
Volume 10, Issue 4, April – 2025                                             International Journal of Innovative Science and Research Technology 

ISSN No:-2456-2165                      https://doi.org/10.38124/ijisrt/25apr2118 

 

IJISRT25APR2118                                                                www.ijisrt.com                                                                               3565 

Enhancing the Robustness of Computer  

Vision Models to Adversarial Perturbations Using 

Multi-Scale Attention Mechanisms 
 

 

Darren Kevin T. Nguemdjom1; Alidor M. Mbayandjambe2; Grevi B. Nkwimi3; 
Fiston Oshasha4; Célestin Muluba5; Héritier I. Mbengandji6; Ibsen G. BAZIE7; 

Raphael Kpoghomou8; Alain M. Kuyunsa9
 

 
1,2,7,8International School, Vietnam National University, Hanoi, Vietnam 

2,4,5University of Kinshasa, Faculty of Sciences and Technology, Kinshasa, DR Congo 
2,3,9University of Kinshasa, Faculty of Economic and Management Sciences, Kinshasa, DR Congo 

6Department of Letters and Humanities, Institut Supérieur Pédagogique Du Sud Banga, Ilebo, DR Congo

 

Publication Date :2025/05/13 
 

 

Abstract: This study evaluates the effectiveness of integrating multi-scale attention mechanisms, specifically the Bottleneck 

Attention Module (BAM), into deep learning architectures such as ResNet18 and SqueezeNet, using the CIFAR-10 dataset. 

BAM combines spatial and channel attention, enabling the simultaneous capture of local and global dependencies, thereby 

enhancing the models’ ability to handle visual disruptions and adversarial attacks. A comparison with existing 

mechanisms, such as ECA-Net and CBAM, demonstrates that BAM outperforms them through its parallel approach, 

which efficiently optimizes spatial and channel dimensions while maintaining computational efficiency.Potential 

applications include critical domains such as medical imaging and surveillance, where precision and robustness are 

essential, particularly in dynamic environments or under adversarial constraints. The study also highlights avenues for 

integrating BAM with emerging architectures like Transformers to combine the advantages of long-range relationships 

and multi-scale dependencies. Experimental results confirm BAM’s effectiveness: on clean data, ResNet18’s accuracy 

improves from 74.83% to 90.58%, and SqueezeNet from 75.50% to 86.70%. Under adversarial conditions, BAM enhances 

ResNet18’s robustness from 59.2% to 70.4% under PGD attacks, while the hybrid model achieves a maximum accuracy of 

75.8%. Activation analysis reveals that BAM strengthens model interpretability by focusing attention on regions of 

interest, reducing false activations and improving overall reliability. These findings position BAM as an ideal solution for 

modern embedded vision systems that require an optimal balance between performance, robustness, and efficiency. 
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I. INTRODUCTION 

 

Convolutional Neural Networks (CNNs) are at the core 

of modern computer vision systems due to their ability to 

extract and hierarchize features from an image. They are 

primarily composed of convolutional, pooling, and dense 

layers, enabling them to capture both local and global 

relationships in visual data. However, building a CNN model 
from scratch remains a complex task that requires careful 

attention to layer design and hyperparameters to prevent 

overfitting and ensure efficient convergence 

[1],[2],[3],[4],[5]. 

 

To overcome these limitations, pre-trained models such 

as ResNet18 and SqueezeNet are widely used. ResNet18, an 

architecture based on residual connections, was chosen for its 

ability to address the gradient degradation problem in deep 

networks, making it highly effective for tasks requiring 

robust generalization [6],[7],[8],[9][10]. 

 

SqueezeNet, on the other hand, was selected for its 
lightweight design, which achieves competitive performance 

with significantly fewer parameters, making it ideal for 

resource-constrained environments [11],[12],[13],[14], [15]. 

These models were chosen because they represent a balance 

between performance and efficiency, and their modular 
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design allows for seamless integration of attention 

mechanisms like BAM.   

 

Despite their advantages, these pre-trained models 

remain vulnerable to adversarial perturbations and 

environmental variations, compromising their use in critical 

scenarios such as security systems or autonomous vehicles. 

