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Abstract : This Article Provides A Detailed Description of The Regional Modeling Formalism Within A Rectangular 

Domain. This Approach Called Regional Rectangular Harmonic Analysis (R-RHA), Could Be Particularly Useful For 

Utilizing, For The First Time, Data From Malagasy Repeat Stations That Have Been Reoccupied Since 1983. Existing 

Regional Modeling Techniques Are Not Well Suited For Madagascar, As They Typically Require A Large Amount Of 

Data To Be Applied Correctly. However, Madagascar Has Only 25 Repeat Stations In Total, And Not All Of Them Are 

Reoccupied During A Magnetic Survey. The Results Obtained Using The Optimal Parameters Of The Rectangular Model 

Confirm Its Validity For Madagascar. Its Reliability Remains Limited To Areas Covered By Measurements. Even Though 

The Dataset Is Not Extensive, At Least One Measurement Is Required At Each Of The Following Stations : Antsiranana, 

Mahajanga, Toamasina, Toliary, And Taolagnaro. The Lack Of Data From Any Of These Regions Would Prevent The 

Proper Development Of Magnetic Maps Of Madagascar Using This Formalism. 
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I. INTRODUCTION 

 

Regional modeling aims to describe the magnetic field 

within a given region. Several methods, taking into account 

the nature of the magnetic potential, have been proposed for 

regional-scale magnetic field modeling. For partial 

modeling, spherical harmonics (SH), commonly known as 

the global model, are no longer suitable because the field is 

no longer orthogonal when applied to specific regions. 

Simple techniques, such as surface polynomial modeling or 

rectangular harmonic modeling (Alldredge, 1981), were 

used before satellite data became available, but the models 

obtained through these methods were not successfully 

established (Haines, 1990). 

 

Spherical Cap Harmonic Analysis (SCHA), proposed 

by Haines (1985), is an appealing modeling approach. Its 

formalism resembles a natural extension of spherical 

harmonic analysis. This method is claimed to be valid across 

the entire spherical cap at all altitudes above the Earth's 

surface. Based on these claims, SCHA has been used to 

model crustal anomalies (De Santis et al., 1989), the main 

field (Hwang & Chen, 1997), and even secular variation 

(Korte & Haak, 2000). 

 

However, practitioners of SCHA encounter two main 

challenges. First, the convergence of SCHA is extremely 

slow for small caps, and an insufficient expansion leads to 

unrealistic oscillations when interpolating over a dense grid. 

A larger expansion, however, requires a higher number of 

data points. Second, Haines' formalism is partially incorrect 

because it only imposes boundary conditions on the lateral 

surface of the cap. This results in inconsistencies in the 

expressions of Gauss coefficients with altitude since the 

quantitative results are highly dependent on the opening 

angle of the spherical cap. Consequently, the horizontal and 

vertical components of the field cannot be expressed in 

terms of the same Gauss coefficients. 

 

Thébault (2003) corrected Haines’ formalism by 

adding boundary conditions on both the lower surface 

(Earth’s surface) and the upper surface (high enough to 

include all available data). This formalism, known as 

Regional Spherical Cap Harmonic Analysis (R-SCHA), 

produces satisfactory results when both ground-based and 

satellite data are available. However, numerical issues 

persist when only ground-based data is available, as is the 

case in Madagascar.  

 

Malagasy repeat station data is very limited. To 

reasonably utilize this data, a technique capable of 
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incorporating only a small number of ground-based 

measurements is necessary. To achieve this, we propose 

reformulating rectangular harmonic modeling (RHA) 

(Alldredge,1981) by adding boundary conditions on all six 

surfaces that define the rectangular domain. 

 

II. METHOD AND DATA USED 
 

 Geometry and Coordinate System 

The study domain Ω is a rectangular parallelepiped 

defined by the volume –x₀ ≤ x ≤ x₀, –y₀ ≤ y ≤ y₀, and –z₀ ≤ z 

≤ z₀, with the key property that it contains no sources of the 

magnetic field. The Ox axis forms an angle μ (expressed in 

degrees) with the East-West direction. This rotation angle μ 

is adjusted to maximize the density of data within the 

domain Ω. 

