analytical methods [24]. 

 
The failure of deep learning models (CNN, MLP) is an 

important finding. It underscores that “big data” techniques 

are not universally superior; their effectiveness is contingent 

on large sample sizes. With 328 samples, the relatively high 

parameter count of neural networks led to poor 

generalization. This reinforces the principle of selecting 

model complexity appropriate to data availability [20]. 

Similarly, the poor performance of time-series models (Fig. 

9) provides critical insight: TRO is not a parameter that 

meaningfully evolves over short timescales under normal 

operation. It is a calibration setting. Attempts to forecast it 

using its own history are fundamentally misguided. This 
directs future optimization efforts towards static predictive 

modeling or condition-based prediction using indicators of 

valve wear, rather than temporal forecasting. 

 

The practical implication of this research is the 

development of a data-driven decision support tool. 

Engineers can input key known parameters (depth, fluid 

gradient, valve specs) to obtain a reliable TRO estimate prior 

to physical testing. This can streamline design workflows, 

enable rapid evaluation of different valve configurations, and 

serve as a quality-check against measured test-rack values, 
flagging potential anomalies. The interpretability of the 

model via feature importance also provides valuable 

engineering insight, guiding focus towards the most 

influential design and operational factors. 
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VI. LIMITATIONS AND FUTURE WORK 

 

This study is based on data from 20 wells. While 

sufficient for robust model comparison, broader validation 

across diverse fields (different geologies, fluid types, valve 

brands) is necessary to ensure generalizability. Future work 

should focus on: 

 

 Expanding the Dataset: Incorporating more wells and 

additional features like valve age, specific bellows 

characteristics, and detailed temperature profiles. 

 Hybrid Physics-Informed ML: Integrating fundamental 

force-balance equations as constraints or features within 

the ML architecture (e.g., Physics-Informed Neural 

Networks) could improve extrapolation accuracy and 

physical consistency [25]. 

 Real-Time Application: Developing the model into a real-

time or near-real-time advisory system integrated with 

field data historians to provide continuous calibration 
insights. 

 Uncertainty Quantification: Implementing methods like 

conformal prediction or Bayesian modeling to provide 

prediction intervals, offering a measure of confidence 

crucial for operational decision-making [26]. 

 

VII. CONCLUSION 

 

This study developed and systematically evaluated a 

broad range of machine learning models for the prediction of 

Test Rack Opening (TRO) pressure in gas lift systems. Out of 
the nineteen algorithms assessed, the Random Forest 

Regressor emerged as the most effective, achieving a test R² 

of 0.7437 and an average absolute relative error of 8.87%. 

The model demonstrated a strong ability to capture the 

complex and non-linear relationships that govern gas lift 

valve behavior. Feature importance analysis further revealed 

that Measured Depth and Unloadable Gradient are the most 

influential predictors, thereby reinforcing the consistency 

between data-driven outcomes and established petroleum 

engineering fundamentals. The findings also confirm that 

TRO pressure is inherently a static design parameter, as 

demonstrated by the poor performance of time-series 
forecasting models. The proposed predictive framework 

represents a substantial improvement over conventional 

iterative calibration techniques by offering a fast, accurate, 

and interpretable alternative. Its application can minimize 

dependence on repeated physical testing, shorten design 

cycles, and improve the overall reliability of gas lift 

installations. By effectively integrating machine learning 

with core petroleum engineering concepts, this research 

provides a practical and scalable approach for enhancing 

artificial lift system design and supporting more efficient and 

sustainable hydrocarbon production. 
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