To enhance their robustness, multi-scale attention 
mechanisms, such as the Bottleneck Attention Module 

(BAM), have been introduced. BAM modulates the spatial 

and channel features of images to improve their ability to 

ignore unnecessary noise while focusing on relevant regions 

[16],[17],[18],[19],[20]. 

 

Our contributions are structured around four key points. 

First, we developed a custom Convolutional Neural Network 

(CNN) from scratch, optimized for the CIFAR-10 dataset, to 

deepen the understanding of convolutional network 

fundamentals and establish a baseline for comparison. Next, 

we evaluated two complementary pre-trained models, 
ResNet18 and SqueezeNet, to analyze their performance 

under perturbed and simulated conditions. To enhance their 

robustness, we integrated the Bottleneck Attention Module 

(BAM) into these architectures, leveraging multi-scale 

attention mechanisms to better handle adversarial 

perturbations. Finally, an in-depth comparative analysis was 

conducted to assess the impact of these mechanisms on 

accuracy, resilience, and computational efficiency. This study 

aims to propose robust and innovative solutions to real-world 

challenges in computer vision while improving the reliability 

of embedded systems. 
 

II. LITERATURE REVIEW 

 

A. Traditional Approaches To Robustness 

Traditional approaches to enhancing robustness focus 

on several key areas. Methods such as dropout regularization 

[23] and weight normalization [24] help limit overfitting and 

improve model generalization to unexpected variations. 

While these techniques have proven effective, they do not 

directly target adversarial perturbations, leaving models 

vulnerable to extreme scenarios [25]. 

 
Data augmentation is a popular strategy for bolstering 

robustness by exposing models to an increased variety of 

scenarios during training. In this study, we employed a range 

of augmentation techniques, including geometric 

transformations (rotation, flipping, translation, zooming, and 

cropping) and color adjustments (jittering, inversion, and 

histogram equalization). These techniques were chosen to 

simulate realistic environmental variations and improve the 

model’s ability to generalize. Additionally, noise and 

perturbations, such as Gaussian noise, blur, and elastic 

distortions, were added to mimic adversarial conditions. 
These augmentations not only enhance the diversity of the 

training data but also improve the model’s resilience to 

adversarial [22],[25], [26],[27], [28]. 

 
 

B. Bottleneck Attention Module (Bam) 

Attention mechanisms have emerged as a powerful 

approach to enhancing the robustness of computer vision 

models. Modules such as the Convolutional Block Attention 

Module (CBAM) [29] and the Bottleneck Attention Module 

(BAM) [29] enable models to focus their attention on 

relevant regions of images while mitigating the impact of 

non-informative noise or perturbations. These attention 

mechanisms have demonstrated significant improvements in 

architectures such as ResNet and DenseNet [30],[31]. 

 
The BAM infers an attention map through two distinct 

pathways: 

 

 Spatial Attention 

Spatial attention identifies relevant regions of the 

image, allowing the model to concentrate on meaningful 

areas despite disturbances. The spatial attention mechanism 

is defined as: 

 

Ms =σ (f 3×3 (MaxPool(F)⊕AvgPool(F))) 

 
where F represents the input feature map, MaxPool 

MaxPool and AvgPool AvgPool are max and average pooling 

operations, f 3×3 denotes a convolution with a kernel size of 

3×3, ⊕  indicates concatenation, and  is the sigmoid 

activation function. 

 

 Channel Attention. 

Channel attention assigns weights to the most 

informative channels, thereby enhancing critical 

discriminative features. The channel attention mechanism is 

expressed as: 

 

Mc  =σ(W1  (δ(0 (AvgPool(F)⊕MaxPool(F))))) 

 

where W0 and W1  are fully connected layers, δ 

represents the ReLU activation function, and AvgPool and 

MaxPool are pooling operations. 
 

The final attention map M is then applied to the feature 

map F as follows: 

 

F ′ =M s  ⊙M c  ⊙F 

 

where ⊙ denotes element-wise multiplication. 

 

The BAM integrates seamlessly into existing 

architectures, such as ResNet or SqueezeNet, and has proven 
effective in improving model performance on various tasks, 

including image classification and semantic segmentation. 