 

Consider a point P with coordinates (λ, φ, h) in the 

geographic reference frame, where λ represents latitude (in 

degrees), φ longitude (in degrees), and h altitude (in 

kilometers). Let (λ₀, φ₀, h₀) be the coordinates of the origin 

O in the rectangular reference frame, and (x, y, z) the 

coordinates of point P (expressed in kilometers) in the 

rectangular system. These coordinates are related by the 

following equation (1a) : 

 



















































0

0y

0x

hh

)(C
)(C

100
0cossin
0sincos

z
y
x

                            (1a) 

 

The coefficients Cₓ and Cᵧ convert degrees into 

kilometers and are expressed in km/degree. Cₓ corresponds 

to a one-degree variation in longitude for a given latitude. 

Using classical spherical geometry and assuming Earth is a 

sphere with radius R = 6371.2 km, Cₓ is given by : 

 

Cx=Rcos
−1[sin2

λ+cos
2
λcos(π/180)]                 (1b) 

 

Cᵧ corresponds to a one-degree variation in latitude. Its 

value is constant and given by : 

 

Cy=πR/180                                                                  (1c) 

 

For the portion of the Earth's surface to be 

approximated as a plane, the boundary values x₀ and y₀ in 

degrees must be less than 8°. In this case, the coordinates x 

and y are determined with an accuracy better than 1 km, 

which is acceptable considering that the distance between 

two neighboring stations in Madagascar can exceed 100 km. 

 

 Problem Formulation 

Within the domain Ω, the magnetic potential V 

satisfies various boundary condition problems. By imposing 

mixed boundary conditions on the potential and its 

derivatives, we obtain the example of following problems: 

 

{ΔV=0} {(V )∂xΩ
=F(y,z)}{(V )∂yΩ

=G(x,z)}            (2a) 

 

{ΔV= 0}{(∂V
∂nx

)
∂xΩ

=F( y,z)}{( ∂V
∂ny

)
∂ yΩ

=G( x,z)}   (2b) 

 

The solution to such a mixed problem is not unique. 

The boundary conditions F, G, and H must also satisfy the 

divergence-free condition or flux condition. Applying 

Ostrogradsky-Gauss theorem to the domain Ω, we obtain: 
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After extensive studies, the gradients of the potential 

were found to be orthogonal for these two problems, and 

their solutions converge slowly. The corresponding edge 

effects are relatively weak. Since these two mixed problems 

are equivalent, we will consider the first problem. The 

representation of the magnetic field using this 

decomposition also demonstrates strong consistency with 

the convergence analysis results. Even though the direct 

problem appears to converge slowly, there is no indication 

that the inverse problem cannot find coefficients that 

accurately fit the magnetic field. 

 

 Expression of the Potential V 

The main objective in solving a boundary value 

problem is to reconstruct the basis functions that generate a 

space in which the solution can be expressed. However, 

each problem, when considered individually, can only be 

easily solved if homogeneous conditions are introduced. To 

achieve this, the previous problem 2a is broken down into 

three subproblems, whose sum of solutions forms the 

general solution : 

 

V = V1+V2+V3                        (3) 
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Each potential  is determined using the method of 

separation of variables, where the solutions are sought 

independently in  and : 

 

Vi(x,y,z) = Vix(x) Viy(y) Viz(z)                                        (4) 

 

For i=1, 2, 3 

 

By substituting expression (4) into Vi=0 , we obtain : 
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                  (5a) 

 

The three terms in the first member of equation (5a) 

depend only on , , and , respectively. Therefore, each of 

themust be equal to a constant, leading to the following 

system of three ordinary differential 

equations : 
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with  
0kkk zyx 

 

 

In other words, the potentials Vix, Viy and Viz are 

eigenfunctions of the « second derivative » operator, 

associated respectively with the eigenvalues kx, ky and kz. . 

The corresponding general solution is given by : 
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Where Ai and Bi are constants of integration. A similar 

reasoning applies to and. 

