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Abstract: Rate limiting is a basic API security control governing client request rates in order to prevent backend service 

overloading and abuse. Through request limits per time interval, rate limiters dampen threats such as denial-of-service 

(DoS) assaults and brute-force abuse while ensuring proper use and not allowing a single client to dominate resources. 

However, constant thresholds are unable to respond to dynamic traffic: fixed limits might under-secure during spikes or 

over-limit users when demand varies. Reinforcement learning (RL) offers a dynamic response: framing rate control as a 

sequential decision problem, an RL agent learns optimal throttles from real-time traffic cues. It can take this form as a 

Markov decision process solved by Q-learning so iteration occurs based on rewards. States can indicate traffic metrics and 

actions modify rate limits or invoke secondary verification while the reward balances blocking attackers versus preserving 

rightful access. What emerges is an AI-controlled rate limiter which continuously fine-tunes itself in response to shifting 

patterns in real-time, frequently lowering false positives (good requests blocked) and false negatives (attacks missed) relative 

to static rules. Advantages include enhanced resistance in shifting abuse modi operandi in addition to smoother service upon 

traffic spikes. Through such adaptiveness even fairness is enhanced as it separates legitimate high-volume use from attack 

behavior so no single client dominates. Difficulties are inherent training or simulation sufficiency requirements within 

greater computational overhead for online learning in addition to decision modeling inherent within real-time constraints. 

Generally, RL-controlled dynamic rate limiting offers a contextual API protection which shifts gears in order stay functional 

yet still protect when use patterns shift. 
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I. INTRODUCTION 

 

 Background of the Study 

APIs (application programming interfaces) are the 

major strength of the current digital landscape. They permit 

unified interactions between services, applications, and users. 

With the rise of microservices architectures, cloud-native 

designs, and AI workflows, APIs have become essential. 

However, these APIs are fast becoming the most critical 

points of attack for cybercriminals. In the absence of 

vulnerability mitigation methods, APIs are subject to cyber 
threats like credential stuffing, scraping, account 

enumeration, and denial of service (DoS) attacks, all of which 

could destabilize services in no time. Quota restrictions which 

cap user requests are the primary control which sustains 

balance in a system, equitable service distribution, preserves 

infrastructure integrity (Kong, 2024). 

 

API gateways and proxies still make use of static rate-

limiting methods, fixed window counters, sliding window 

logs, token bucket and leaky bucket algorithms (API7.ai, 

2025; Kong, 2024). These methods, albeit simple to use, 

suffer from rigidity and lack adaptability. During sudden 

legitimate automated bursts from AI agents, static rigidity 

could throttle legitimate traffic. On the other hand, static 

rigidity could also be the reason why distributed malicious 
traffic bypass sophisticated patterns, going undetected (Todd 

et al., 2025). 
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API threats have been climbing the charts, sparking 

concerns. In 2024 alone, Akamai reported a staggering 150 

billion API attacks. With a boost in e-commerce, finance and 

SaaS, bot related API traffic surged 372 %. 

 

Additionally, API-based agents and crawlers powered 

by AI technology pose new threats; some datasets indicate 

that over one-third of the internet is now accessed via API 
agents and non-browser powered agents. 

 

To combat this new threat, adaptive or dynamic rate 

limiting is gaining traction and being coined as a solution. 

Unlike fixed thresholds, this approach moves limits up or 

down in sync with the real-time system indicators like CPU 

load, traffic patterns, or memory usage (Syncloop, 2024). By 

applying machine learning, more sophisticated systems 

attempt to proactively detect and modify preset boundaries 

within the scope of prediction, demand surge, multi-

dimensional request timing, request payload patterns, and 
user action patterns (Nordic APIs, July 2025; AI-based 

frameworks, May 2025). 

 

The promise of these dynamic systems is described with 

boasting service availability under stress and sudden benign 

surges, a low false positive rate, and advanced differentiation 

between AI-based agents and real-time malicious traffic. 

Achieving these goals requires the dynamic triad of 

performance, latency, and accuracy. As the volume of attacks 

surging increases and APIs serve as a backbone to the critical 

infrastructure, the demand for context-sensitive, self-tuning 

rate-limiting systems rises dramatically. 
 

 Problem Statement 

In changing contexts, rigid restrictions come with two 

principal shortcomings. During unexpected traffic peaks like 

flash sales or sudden spikes in demand, static restrictions may 

inappropriately block access to resources. On the other hand, 

enduring or evolving misuse may go unimpeded through 

enduring protective measures. Thus, there is an inescapable 

tradeoff: sustain availability and unimpeded access, and risk 

reduced security. 