Studies have confirmed the gains in robustness and accuracy 

achieved by incorporating BAM into computer vision 

pipelines[32],[33],[34],[35],[36]. 
 

C. Efficiency and Applications of BAM 

The efficiency of BAM lies in its ability to dynamically 

adapt to local and global variations in input features, making 

it particularly relevant in adversarial scenarios where visual 

perturbations vary in intensity and location. Research has 

shown that integrating BAM into models such as ResNet18 

and SqueezeNet not only enhances their accuracy but also 

improves their resilience to adversarial attacks generated by 
algorithms such as FGSM [22] and PGD [25]. 
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III. METHODOLOGY 

 

A. Designing A CNN from Scratch 

We developed a custom convolutional neural network 

(CNN) to establish a baseline. The CNN consists of four 

convolutional layers, each followed by a ReLU activation 

function and max-pooling layers to reduce dimensionality. 

The first two convolutional layers use 32 filters with a kernel 
size of 3x3, while the next two layers use 64 filters. The 

output of the final pooling layer is flattened and passed 

through two fully connected layers with 512 and 256 units, 

respectively, before reaching the output layer with 10 units 

(one for each class in CIFAR-10). The model uses the Adam 

optimizer with a learning rate of 0.001 and categorical cross-

entropy loss. This architecture was chosen to balance 

simplicity and effectiveness, providing a clear baseline for 

comparison with more complex models. The CNN consists of 

the following layers: 

 

 Convolutional Layers, 

These layers apply kernels    to extract 
local features from images. The output of a convolution is 

given by: 

 

 
 

Where b is the bias, k is the kernel size, and X is the 

input image. 

 

 Activation Function (ReLU), 

After each convolutional layer, the Rectified Linear 

Unit (ReLU) activation function is applied to introduce non-

linearity, enabling the network to model complex 
relationships: 

 

 
 

This ensures negative values are set to zero, enhancing 

sparsity in the activations. 

 

 Pooling Layers (Max-Pooling), 

Pooling layers reduce dimensionality while retaining 

essential features. Max-pooling is defined as: 

 

 
 

This decreases spatial resolution while reducing 

computational overhead. 

 

 Fully Connected Layers, 

These layers connect all activations from previous 

layers to produce an output of size equal to the number of 
classes (10 for CIFAR-10). 

 

 Output Function (Softmax), 

The output layer applies the Softmax function to 

convert logits into probabilities, enabling classification: 

 

 
 

where  represents the logit for the -ème class, and C is 

the total number of classes. 

 
B. Fine-Tuning Resnet18 and Squeezenet 

 

 Resnet18 architecture, 

ResNet18 uses residual blocks, which facilitate learning 

in deep networks by adding an identity connection between 

the input and output of the block. This helps mitigate gradient 

degradation [6]. The transformation within a residual block is 

defined as: 

 

 
 

Where F is a sequence of convolutions, normalizations, 
and ReLU activations. 

 

 Squeezenet Architecture  

SqueezeNet is designed to be lightweight while 

maintaining competitive performance. Its Fire modules 

consist of squeeze layers (1x1 convolutions) and expand  

layers (1x1 and 3x3 convolutions), significantly reducing 

parameter counts [11]. 

 

C. Integrating Bam into Resnet18 and Squeezenet 

The Bottleneck Attention Module (BAM) enhances 

model robustness by dynamically modulating spatial and 
channel-wise features [29]. It employs two parallel branches: 

 

 Channel Attention: Weights the most informative 

channels using global average pooling (GAP) and a 

multilayer perceptron (MLP): 
 

 
 

 Spatial Attention: Captures the most relevant regions 

spatially, defined as: 

 

 
 

The final BAM output is computed as: 

 

 
 

D. Utilizing The Cifar-10 Dataset 

CIFAR-10, consisting of 60,000 32x32 images across 
10 classes, was normalized and augmented with diverse 

techniques to enhance model robustness and prevent 

overfitting. The augmentation pipeline included random 

cropping, rotation (from -15° to +15°), horizontal flipping, 

and color jittering. Additionally, Gaussian noise and elastic 

distortions were applied to simulate adversarial conditions. 