 

Taking into account the boundary conditions for the 

potentials, the eigenvalues become functions of the limits 

and two natural integers and. In order to obtain sufficiently 

complete basis functions, the final solution must be the sum 

of all possible elementary solutions, yielding : 
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The basis functions used in expressions (6a) to (6c) are 

such that : 

(7a) 

 

  (7b) 
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  (7c) 

        (7d) 

 

   (7e)  

 

  (7f)

 

 Expression Of The Field And Inverse Problem 

We start with the components X (North), Y (East), and Z (vertical, directed positively downwards) of the magnetic field in 

the local geographic reference frame. The rectangular components Bx, By, and Bz of the field are given by : 

 

                                                                                                                                  (8) 

 

Fig 1where Μ Is The Rotation Angle Illustrated In  

 

However, the magnetic field in the domain Ω is expressed as the gradient of the potential V, defined by relation (3) and 

expressions (6a) to (6c). In practice, each development is limited by maximum truncation indices Mmax and Nmax, and the field 

components are expressed as : 

 

                               (9a) 

 

                (9b) 

 

                 (9c) 
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Equations (9a) to (9c) are linear in the Gauss 

coefficients Ai
m,n

 and Bi

m,n

(for i = 1, 2, 3) and can be 

written as: 

 

D = FP                                                                             (10a) 

 

Where D is the data vector. Let ND be the number of 

data points to be introduced into the model. D is a column 

vector consisting of 3ND rows (since there are three 

components per data point). 

 

P is the parameter vector formed by the Gauss 

coefficients, arranged starting with the letters A and B in a 

one-dimensional order. For given values of Mmax and 

Nmax, there are : 

 

NP = 6MmaxNmax                                                               (10b) 

 

parameters to be determined, and P is a column vector 

with NP rows. 

 

F is the function matrix formed of 3ND rows and NP 

columns. Its elements are the basis functions defined by 

formulas (7a) to (7f). 

 

Since the data are assumed to be noisy, the classical 

statistical model is used: 

 

D = FP + ε                                                                       (10c) 

 

where ε is a Gaussian random variable with zero mean 

and variance σ². 

 

The solution to equation (10c) can be obtained by the 

least squares method, which is fast in terms of convergence, 

and the vector P is obtained by : 

 

P = (FtF)⁻¹ FtD                                                                (10d) 

 

Where Ft denotes the transpose of F. 

 

Here, we consider equal weight for all data, and we 

impose no constraints in our inversion. We also limit 

ourselves to the case where the Gauss coefficients are 

constant, i.e., the data used are assumed to be taken at the 

same time. In practice, this assumption holds in the data 

were acquired over a period of about one month. 

 

 Data Used and Error Estimation 

Since this is a first attempt at inversion using the 

previous formalism, we first need to consider synthetic data 

calculated by a global model to test its validity. This is the 

normal procedure in such problems. We will then verify 

whether our formalism is capable of representing a magnetic 

field while determining the best possible developments and 

the reconstruction error resulting from the choice of 

truncation indices. 

 

The creation of synthetic data is done according to the 

following steps: first, we create fictitious measurement 

points, either regularly or randomly distributed, in sufficient 

numbers such that the grid spacing is approximately 100 

km. For the case of Madagascar, we will consider ND = 

7x17 = 119 points, corresponding to a spacing of 

approximately 102 km. Then, we calculate the field at each 

point using the CM4 global model (Sabaka et al., 2004). We 

chose the CM4 model because it better calculates the 

internal field (with continuous secular variation) compared 

to the international reference model IGRF (which represents 

secular variation jumps every five years). After, we add 

Gaussian white noise with zero mean and standard deviation 

σ = 5nT (absolute uncertainty in determining the 

components of the internal field). 

 

Once the data are prepared, we can determine the 

parameter vector P. Knowing this, we can determine the 

field calculated by the rectangular model. In accordance 

with statistical analysis practices, we focus on the residuals, 

whose means are defined by : 

 

                                             (11a) 

 

      (11b) 

 

    
                    (11c) 

 

where XCi, YCi, and ZCi are the components 

estimated by the rectangular model. 

 

In ordinary least squares inversion, the mean residuals 

should be close to zero if the model is in good agreement 

with the data. In this case, the model error is classically 

evaluated by : 

 

    (12a) 

 

     (12b) 

 

     (12c) 

 

Once the validity of the rectangular model is verified, 

we can then apply it to the actual data from the Malagasy 

reoccupied repetition stations since 1983, the numbers of 

which are given in Table 1. 
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Table1 Number Of Available Data For Malagasy Reoccupied Repetition Stations Since 1983. 