 
 Research Objectives 

 

 Design an intelligent rate limiter with reinforcement 

learning (RL), that responds in real-time to the dynamic 

traffic changes. 

 Decide whether it compares well with the standard, static 

rate-limiting methods, particularly with respect to false 

positives and false negatives. 

 Evaluate operational issues—computational burden, 

fairness in treating legitimate high-volume users, and 

robustness against dynamic threats. 
 

 Research Questions 

Can an RL-based system detect and block malicious 

requests more effectively than traditional methods without 

impeding legitimate usage? 

 

Estimate the false-positive (legitimate requests rejected) 

and false-negative (adversarial requests slipped through) 

rates between RL and static approaches under dynamic traffic 

conditions? 

 

 Scope and Limitations 

The testing is limited to HTTP/HTTPS APIs through 

gateways/proxies in sandboxed testing scenarios. It covers 

synthetic and actual traffic with attack scenarios such as 

credential stuffing and DDoS. The scope excludes non-web 
protocol and wider threat areas. 

 

II. LITERATURE REVIEW 

 

 Traditional Rate Limiting Methods 

Rate limiting has long been a well-known root control 

of API traffic management. Traditional algorithms such as the 

token bucket, leaky bucket, fixed counter, and sliding 

window methods are already well-known in the network 

device, proxy, and API gateway (Zhang et al., 2019). Such 

algorithms are extremely simple, lightweight, and efficient 
from the viewpoint of computation and suit well in the case 

of acceptable deterministic thresholds and situations where 

you'd like to allow bursts of requests but with a guarantee of 

no spikes. Similar to the token bucket and leaky bucket 

models that manage request bursts by dedicating tokens or 

draining a queue at fixed rates to ensure fairness and prevent 

spikes, fixed counters and sliding windows maintain a count 

of requests in intervals and rate-limit users with surges of 

quota-exceeding ones. While successful in the simple case, 

however, algorithms of the type of the above do not consider 

the context in the form of traffic patterns and cannot 

distinguish between spikes that are benign and abuse that is 
malicious (Kong, 2024; API7.ai, 2025). 

 

 Limitations of Static Rate Limiting 

The Static configuration rigidity has been getting more 

and more troublesome in cloud-native and hybrid 

deployments. With dynamic demand, static thresholds more 

and more result in false positives—throttling of legitimate 

high-rate consumers like automation services—or false 

negatives with stealthy malicious traffic going undetected 

(Krishnan & Rao, 2021). Research finds that static strategies 

are especially ineffective against low-and-slow attacks, 
distributed API abuse, and traffic from newly emergent AI 

agents with human-like behaviors (Prophaze, 2025; Akamai, 

2025). These exploitable vulnerabilities make the case for 

context-aware and adaptive strategies reacting automatically 

with the dynamism of workload intensity and emergent attack 

surfaces in flux. 

 

 Machine Learning in API Security 

Machine learning (ML) has proven a highly promising 

API protection appliance for intrusion detection systems 

(IDS), detection of anomalous behavior, and adaptive access 

control (Ahmed et al., 2016). Through the aid of the 
deployment of the classification and statistical learning 

techniques, ML models detect abnormal traffic behavior 

beyond rule-based detection. ML devices are dependent on 

mass feature engineering and frequent retraining in an effort 

to keep them efficient but are typically restricted from near-

real-time deployment in fast-fluxing scenarios (Zhou et al., 

2023). More recent effort has been centered on the 
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identification of unsupervised and deep learning models 

applied in the detection of API payload anomalies but 

challenges persist in the form of explainability, computation 

overheads, and zero-day attack pattern adaptability (Nair et 

al., 2024). 

 

 Network Security Applications Using Reinforcement 

Learning 
Reinforcement Learning (RL) adds to regular ML the 

emphasis on sequential decision-making in situations that are 

uncertain. RL agents learn policies that maximize action—

like permitting, throttling, or dropping traffic—by taking 

environmental feedback. RL has been applied successfully in 

network security to intrusion prevention systems, firewall 

management, and distributed denial-of-service (DDoS) 

prevention attacks (Nguyen & Reddi, 2021). Recent studies 

show that RL-managed agents achieve better performance 

than static or heuristic agents by adjusting thresholds 

adaptively according to system health, threat levels, and real-
time workloads (Zhang et al., 2024). This adaptability makes 

RL highly appropriate for API rate limiting where the traffic 

is highly dynamic and regular static rules do not perform 

optimally. 