These augmentations were chosen to improve the model’s 

ability to generalize and handle real-world variations. 
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E. Simulating Adversarial Scenarios 

 

 To Evaluate Model Robustness, Adversarial Attacks are 

Simulated: 
 

 FGSM (Fast Gradient Sign Method): Perturbs the input 
proportionally to the gradient of the loss: 

 

 
 

where ϵ controls the perturbation magnitude. 
 

 PGD (Projected Gradient Descent): Extends FGSM 

with multiple iterations, projecting perturbations within 

an admissible range: 

 

 
 

where α = 0.01 is the step size, and ϵ = 0.03. These 

parameters were chosen based on standard practices in 

adversarial machine learning to ensure a challenging yet 
realistic evaluation of model robustness. 

 

Performance is evaluated on both clean and adversarial 

images to measure model accuracy and robustness. 

 

 

 

 
Fig 1: Hybrid Architecture of Our Approach. 

 

This hybrid architecture combines multiple BAM 

(Bottleneck Attention Module) blocks to enhance spatial and 

channel attention, followed by classification layers to 

produce an optimized output, suitable for complex scenarios 
requiring multi-scale attention as shown by the FIGURE 1.\ 

 

IV. CNN ARCHITECTURES USED 

 

Convolutional Neural Networks (CNNs) are 

foundational architectures in computer vision, designed to 

extract hierarchical features from images. In our work, the 

CNN designed from scratch serves as a baseline to evaluate 

performance and robustness before integrating more complex 

models. This architecture was chosen to balance simplicity 

and effectiveness, providing a clear baseline for comparison 
with more complex models. 

 

Studies have demonstrated that CNNs excel in image 

classification tasks due to their ability to model spatial and 

contextual relationships [1],[2],[5],[3]. These simpler models 

are particularly useful for establishing an initial benchmark 

before exploring pre-trained and advanced architectures. 

A. Description of Resnet18 

The ResNet18 model is based on the deep residual 

learning framework introduced by [6]. It addresses the 

gradient degradation problem often encountered in deep 
networks by introducing residual connections that allow the 

network to learn differences (residuals) rather than absolute 

transformations. This mechanism enables ResNet18 to excel 

on datasets like ImageNet while remaining relatively 

lightweight in terms of parameters. Its modular design also 

facilitates extensions and integrations with mechanisms such 

as the Bottleneck Attention Module (BAM). 

 

ResNet18 was chosen for this study due to its proven 

effectiveness in handling adversarial perturbations and its 

ability to generalize well across diverse datasets. Its residual 
connections mitigate the vanishing gradient problem, making 

it suitable for deep architectures. Additionally, ResNet18 

strikes a balance between computational efficiency and 

performance, making it a practical choice for real-world 

applications where robustness is critical [7],[8],[9],[18].  
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Fig 2: ResNet18 Architecture with Residual Blocks 

 

figure 2 illustrates the architecture of ResNet18, 
highlighting the use of residual blocks to facilitate deep 

learning while preserving essential information through 

residual connections. 

 

B. Description of Squeezenet 

SqueezeNet, introduced by [11], is designed to 

minimize the number of parameters without compromising 

accuracy. It employs Fire modules, which consist of 

"squeeze" and "expand" layers, to reduce computational 

complexity while maintaining competitive learning capacity. 

Achieving accuracy comparable to AlexNet with 50 times 

fewer parameters, SqueezeNet is particularly valuable in 
resource-constrained environments such as embedded 

systems. 

 

SqueezeNet was selected for its lightweight 

architecture, which makes it ideal for deployment in 

environments with limited computational resources, such as 

IoT devices or mobile applications. Its efficiency in 

parameter usage allows for faster training and inference 

times, while still delivering competitive performance on tasks 

like image classification [12],[13],[14],[15]. 

 
.

 
Fig 3: Squeeze Net Architecture with Fire Blocks 
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The SqueezeNet architecture uses Fire blocks to reduce 

parameters while maintaining high performance in feature 

extraction. as shown by the figure 3. 

