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Abstract: Rate limiting is a basic API security control governing client request rates in order to prevent backend service
overloading and abuse. Through request limits per time interval, rate limiters dampen threats such as denial-of-service
(DoS) assaults and brute-force abuse while ensuring proper use and not allowing a single client to dominate resources.
However, constant thresholds are unable to respond to dynamic traffic: fixed limits might under-secure during spikes or
over-limit users when demand varies. Reinforcement learning (RL) offers a dynamic response: framing rate control as a
sequential decision problem, an RL agent learns optimal throttles from real-time traffic cues. It can take this form as a
Markov decision process solved by Q-learning so iteration occurs based on rewards. States can indicate traffic metrics and
actions modify rate limits or invoke secondary verification while the reward balances blocking attackers versus preserving
rightful access. What emerges is an Al-controlled rate limiter which continuously fine-tunes itself in response to shifting
patterns in real-time, frequently lowering false positives (good requests blocked) and false negatives (attacks missed) relative
to static rules. Advantages include enhanced resistance in shifting abuse modi operandi in addition to smoother service upon
traffic spikes. Through such adaptiveness even fairness is enhanced as it separates legitimate high-volume use from attack
behavior so no single client dominates. Difficulties are inherent training or simulation sufficiency requirements within
greater computational overhead for online learning in addition to decision modeling inherent within real-time constraints.
Generally, RL-controlled dynamic rate limiting offers a contextual API protection which shifts gears in order stay functional
yet still protect when use patterns shift.
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l. INTRODUCTION balance in a system, equitable service distribution, preserves
infrastructure integrity (Kong, 2024).
» Background of the Study

APIs (application programming interfaces) are the
major strength of the current digital landscape. They permit
unified interactions between services, applications, and users.
With the rise of microservices architectures, cloud-native
designs, and Al workflows, APIs have become essential.
However, these APIs are fast becoming the most critical
points of attack for cybercriminals. In the absence of
vulnerability mitigation methods, APIs are subject to cyber
threats like credential stuffing, scraping, account
enumeration, and denial of service (DoS) attacks, all of which
could destabilize services in no time. Quota restrictions which
cap user requests are the primary control which sustains
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API gateways and proxies still make use of static rate-
limiting methods, fixed window counters, sliding window
logs, token bucket and leaky bucket algorithms (API7.ai,
2025; Kong, 2024). These methods, albeit simple to use,
suffer from rigidity and lack adaptability. During sudden
legitimate automated bursts from Al agents, static rigidity
could throttle legitimate traffic. On the other hand, static
rigidity could also be the reason why distributed malicious
traffic bypass sophisticated patterns, going undetected (Todd
et al., 2025).
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API threats have been climbing the charts, sparking
concerns. In 2024 alone, Akamai reported a staggering 150
billion API attacks. With a boost in e-commerce, finance and
Saas, bot related API traffic surged 372 %.

Additionally, API-based agents and crawlers powered
by Al technology pose new threats; some datasets indicate
that over one-third of the internet is now accessed via API
agents and non-browser powered agents.

To combat this new threat, adaptive or dynamic rate
limiting is gaining traction and being coined as a solution.
Unlike fixed thresholds, this approach moves limits up or
down in sync with the real-time system indicators like CPU
load, traffic patterns, or memory usage (Syncloop, 2024). By
applying machine learning, more sophisticated systems
attempt to proactively detect and modify preset boundaries
within the scope of prediction, demand surge, multi-
dimensional request timing, request payload patterns, and
user action patterns (Nordic APIs, July 2025; Al-based
frameworks, May 2025).

The promise of these dynamic systems is described with
boasting service availability under stress and sudden benign
surges, a low false positive rate, and advanced differentiation
between Al-based agents and real-time malicious traffic.
Achieving these goals requires the dynamic triad of
performance, latency, and accuracy. As the volume of attacks
surging increases and APIs serve as a backbone to the critical
infrastructure, the demand for context-sensitive, self-tuning
rate-limiting systems rises dramatically.