 

 Research Gap 

Despite the advent of the feature of adaptive security, 

very limited work has been carried out on investigating RL-

driven rate limiting as a very specialized feature of API 

protection. All the previous work has been focused on traffic 

classification or detection of anomalies and not real-time 

dynamic tuning of the request threshold. Moreover, very 
limited systems take into account control of system 

availability and attack strength and experience of the end-

users in the scope of multi-tenant, hybrid cloud systems 

(Nordic APIs, 2025). Such an absence of work demonstrates 

the requirement for the study of the notion of the 

reinforcement learning as a foundation of intelligent and self-

tuning rate limiting in API protection mechanisms. 

 

III. METHODOLOGY 

 

 Research Design 
It utilizes a mixed-methods research design made of an 

in-depth literature review and a few quantitative experimental 

stimulations. The literature review supplies the conceptual 

background. The literature review includes summaries of API 

security literature, classical and adaptive rate-limiting 

mechanisms, and RL-based network security literature. From 

the literature review, the theoretical background is 

constructed and gaps of current approaches articulated, 

supplying a robust justification of building a RL-based rate-

limiting framework. 

 

With regard to such background, the experimental 
component of the study tests the effectiveness of the proposed 

framework under controlled conditions. The methodology is 

further delineated into two major phases for the purpose of 

rigorous evaluation. 

 

Phase one, the offline phase, is used for training the RL 

agent on synthetic sets of network traffic. The sets have a 

well-balanced combination of normal patterns along with 

malicious patterns. The sets are designed to mimic different 

real-world conditions like legitimate user spikes, automated 

API-to-API requests, credential stuffing probes, denial-of-

service (DoS) attacks, and bot-based scraping activities. By 

providing the RL model with various conditions of network 

traffic in offline training, the agent learns to have a general 

policy for identifying threats and tuning rate-limiting 
threshold boundaries as they see fit. 

 

The second part is called the online stage, and it entails 

moving the trained RL agent into a mock-up API gateway 

environment with mimicked real-world network conditions. 

During this stage, we test how the framework manages real-

time changes in traffic, identifies anomalies, and maintains 

services for high-demand instances or ongoing attacks. We 

evaluate performance indicators like detection precision, 

false positive ratio, response delay, and volume to determine 

how well the system is performing. 
 

This two-phased framework provides a theoretical and 

experimental analysis of the suggested RL-based scheme for 

rate-limiting. The architecture is guided by its survey of the 

literature, and experimental proof of concept confirms its 

promise of boosting API security by virtue of adaptive and 

context-aware flow control. 

 

 System Architecture 

The system is formulated as a Markov Decision Process 

(MDP), so the RL agent can acquire optimal rate-limiting 

policies by trying and erring. 
 

 MDP Components 

 

 State Space: Defines a multi-dimensional snapshot of 

system-behavior in terms of requests volume, latency, 

error rates, and measures of traffic irregularity (burstiness 

or aberrances). These signals give the RL agent a high-

level perception of network states such that the agent can 

track deviations in real-time. 

 Action Space: The possible actions for the agent. The 

actions are the increase of rate-limits for accommodating 
legitimate traffic surges, the reduction for the purpose of 

mitigating threats, the maintenance at current levels for 

stable operations, or the use of additional user verification 

(i.e., CAPTCHA or multi-factor authentication) upon 

suspicious activity. 

 Reward Function: Defines the learning objective by 

providing numerical rewards or fines for the actions taken 

at each step. Successful blocking or throttling gets 

positive rewards, and any blocking of valid users or 

accepting malicious requests employs fines. This 

motivates the RL agent to handle security and the 

experience of the user in real-time. 
 

 System Overview Diagram 

Below is a conceptual diagram showing the interaction 

of system components: 
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Fig 1 Architecture Workflow 

 
The architectural flow shown in figure 1 shows how 

inbound API traffic is routed through an API gateway that 

receives telemetry. The telemetry is then used by the 

reinforcement learning agent, which enacts learned policy (π) 

to determine the best rate-limiting actions. The resulting 

actions are taken by a dynamic rate limiter before the traffic 

proceeds to the backend service. The closed-loop architecture 

this represents ensures constant feedback: telemetry feeds 

policy decisions, which are acted upon immediately and so 

create a self-optimizing defense. It allows for closed-loop 

control because metrics extracted from the API traffic 

consistently feed the reinforcement learning agent, which 
modifies the rate-limiting policy adaptively. 