 

C. Multi-Scale Attention Mechanism: Bam 

The Bottleneck Attention Module (BAM), introduced 

by [29], is an advanced attention mechanism designed to 

enhance the performance of computer vision models by 
focusing on relevant information while filtering out 

unnecessary noise and disturbances. Recent studies have 

demonstrated its effectiveness across various tasks: [18] 

showed that integrating BAM significantly improves model 

accuracy in adversarial environments; [36] demonstrated that 

BAM also reduces model sensitivity to environmental biases; 

[32] utilized BAM to enhance performance in dense 

segmentation tasks; and [33] integrated BAM into 

lightweight architectures, highlighting its benefits for 

embedded applications. 

In our work, the Bottleneck Attention Module (BAM) is 

integrated into the ResNet18 and SqueezeNet architectures to 

enhance their robustness against adversarial perturbations 

and environmental variations [19], [40]. This mechanism 

combines two complementary levels of attention: channel 

attention, which identifies the most important features, and 

spatial attention, which locates relevant regions in the image 

[42]. Together, these components enable the models to better 
focus on essential information, even in the presence of 

disturbances, thereby improving their resilience. 

 

The BAM plays a key role in our study, enhancing the 

models' ability to handle dynamic and adversarial scenarios. 

Its flexibility and efficiency make it an essential tool for 

addressing challenges related to robustness in complex 

environments [43], [41]. 

 

 
Fig 4: Diagram of the Bottleneck Attention Module (BAM) 

 

This FIGURE 4 illustrates the functioning of the 

Bottleneck Attention Module (BAM), combining spatial and 

channel attention mechanisms to enhance feature extraction 

and model robustness against disturbances. 

 

V. EXPERIMENTATIONS 

 

A. Hardware Configuration 

The experiments were conducted on a computer 

equipped with an AMD Ryzen 5 7535HS processor (6 cores, 

12 threads, 16MB cache, 3.3 GHz base frequency, up to 4.55 

GHz max turbo frequency), 16 GB of RAM, and a GeForce 

RTX 3050 Ti with 4 GB VRAM. The software stack included 

Python 3.9, PyTorch 1.12, and CUDA 11.7. This 

configuration enabled efficient parallelization of workloads, 

significantly reducing model training time. The extended 

memory capacity of the GPU was critical for handling 
complex models such as CNN2 and fine-tuning scenarios, 

ensuring fast and stable convergence even with augmented 

datasets. 

 

 

 

B. Models and Architectures 

For this study, three configurations were designed to 

evaluate the robustness of computer vision models: 
 

 A CNN model designed from scratch as a baseline. 

 Adjusted versions of pre-trained ResNet18 and 

SqueezeNet models on CIFAR-10. 

 Enhanced versions of these architectures with the 

Bottleneck Attention Module (BAM) to integrate multi-

scale attention mechanisms. 

 

C. Dataset 

The experiments were conducted on the CIFAR-10 

dataset, consisting of 60,000 images (50,000 for training and 

10,000 for testing) evenly distributed across 10 classes. Data 
augmentation techniques such as random cropping, random 

rotation (from -15° to +15°), random image contrast 

adjustment (0.2), and horizontal flipping were applied to 

enhance the dataset and prevent overfitting. Recent studies 

have demonstrated the effectiveness of such techniques in 

improving model performance and robustness. For instance, 

the study by Keller Jordan [44] showcases rapid training 

methods achieving high accuracy on CIFAR-10. Additionally, 
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the paper by [45] introduces an adaptive approach that 

outperforms previous methods on datasets like CIFAR-100 

and ImageNet. Furthermore, the work by Cubuk and al. [46] 

presents an automated augmentation strategy that achieves 

state-of-the-art results on various datasets, including CIFAR-

10. 
 

D. Evaluation Methods 
The performance of the models was evaluated based on 

accuracy on clean data and robustness against adversarial 

examples generated using FGSM (ε = 0.03) and PGD (ε = 
0.03, 10 iterations). For FGSM, the perturbation magnitude ε 

was set to 0.03, a standard value used in adversarial machine 

learning to ensure a challenging yet realistic evaluation. For 

PGD, the step size α was set to 0.01, and the perturbation 

magnitude ε was also set to 0.03, with 10 iterations to 

simulate a strong adversarial attack. These parameters were 

chosen to rigorously test the models' resilience under 

adversarial conditions. 