» Problem Statement

In changing contexts, rigid restrictions come with two
principal shortcomings. During unexpected traffic peaks like
flash sales or sudden spikes in demand, static restrictions may
inappropriately block access to resources. On the other hand,
enduring or evolving misuse may go unimpeded through
enduring protective measures. Thus, there is an inescapable
tradeoff: sustain availability and unimpeded access, and risk
reduced security.

» Research Objectives

e Design an intelligent rate limiter with reinforcement
learning (RL), that responds in real-time to the dynamic
traffic changes.

e Decide whether it compares well with the standard, static
rate-limiting methods, particularly with respect to false
positives and false negatives.

e Evaluate operational issues—computational burden,
fairness in treating legitimate high-volume users, and
robustness against dynamic threats.

» Research Questions

Can an RL-based system detect and block malicious
requests more effectively than traditional methods without
impeding legitimate usage?

Estimate the false-positive (legitimate requests rejected)
and false-negative (adversarial requests slipped through)
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rates between RL and static approaches under dynamic traffic
conditions?

» Scope and Limitations

The testing is limited to HTTP/HTTPS APIs through
gateways/proxies in sandboxed testing scenarios. It covers
synthetic and actual traffic with attack scenarios such as
credential stuffing and DDoS. The scope excludes non-web
protocol and wider threat areas.

1. LITERATURE REVIEW

> Traditional Rate Limiting Methods

Rate limiting has long been a well-known root control
of API traffic management. Traditional algorithms such as the
token bucket, leaky bucket, fixed counter, and sliding
window methods are already well-known in the network
device, proxy, and APl gateway (Zhang et al., 2019). Such
algorithms are extremely simple, lightweight, and efficient
from the viewpoint of computation and suit well in the case
of acceptable deterministic thresholds and situations where
you'd like to allow bursts of requests but with a guarantee of
no spikes. Similar to the token bucket and leaky bucket
models that manage request bursts by dedicating tokens or
draining a queue at fixed rates to ensure fairness and prevent
spikes, fixed counters and sliding windows maintain a count
of requests in intervals and rate-limit users with surges of
quota-exceeding ones. While successful in the simple case,
however, algorithms of the type of the above do not consider
the context in the form of traffic patterns and cannot
distinguish between spikes that are benign and abuse that is
malicious (Kong, 2024; API7.ai, 2025).

» Limitations of Static Rate Limiting

The Static configuration rigidity has been getting more
and more troublesome in cloud-native and hybrid
deployments. With dynamic demand, static thresholds more
and more result in false positives—throttling of legitimate
high-rate consumers like automation services—or false
negatives with stealthy malicious traffic going undetected
(Krishnan & Rao, 2021). Research finds that static strategies
are especially ineffective against low-and-slow attacks,
distributed API abuse, and traffic from newly emergent Al
agents with human-like behaviors (Prophaze, 2025; Akamai,
2025). These exploitable vulnerabilities make the case for
context-aware and adaptive strategies reacting automatically
with the dynamism of workload intensity and emergent attack
surfaces in flux.

» Machine Learning in API Security

Machine learning (ML) has proven a highly promising
API protection appliance for intrusion detection systems
(IDS), detection of anomalous behavior, and adaptive access
control (Ahmed et al.,, 2016). Through the aid of the
deployment of the classification and statistical learning
techniques, ML models detect abnormal traffic behavior
beyond rule-based detection. ML devices are dependent on
mass feature engineering and frequent retraining in an effort
to keep them efficient but are typically restricted from near-
real-time deployment in fast-fluxing scenarios (Zhou et al.,
2023). More recent effort has been centered on the

WWW.ijisrt.com 1795


https://doi.org/10.38124/ijisrt/25dec1155
http://www.ijisrt.com/

Volume 10, Issue 12, December — 2025
ISSN No:-2456-2165

identification of unsupervised and deep learning models
applied in the detection of APl payload anomalies but
challenges persist in the form of explainability, computation
overheads, and zero-day attack pattern adaptability (Nair et
al., 2024).