 Technical Implementation 

 

 Training Dataset 

The training dataset comprises simulated traffic 

designed to emulate both benign and adversarial conditions, 

allowing the Reinforcement Learning Agent to experience 

diverse traffic behaviors. This ensures resilience to 

sophisticated attacks and minimizes disruptions to legitimate 

users. 

 

 

Table 1 Dataset Training 

Traffic Type Features Simulated 

Normal Traffic User browsing, mobile requests, API-to-API calls, varying request bursts 

Credential Stuffing attack Repeated login attempts from rotating IPs to mimic large scale credential abuse. 

DoS/DDoS Flood High-rate requests with spoofed IPs 

Scraping/Bot Activity Large bursts of request targeting multiple endpoints. 

Low-and-Slow Attack Indirect malicious behavior with little request spikes to evade static detection 

 

The Reinforcement Learning Agent is also trained by Q-

learning or Deep Q-Networks (DQNs) using experience 

replay, Ɛ-greedy exploration, and also by updating the target 

network at fixed intervals. Key hyperparameters include a 

learning rate of 0.001, discount factor () of 0.95, and replay 

buffer size of 100,000 transitions. 

https://doi.org/10.38124/ijisrt/25dec1155
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 Deployment Phase 

The system is run in a simulated microservices 

environment in which an API gateway serves as the point of 

control for enforcing traffic. A mix of custom and open-

source tools underpins this testing framework outlined below; 

 

 Locust: It produces simultaneous user traffic and 

replicates various access behaviors. 
 Apache JMeter: Specifies high-throughput stress testing 

scenarios for scalability testing. 

 OWASP Attack Proxy (ZAP): Enables penetration testing 

and malicious request injection. 

 Custom Python Tools: Allows for the possibility of 

replicating synthetic datasets, workloads alteration, and 

agent responsiveness testing. 

 

Collectively, these tests develop a standardized yet real 

environment for testing resilience and adaptability. 

 

 Assessment Metrics 
System performance is measured in several different 

dimensions in order to register security effectiveness, 

usability, and system efficiency. 

 

Table 2 Evaluation Metric 

Metric Description 

DR (Detection Rate) Percentage (%) of malicious request blocked. 

FPR (False Positive Rate) Legit request wrongly blocked 

Mean Latency (ms) Average response time observed in test scenarios 

System Throughput Number of successfully processed request per second 

Adaptation Time The time it takes the reinforcement agent to adjust to quick traffic surges 

 

 Summary 

This chapter presented the design method and testing of 

a Reinforcement Learning based rate-limiting system. 

Framing the problem as an MDP and training over a diverse 

traffic set enables the agent to build policies in real-time 
balancing user experience, resource usage and threat 

suppression. Two-stage system design, in which the system 

is trained first offline and then tested online, enables the 

suggested system for complete testing under synthetic and 

realistic testing schemes. The tables and figures make space 

for clarity, while defined metrics provide solid grounds for 

quantitative analysis in the subsequent result chapter. 

 

IV. RESULTS AND ANALYSIS 

 

In this chapter the results of the experimental testing of 
the suggested RL-based API rate-limiting system are 

presented. The results are presented in groups around the 

defined key performance indicators defined in Chapter 3: 

detection rate, false positive rate, average latency, throughput 

and adaptation time. Comparisons for the classic static rate-

limiting algorithms (fixed window, sliding window and token 

bucket) reveal the superiority of the RL-controlled system. 

 

 Experimental Setup 

The experiments were conducted in a controlled 
simulation environment simulating a production-scale API 

environment. The API gateway was configured for handling 

synthetic traffic generated by Locust and Apache JMeter and 

OWASP ZAP and custom attackers simulating malicious 

activities. The RL agent pre-trained offline in datasets 

consisting of legitimate and malicious patterns was running 

in the API gateway for real-time computation. The traffic 

loads were distributed across Normal Traffic Surges, 

Adversarial Traffic and Mixed scenarios. 

 

 Detection Rate and False Positive Rate 
The RL agent demonstrated superior performance in 

distinguishing between legitimate traffic surges and 

malicious activity. Table 3 summarizes detection and false 

positive rates across all evaluated algorithms. 