Year 1983 1990 

Number of Measurements 6 13 

Stations 

 
TAN-TUL-FDF-FNV-DGS-MJG 

TAN-FDF-MJG-FNV-AZK-TMV-DGS-SBV-TLH-VHM-

PBG-THH-ABJ 

 

The spatial distribution of the measurements for each magnetic campaign will be indicated on the magnetic maps of 

Madagascar that we will create. 

Table 2 Malagasy Reoccupied Repetition Stations Since 1983. 
Station Nom Coordonnées Géographiques 

Latitude Longitude Altitude 

DGS Antsiranana -12°21’00 ‘’ 49°17’40’’ 74m 

ABB Ambilobe -13°11’24’’ 48°58’54’’ 121m 

VHM Vohemar -13°22’04 ‘’ 50°00’00’’ 67m 

ABJ Ambanja -13°38’24’’ 48°27’06’’ 83m 

SBV Sambava -14°16’39’’ 50°10’27’’ 148m 

TLH Antalaha -14°59’51 ‘’ 50°19’16’’ 73m 

THH Antsohihy -14°54’00’’ 47°39’00’’ 269m 

PBG Port bergé -15°34’48’’ 47°37’18’’ 308m 

MJG Mahajanga -15°39’57’’ 46°21’03’’ 44m 

MVT Maevatanana -16°57’11’’ 46°49’57’’ 1013m 

KZB Ankazobe -18°19’49’’ 47°07’35’’ 1213m 

FNV Fenoarivo Est -17°25’30’’ 49°26’06’’ 42m 

AZK Ambatondrazaka -17°47’32’’ 48°26’12’’ 650m 

TMV Toamasina -18°07’00’’ 49°23’36’’ 36m 

MRG Moramanga -18°54’48’’ 48°12’54’’ 517m 

TRB Antsirabe -19°49’50’’ 47°03’04’’ 1493m 

ABS Ambositra -20°32’51’’ 47°14’40’’ 868m 

MNJ Mananjary -21°12’17’’ 48°21’24’’ 54m 

FNT Fianarantsoa -21°26’15’’ 47°07’06’’ 1127m 

IHS Ihosy -22°24’34’’ 46°10’07’’ 971m 

MDV Morondava -20°17’24’’ 44°21’00’’ 88m 

MRB Morombe -21°45’18’’ 43°32’18’’ 94m 

TUL Toliara -23°23’12’’ 43°49’30’’ 56m 

FDF Taolanaro -25°02’00’’ 46°57’36’’ 114m 

TAN Antananarivo 18°55’00’’ 47°33’00’’ 1375m 

 

III. RESULTS AND DISCUSSIONS 

 

The most appropriate parameters for the rectangular 

domain in the case of Madagascar are as follows: λ₀ = 

−18.52°, φ₀ = 46.55°, h₀ = 0.765 km (average of the altitudes 

of all the repetition stations), x₀ = 321.871 km (or 3.06°), y₀ 

= 811.140 km (or 7.31°), z₀ = 0.729 km, and μ = −18.0°. 

 

The validity of our formalism is primarily checked by 

examining the evolution of the global modeling errors. 

 

 Evolution of Reconstruction Errors 

The figure 1 shows the global evolution of 

reconstruction errors as a function of the truncation indices 

Mmax and Nmax. To standardize the representations, we 

limited the average error between 0 and 5nT, and the 

standard deviation between 0 and 50nT for all components 

of the magnetic field. Thus, the red color corresponds to 

absolute values greater than or equal to 5nT for the average 

error and 50nT for the standard deviation. It is worth noting 

that the 50nT value corresponds to the uncertainty in 

determining the internal field using a global model. The 

presence of the green color, which corresponds to absolute 

values less than 1nT for the average error and 10nT for the 

standard deviation, demonstrates the ability of our 

formalism to model the Earth's magnetic field for well-

chosen values of Mmax and Nmax. 