» Network Security Applications Using Reinforcement
Learning

Reinforcement Learning (RL) adds to regular ML the
emphasis on sequential decision-making in situations that are
uncertain. RL agents learn policies that maximize action—
like permitting, throttling, or dropping traffic—by taking
environmental feedback. RL has been applied successfully in
network security to intrusion prevention systems, firewall
management, and distributed denial-of-service (DDoS)
prevention attacks (Nguyen & Reddi, 2021). Recent studies
show that RL-managed agents achieve better performance
than static or heuristic agents by adjusting thresholds
adaptively according to system health, threat levels, and real-
time workloads (Zhang et al., 2024). This adaptability makes
RL highly appropriate for API rate limiting where the traffic
is highly dynamic and regular static rules do not perform
optimally.

» Research Gap

Despite the advent of the feature of adaptive security,
very limited work has been carried out on investigating RL-
driven rate limiting as a very specialized feature of API
protection. All the previous work has been focused on traffic
classification or detection of anomalies and not real-time
dynamic tuning of the request threshold. Moreover, very
limited systems take into account control of system
availability and attack strength and experience of the end-
users in the scope of multi-tenant, hybrid cloud systems
(Nordic APIs, 2025). Such an absence of work demonstrates
the requirement for the study of the notion of the
reinforcement learning as a foundation of intelligent and self-
tuning rate limiting in API protection mechanisms.

1. METHODOLOGY

» Research Design

It utilizes a mixed-methods research design made of an
in-depth literature review and a few quantitative experimental
stimulations. The literature review supplies the conceptual
background. The literature review includes summaries of API
security literature, classical and adaptive rate-limiting
mechanisms, and RL-based network security literature. From
the literature review, the theoretical background is
constructed and gaps of current approaches articulated,
supplying a robust justification of building a RL-based rate-
limiting framework.

With regard to such background, the experimental
component of the study tests the effectiveness of the proposed
framework under controlled conditions. The methodology is
further delineated into two major phases for the purpose of
rigorous evaluation.

Phase one, the offline phase, is used for training the RL
agent on synthetic sets of network traffic. The sets have a
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well-balanced combination of normal patterns along with
malicious patterns. The sets are designed to mimic different
real-world conditions like legitimate user spikes, automated
API-to-API requests, credential stuffing probes, denial-of-
service (DoS) attacks, and bot-based scraping activities. By
providing the RL model with various conditions of network
traffic in offline training, the agent learns to have a general
policy for identifying threats and tuning rate-limiting
threshold boundaries as they see fit.

The second part is called the online stage, and it entails
moving the trained RL agent into a mock-up API gateway
environment with mimicked real-world network conditions.
During this stage, we test how the framework manages real-
time changes in traffic, identifies anomalies, and maintains
services for high-demand instances or ongoing attacks. We
evaluate performance indicators like detection precision,
false positive ratio, response delay, and volume to determine
how well the system is performing.

This two-phased framework provides a theoretical and
experimental analysis of the suggested RL-based scheme for
rate-limiting. The architecture is guided by its survey of the
literature, and experimental proof of concept confirms its
promise of boosting API security by virtue of adaptive and
context-aware flow control.

» System Architecture

The system is formulated as a Markov Decision Process
(MDP), so the RL agent can acquire optimal rate-limiting
policies by trying and erring.

e MDP Components

v State Space: Defines a multi-dimensional snapshot of
system-behavior in terms of requests volume, latency,
error rates, and measures of traffic irregularity (burstiness
or aberrances). These signals give the RL agent a high-
level perception of network states such that the agent can
track deviations in real-time.

v Action Space: The possible actions for the agent. The
actions are the increase of rate-limits for accommodating
legitimate traffic surges, the reduction for the purpose of
mitigating threats, the maintenance at current levels for
stable operations, or the use of additional user verification
(i.e., CAPTCHA or multi-factor authentication) upon
suspicious activity.

v' Reward Function: Defines the learning objective by
providing numerical rewards or fines for the actions taken
at each step. Successful blocking or throttling gets
positive rewards, and any blocking of valid users or
accepting malicious requests employs fines. This
motivates the RL agent to handle security and the
experience of the user in real-time.

e System Overview Diagram
Below is a conceptual diagram showing the interaction
of system components:
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Fig 1 Architecture Workflow

The architectural flow shown in figure 1 shows how
inbound API traffic is routed through an API gateway that
receives telemetry. The telemetry is then used by the
reinforcement learning agent, which enacts learned policy ()
to determine the best rate-limiting actions. The resulting
actions are taken by a dynamic rate limiter before the traffic
proceeds to the backend service. The closed-loop architecture
this represents ensures constant feedback: telemetry feeds
policy decisions, which are acted upon immediately and so
create a self-optimizing defense. It allows for closed-loop
control because metrics extracted from the API traffic
consistently feed the reinforcement learning agent, which
modifies the rate-limiting policy adaptively.