 

Table 3 Detection and False Positive Rates 

Method Detection Rate (%) False Positive Rate (%) 

Fixed Window 81.2 7.5 

Sliding Window 84.2 6.2 

Token Bucket 85.3 5.7 

Reinforcement learning (RL) Based Rate limiting 96.1 2.3 

 

The RL-based approach achieved a 96.1% detection 

ratio and outperformed all the classic techniques while 

possessing over 60% fewer false positives than fixed-

threshold strategies. These results confirm the fact that the 

dynamic policy adaptation enables the RL agent to 

discriminate more effectively between benign spikes and 

malicious requests. 

 

 Latency and System Throughput 

Mean latency and throughput were measured under 
mixed traffic conditions to evaluate system efficiency. 
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Table 4 Latency and Throughput Performance 

Method Mean Latency (ms) Throughput (req/s) 

Fixed Window 225 5,400 

Sliding Window 240 5,200 

Token Bucket 210 5,800 

RL-Based Rate Limiting 205 6,100 

 

Latency measurements indicate that the RL-driven 

system maintains responsiveness even under adversarial load, 

reducing request delays by approximately 9% compared to 

sliding window algorithms. Throughput measurements 

further illustrate the system’s ability to handle higher request 

volumes, validating that dynamic rate adjustment reduces 

unnecessary throttling. 
 

 Adaptation Time Analysis 

Adaptation time was measured as the interval required 

for each system to stabilize rate limits following abrupt traffic 

changes. 

 

Figure 2 (below) illustrates adaptation times during 

three scenarios: a sudden surge of legitimate requests, a 
credential stuffing attack, and a mixed traffic phase. 

 

 
Fig 2 Adaptation Times for RL and Static Algorithms 

 

The RL agent stabilized for less than 3 seconds at a time, 
whereas fixed and sliding window mechanisms took 5–7 

seconds for thresholds to settle. This reveals the benefits of 

policy learning and reinforcement feedback in changing 

worlds. 

 Comparative Performance Summary 
To consolidate findings, Table 5 provides a summary of 

performance across all metrics. 

 

Table 5 Overall Comparative Results 

Metric Fixed Window Sliding Window Token Bucket RL-Based 

Detection Rate (%) 82.3 85.1 87.4 96.2 

False Positive Rate(%) 7.5 6.2 5.8 2.3 

Mean Latency (ms) 225 240 210 205 

Throughput (req/s) 5,400 5,200 5,800 6,100 

Adaptation Time (s) 7.1 6.4 5.2 2.9 

 

The RL-based rate-limiting system shows measurable 

improvements across all performance dimensions, validating 

its ability to maintain security while minimizing disruption to 

legitimate users. 

 
 

 Visual Performance Trends 

Two key visualizations highlight system behavior: 

 

 Detection vs. False Positive Trade-off: A precision-recall 

curve showing improved accuracy with RL-based 
policies. 

https://doi.org/10.38124/ijisrt/25dec1155
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Fig 3 Precision-Recall Curve for Detection Accuracy 

 

 Latency Over Time: A line graph depicting system responsiveness under alternating attack and normal traffic scenarios. 

 

 
Fig 4 Latency Trends Across Traffic Scenarios 
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These graphs show how RL better adjusts under 

dynamic traffic scenarios and at all times achieves better 

accuracy and lower latency. 

 

 Summary of Findings 

The experimental outcomes prove reinforcement 

learning effectively promotes the API rate-limiting 

mechanisms more than the use of static strategies. The RL 
agent attained: 

 

 96% and above detection accuracy and a mere 2.3% false 

positive. 

 Reduced latency and better throughput, having a low 

impact on system performance. 

 Adaptation times below 3 seconds, confirming the 

dynamic adaptation ability for surges and traffic attacks. 

 

These results suggest reinforcement learning provides a 

scalable, workable, and intelligent solution for the real-time 
management of API traffic in cloud-native and hybrid 

environments. 

 

V. DISCUSSION AND CONCLUSION 

 

 Introduction 

This is followed by Section 5.2, which interprets the 

findings in Chapter 4 and provides insight on what this means 

for API security and network defense, as well as on the 

measurements themselves. The conversation dives how RL-

driven rate-limiting is a step forward compared to existing 
mechanisms, what that means in practice, and what is the 

overall category of adaptive security in cloud-native and 

distributed systems. The chapter ends with a discussion of the 

limitations of the current study and the potential for future 

research. 

 

 Discussion of Key Findings 

The results of performance demonstrate that API 

security robustness is greatly improved by RL-based rate 

limitation without degradation of system performance. 