 

Since we have ND=119 total data points and the 

number of equations (3ND=357) must be greater than or 

equal to the number of unknowns NP given by relation 

(10b), we focus on the value of Mmax or Nmax such that 

one of the truncation indices Mmax or Nmax must be less 

than or equal to Mmax≈Nmax≈√357/6≈7 . 

 

 This rectangular model can estimate the components 

of the field with a maximum uncertainty of approximately 

25nT (10nT inside the domain and 15nT near the boundary). 

Since this value is half of that obtained with a global model 

(greater than 50nT), we can consider applying it to real data.
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Fig 1 Global Evolution of Errors As A Function of the Truncation Indices Mmax and Nmax. 

 

 Application with Real Data 

 

 
Fig 2  Magnetic Declination Maps Obtained from The Rectangular Model (Left) Compared to Those Established with the Global 

Model CM4 (Right) For 1983. 
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Fig 3 Magnetic Declination Maps Obtained From The Rectangular Model (Left) Compared to Those Established With the Global 

Model CM4 (Right) For 1990. 

 

Let's consider the data from Malagasy repetition 

stations since 1983 (Table 2). It should be noted that in the 

case of real data, the model's residuals represent the regional 

magnetic anomalies of the considered region. By definition, 

anomalies are the differences between actual measurements 

and theoretical values estimated by the model. Thus, the 

anomaly maps will not be significant unless we have 

sufficient measurements, as observed in Table 1. Therefore, 

we limit ourselves to representing the internal field 

calculated by the model at every point in the domain from 

the available measurements for each year. We will consider 

the years 1983 and 1990. For simplicity, we will also limit 

ourselves to the magnetic declination maps of Madagascar. 

To validate our results, we will compare them with those 

obtained by the global model CM4. It is important to note 

that the difference between a global model and a regional 

model should not be too large, since for magnetic 

declination, regional anomalies caused by superficial crustal 

structures rarely exceed 5° in absolute values (De Santis et 

al., 1989). 

 

1983 : Measurements exist in the North, North-West, 

East, South-West, and South-East regions, although they are 

not numerous. The declination estimated by the rectangular 

model with Mmax=7 and Nmax=5 and that calculated by 

CM4 generally show the same spatial variations. This 

indicates that the measurements taken in 1983 are reliable 

and agree with both models. 

 

1990 : Measurements exist in the North, North-West, 

East, and South-East regions, but there are none in the 

South. The comparison between the rectangular model with 

Mmax=7 and Nmax=5 and the CM4 model also shows a 

difference, especially near x=-x0 and y=-y0. This is likely 

due to boundary effects accentuated by the absence of 

measurements in the South. Otherwise, the available data 

agree with both models and are therefore reliable. 

 

This application to real data allowed us to examine the 

validity of the rectangular model formalism in the case of 

Madagascar, on the one hand, and to verify the data from 

Malagasy repetition stations on the other. Generally, the 

model's reliability remains only within the areas covered by 

the data, as the estimated values outside these areas are not 

reliable. In any case, the existing data do not allow us to 

accurately track the temporal evolution of the field across 

the entire Malagasy territory because the repetition stations 

change from year to year or from campaign to campaign. 

Nevertheless, the best case from 1983 suggests that to 

establish a regional model for Madagascar, data should be 

simultaneously available for the North, West, East, South-

West, and South-East regions, particularly in Antsiranana, 

Mahajanga, Toamasina, Toliary, and Taolagnaro, even if 

these data are limited in number. 

 

IV. CONCLUSION 
 

In the context of regional modeling, boundary 

conditions are what determine the solutions. We have 

reformulated the formalism of rectangular harmonics, which 

proved to be incomplete, by introducing boundary condition 

issues in the rectangular domain. Preliminary formal studies 

allowed us to consider all conditions that could be applied to 

the magnetic potential in the domain in question. Then, the 

study of the characteristics of the magnetic field 

reconstructed from the eight possible problems led us to 

determine the best decomposition. Our initial trials with 

synthetic data confirm the validity of the rectangular model 

thus obtained. Finally, its application to the data from 

Malagasy repetition stations allowed us to predict which 
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stations should at least be revisited if we want to use this 

model to create valid magnetic maps of Madagascar in the 

future. 
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