» Technical Implementation

e Training Dataset

The training dataset comprises simulated traffic
designed to emulate both benign and adversarial conditions,
allowing the Reinforcement Learning Agent to experience
diverse traffic behaviors. This ensures resilience to
sophisticated attacks and minimizes disruptions to legitimate
users.

Table 1 Dataset Training

Traffic Type

Features Simulated

Normal Traffic

User browsing, mobile requests, API-to-API calls, varying request bursts

Credential Stuffing attack

Repeated login attempts from rotating IPs to mimic large scale credential abuse.

DoS/DDoS Flood

High-rate requests with spoofed IPs

Scraping/Bot Activity

Large bursts of request targeting multiple endpoints.

Low-and-Slow Attack

Indirect malicious behavior with little request spikes to evade static detection

The Reinforcement Learning Agent is also trained by Q-
learning or Deep Q-Networks (DQNs) using experience
replay, €-greedy exploration, and also by updating the target
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learning rate of 0.001, discount factor () of 0.95, and replay
buffer size of 100,000 transitions.
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o Deployment Phase

The system is run in a simulated microservices
environment in which an API gateway serves as the point of
control for enforcing traffic. A mix of custom and open-
source tools underpins this testing framework outlined below;

v' Locust: It produces simultaneous user traffic and
replicates various access behaviors.

v Apache JMeter: Specifies high-throughput stress testing
scenarios for scalability testing.

v' OWASP Attack Proxy (ZAP): Enables penetration testing
and malicious request injection.

International Journal of Innovative Science and Research Technology
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v Custom Python Tools: Allows for the possibility of
replicating synthetic datasets, workloads alteration, and
agent responsiveness testing.

Collectively, these tests develop a standardized yet real
environment for testing resilience and adaptability.

e Assessment Metrics

System performance is measured in several different
dimensions in order to register security effectiveness,
usability, and system efficiency.

Table 2 Evaluation Metric

Metric

Description

DR (Detection Rate)

Percentage (%) of malicious request blocked.

FPR (False Positive Rate)

Legit request wrongly blocked

Mean Latency (ms)

Average response time observed in test scenarios

System Throughput

Number of successfully processed request per second

Adaptation Time

The time it takes the reinforcement agent to adjust to quick traffic surges

» Summary

This chapter presented the design method and testing of
a Reinforcement Learning based rate-limiting system.
Framing the problem as an MDP and training over a diverse
traffic set enables the agent to build policies in real-time
balancing user experience, resource usage and threat
suppression. Two-stage system design, in which the system
is trained first offline and then tested online, enables the
suggested system for complete testing under synthetic and
realistic testing schemes. The tables and figures make space
for clarity, while defined metrics provide solid grounds for
quantitative analysis in the subsequent result chapter.

V. RESULTS AND ANALYSIS

In this chapter the results of the experimental testing of
the suggested RL-based API rate-limiting system are
presented. The results are presented in groups around the
defined key performance indicators defined in Chapter 3:
detection rate, false positive rate, average latency, throughput
and adaptation time. Comparisons for the classic static rate-

limiting algorithms (fixed window, sliding window and token
bucket) reveal the superiority of the RL-controlled system.

> Experimental Setup

The experiments were conducted in a controlled
simulation environment simulating a production-scale API
environment. The API gateway was configured for handling
synthetic traffic generated by Locust and Apache JMeter and
OWASP ZAP and custom attackers simulating malicious
activities. The RL agent pre-trained offline in datasets
consisting of legitimate and malicious patterns was running
in the API gateway for real-time computation. The traffic
loads were distributed across Normal Traffic Surges,
Adversarial Traffic and Mixed scenarios.

> Detection Rate and False Positive Rate

The RL agent demonstrated superior performance in
distinguishing between legitimate traffic surges and
malicious activity. Table 3 summarizes detection and false
positive rates across all evaluated algorithms.