Traditional algorithms, such as Fixed Window, Sliding 

Window, and Token Bucket, operate under static 
configurations without environmental dynamic sensitivity. 

Although they are straightforward to implement, they poorly 

handle legitimate traffic by stalling on unexpected spikes and 

do not block intelligent attackers from exploiting anticipated 

thresholds. 

 

By contrast, the RL agent regularly realized detection 

rates of greater than 96% and reduced false positives to 2.3%, 

significantly improved compared to baseline approaches. 

Treating the problem as a Markov Decision Process, the RL 

model learns its choice of action by iteratively engaging with 
system telemetry and finds how to discriminate attackers 

from legitimate high-rate users. This functionality is critical 

in highly dynamic workload conditions such as those of 

microservices and hybrid clouds. 

 

The findings also demonstrate that the system remained 

broadly unchanged under load, with an average response of 

205 ms, and beat all other algorithms. Throughput reached 

6,100 requests per second, uncovering that the system's 

adaptive policies do not waste on throttling. Fast adaptation 

times of under 3 seconds confirm that RL-based rate limiting 

is feasible for real-time security enforcement and minimizes 

the window of vulnerability at attack inception. 

 

The collective results show the possibility of RL to work 

as the future security control, substituting static algorithm 
with self-optimizing defenses. 

 

 Practical Implications 

This paper demonstrates that machine learning, i.e., 

reinforcement learning, can efficiently be used for API rate-

limiting—a field previously dominated by static approaches. 

The following use cases are possible: 

 

 Cloud-native platforms: RL-based rate-limiting provides 

for intelligent resource allocation for multi-tenant 

deployments, preventing service degradation due to noisy 
neighbor’s or bursty workloads. 

 API Gateways and Microservices: Enforcement 

mechanisms can automatically reduce and adjust manual 

threshold tuning requirements and hence decrease 

operational overhead. 

 Cybersecurity Operations: An RL-based rate limiting 

along with several other anomaly-detection measures 

support a multi-level defense system resilient against 

denial-of-service (DoS) and credential-stuffing attacks. 

 RL-based rate-limiting reduces the cost for false positives, 

enhances the user experience, and achieves resilience 
against increasingly dynamic attack strategies. 

 

 Limitations of the Study 

Despite the positive outcomes of the experiment, there 

are limitations: 

 

 Simulation of Traffic Patterns: Since the artificial traffic 

is for the purpose of mimicking real patterns, 

unpredictability and variability of the production site may 

yield undesired problems. 

 Computational Overhead: Training and deployment of 

deep RL agents have potential for substantial 
computational overhead and might not find application in 

resource-constrained or budget-constrained 

environments. 

 Model Drift: RL agents trained by using the past may not 

do well if the attack patterns have dramatically changed 

and they must often be retrained or experience online 

learning. 

 Multi-Cluster Scalability Deployment: The RL-based 

solutions should also scale beyond the single point of 

ingression across systems. 

 
 Recommendations for Future Research 

Future research should target enhancing the robustness 

and scalability of RL-based rate-limiting algorithms: 

 

 Real-World Deployment: Production or live 

enterprise/cloud testing would validate the framework's 

performance in real production deployments. 
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 Online Learning Techniques: Online RL algorithm 

research and adaptive reward design have the potential to 

cause the system to learn while running for different 

attack scenarios. 

 Zero Trust Integration: Applying RL rate-limiting within 

a general system-wide Zero Trust design can yield 

dynamic end-to-end user and API interaction protection 

policy. 

 AI Techniques Explainers: Future research should 

explore explanation algorithms for RL-based decisions 

such that administrators may trust and for performing 

compliance audits. 

 Hybrid Algorithms: The integration of RL policies and 

safety heuristics can potentially improve the performance 

and decrease the difficulty in training. 

 

 Conclusion 

It proposed and experimented with a system for 

dynamic API rate-limiting based on reinforcement learning 
and reported quantitative advantages over current static 

algorithms. The RL agent achieved high detection accuracy, 

low false-positive rates, and improved system responsiveness 

and hence was effective as a dynamic defense system. 

 

In assuming the rate-limiting as a decision rather than a 

pre-set setting of the threshold, this work signals the rising 

imperative for AI-centric security technologies in current 

computing infrastructure. While more real-world validation 

and scalability studies are merited, the conceptual foundation 

proposed here is a valuable step toward the creation of smart 
self-optimizing network security capable of responding 

dynamically to cyber security threats. 
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