Table 3 Detection and False Positive Rates

Method Detection Rate (%) False Positive Rate (%)
Fixed Window 81.2 7.5
Sliding Window 84.2 6.2
Token Bucket 85.3 5.7
Reinforcement learning (RL) Based Rate limiting 96.1 2.3

The RL-based approach achieved a 96.1% detection
ratio and outperformed all the classic techniques while
possessing over 60% fewer false positives than fixed-
threshold strategies. These results confirm the fact that the
dynamic policy adaptation enables the RL agent to
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discriminate more effectively between benign spikes and
malicious requests.

> Latency and System Throughput
Mean latency and throughput were measured under
mixed traffic conditions to evaluate system efficiency.
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Table 4 Latency and Throughput Performance

Method Mean Latency (ms) Throughput (req/s)
Fixed Window 225 5,400
Sliding Window 240 5,200
Token Bucket 210 5,800
RL-Based Rate Limiting 205 6,100

Latency measurements indicate that the RL-driven
system maintains responsiveness even under adversarial load,
reducing request delays by approximately 9% compared to
sliding window algorithms. Throughput measurements
further illustrate the system’s ability to handle higher request
volumes, validating that dynamic rate adjustment reduces
unnecessary throttling.

» Adaptation Time Analysis

Adaptation time was measured as the interval required
for each system to stabilize rate limits following abrupt traffic
changes.

Figure 2 (below) illustrates adaptation times during
three scenarios: a sudden surge of legitimate requests, a
credential stuffing attack, and a mixed traffic phase.

Adaptation Time (seconds)

Token Bucket

Sliding Window
Fig 2 Adaptation Times for RL and Static Algorithms

Fixed Window

The RL agent stabilized for less than 3 seconds at a time,
whereas fixed and sliding window mechanisms took 5-7
seconds for thresholds to settle. This reveals the benefits of
policy learning and reinforcement feedback in changing
worlds.

» Comparative Performance Summary
To consolidate findings, Table 5 provides a summary of
performance across all metrics.

Table 5 Overall Comparative Results

Metric Fixed Window Sliding Window Token Bucket RL-Based
Detection Rate (%) 82.3 85.1 87.4 96.2
False Positive Rate(%) 7.5 6.2 5.8 2.3
Mean Latency (ms) 225 240 210 205
Throughput (reg/s) 5,400 5,200 5,800 6,100
Adaptation Time (s) 7.1 6.4 5.2 2.9

The RL-based rate-limiting system shows measurable
improvements across all performance dimensions, validating

its ability to maintain security while minimizing disruption to

legitimate users.

NISRT25DEC1155

¢ Detection vs. False Positive Trade-off: A precision-recall
curve showing improved accuracy with RL-based

policies.
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o Latency Over Time: A line graph depicting system responsiveness under alternating attack and normal traffic scenarios.
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These graphs show how RL better adjusts under
dynamic traffic scenarios and at all times achieves better
accuracy and lower latency.

» Summary of Findings

The experimental outcomes prove reinforcement
learning effectively promotes the APl rate-limiting
mechanisms more than the use of static strategies. The RL
agent attained:

e 96% and above detection accuracy and a mere 2.3% false
positive.

e Reduced latency and better throughput, having a low
impact on system performance.

e Adaptation times below 3 seconds, confirming the
dynamic adaptation ability for surges and traffic attacks.

These results suggest reinforcement learning provides a
scalable, workable, and intelligent solution for the real-time
management of API traffic in cloud-native and hybrid
environments.

V. DISCUSSION AND CONCLUSION

» Introduction

This is followed by Section 5.2, which interprets the
findings in Chapter 4 and provides insight on what this means
for API security and network defense, as well as on the
measurements themselves. The conversation dives how RL-
driven rate-limiting is a step forward compared to existing
mechanisms, what that means in practice, and what is the
overall category of adaptive security in cloud-native and
distributed systems. The chapter ends with a discussion of the
limitations of the current study and the potential for future
research.

» Discussion of Key Findings

The results of performance demonstrate that API
security robustness is greatly improved by RL-based rate
limitation without degradation of system performance.
Traditional algorithms, such as Fixed Window, Sliding
Window, and Token Bucket, operate under static
configurations without environmental dynamic sensitivity.
Although they are straightforward to implement, they poorly
handle legitimate traffic by stalling on unexpected spikes and
do not block intelligent attackers from exploiting anticipated
thresholds.

By contrast, the RL agent regularly realized detection
rates of greater than 96% and reduced false positives to 2.3%,
significantly improved compared to baseline approaches.
Treating the problem as a Markov Decision Process, the RL
model learns its choice of action by iteratively engaging with
system telemetry and finds how to discriminate attackers
from legitimate high-rate users. This functionality is critical
in highly dynamic workload conditions such as those of
microservices and hybrid clouds.

The findings also demonstrate that the system remained
broadly unchanged under load, with an average response of
205 ms, and beat all other algorithms. Throughput reached
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6,100 requests per second, uncovering that the system's
adaptive policies do not waste on throttling. Fast adaptation
times of under 3 seconds confirm that RL-based rate limiting
is feasible for real-time security enforcement and minimizes
the window of vulnerability at attack inception.

The collective results show the possibility of RL to work
as the future security control, substituting static algorithm
with self-optimizing defenses.

> Practical Implications

This paper demonstrates that machine learning, i.e.,
reinforcement learning, can efficiently be used for API rate-
limiting—a field previously dominated by static approaches.
The following use cases are possible:

e Cloud-native platforms: RL-based rate-limiting provides
for intelligent resource allocation for multi-tenant
deployments, preventing service degradation due to noisy
neighbor’s or bursty workloads.

e APl Gateways and Microservices: Enforcement
mechanisms can automatically reduce and adjust manual
threshold tuning requirements and hence decrease
operational overhead.

e Cybersecurity Operations: An RL-based rate limiting
along with several other anomaly-detection measures
support a multi-level defense system resilient against
denial-of-service (DoS) and credential-stuffing attacks.

e RL-based rate-limiting reduces the cost for false positives,
enhances the user experience, and achieves resilience
against increasingly dynamic attack strategies.

» Limitations of the Study
Despite the positive outcomes of the experiment, there
are limitations:

e Simulation of Traffic Patterns: Since the artificial traffic
is for the purpose of mimicking real patterns,
unpredictability and variability of the production site may
yield undesired problems.

e Computational Overhead: Training and deployment of
deep RL agents have potential for substantial
computational overhead and might not find application in
resource-constrained or budget-constrained
environments.

e Model Drift: RL agents trained by using the past may not
do well if the attack patterns have dramatically changed
and they must often be retrained or experience online
learning.

e Multi-Cluster Scalability Deployment: The RL-based
solutions should also scale beyond the single point of
ingression across systems.

» Recommendations for Future Research
Future research should target enhancing the robustness
and scalability of RL-based rate-limiting algorithms:

e Real-World  Deployment:  Production or live
enterprise/cloud testing would validate the framework's
performance in real production deployments.
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e Online Learning Techniques: Online RL algorithm
research and adaptive reward design have the potential to
cause the system to learn while running for different
attack scenarios.

e Zero Trust Integration: Applying RL rate-limiting within
a general system-wide Zero Trust design can vyield
dynamic end-to-end user and API interaction protection
policy.

e Al Techniques Explainers: Future research should
explore explanation algorithms for RL-based decisions
such that administrators may trust and for performing
compliance audits.

e Hybrid Algorithms: The integration of RL policies and
safety heuristics can potentially improve the performance
and decrease the difficulty in training.

» Conclusion

It proposed and experimented with a system for
dynamic API rate-limiting based on reinforcement learning
and reported quantitative advantages over current static
algorithms. The RL agent achieved high detection accuracy,
low false-positive rates, and improved system responsiveness
and hence was effective as a dynamic defense system.

In assuming the rate-limiting as a decision rather than a
pre-set setting of the threshold, this work signals the rising
imperative for Al-centric security technologies in current
computing infrastructure. While more real-world validation
and scalability studies are merited, the conceptual foundation
proposed here is a valuable step toward the creation of smart
self-optimizing network security capable of responding
dynamically to cyber security threats.
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