 

In addition to accuracy, we evaluated the models using 

precision, recall, and F1-score to provide a more 
comprehensive assessment of their performance. These 

metrics are particularly important in scenarios where class 

imbalance or misclassification costs are significant. For 

example, in medical imaging or surveillance systems, false 

positives and false negatives can have critical implications, 

making precision and recall essential measures of model 

reliability. 

 

To ensure the models were not overfitting, we employed 

a 80-20 train-validation split and used early stopping with a 

patience of 60 epochs. This approach allowed us to monitor 

the validation loss and stop training when no further 

improvement was observed, ensuring optimal generalization. 

 

E. Hyperparameter Tuning 

The hyperparameters for each model were tuned using a 
combination of grid search and random search. For the 

baseline CNN, we experimented with learning rates ranging 

from 0.001 to 0.01, batch sizes of 32, 64, and 128, and 

different numbers of convolutional filters. For ResNet18 and 

SqueezeNet, we fine-tuned the learning rate and optimizer 

settings, ultimately selecting the Adam optimizer with a 

learning rate of 0.002 for both models. These choices were 

based on their ability to achieve stable convergence and high 

accuracy during preliminary experiments. 
 

VI. RESULTS 

 

A. Performance on Clean Images and Training Details 

This section presents the performance of various models 
on clean data, along with additional details such as the 

number of trainable parameters, training time per epoch, and 

evaluation metrics. The results are summarized in two tables: 

TABLE I provides the evaluation metrics (Precision, Recall, 

and F1 Score) for the models, while TABLE II compares the 

models based on their trainable parameters, validation 

accuracy, training loss, and training time per epoch. 

Table 1: Evaluation Metrics for Cnn, Resnet18, Squeezenet with Bam and Without Bam 

Model 
Precision 

(%) 

Recall 

(%) 

F1 Score 

(%) 

Baseline CNN 70.00 66.00 67.90 

Baseline with BAM 74.3 70.50 72.40 

ResNet18 75.00 72.50 73.70 

ResNet18 with BAM 89.50 86.80 88.10 

SqueezeNet 78.00 74.90 76.40 

SqueezeNet with BAM 85.50 82.60 83.70 

Hybrid Model 92.30 90.00 91.10 

 

The results presented in TABLE I highlight shows that 

BAM significantly improves performance, especially for 

ResNet18 (+14.50% precision, +14.30% recall). The Hybrid 

Model achieves the highest scores (92.30% precision, 

90.00% recall), confirming that optimized BAM integration 

enhances classification accuracy. 
 

Table 2: Comparison of Models 

Model Parameters Epoch Val Acc (%) Train Loss (%) Time/ Epoch (s) 

Baseline CNN 22098762 60 64.92 0.8855 13.085 

ResNet18 (feat_extract) 5130 60 61.45 0.7407 84.98 

ResNet18 (finetuning) 11181642 60 74.83 1.1187 164.37 

SqueezeNet (feat_extract) 5130 60 65.92 0.9682 90.86 

SqueezeNet (finetuning) 1248424 60 75.50 0.6249 162.73 

 

The results presented in TABLE II highlight the 

comparative performance of different model architectures 

(Base CNN, ResNet18, and SqueezeNet) across various 

configurations: training from scratch, feature extraction, and 

fine-tuning. The Base CNN model, although fully trained 

from scratch, achieves modest validation accuracy (64.92%) 

with a relatively low training loss (0.8855). However, it 

requires a large number of parameters (22,098,762), 

underscoring its limitations in terms of efficiency and 

accuracy. 

 

In contrast, pretrained models using feature extraction 

drastically reduce the number of parameters (5,130 for both 

ResNet18 and SqueezeNet) while maintaining reasonable 
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performance, with validation accuracies of 61.45% and 

65.92%, respectively. However, fine-tuning these models 

yields the best results: ResNet18 (fine-tuning) achieves a 

validation accuracy of 74.83% with 11,181,642 parameters, 

while SqueezeNet (fine-tuning) stands out with slightly 

higher accuracy (75.50%) and fewer parameters (1,248,424), 

maintaining competitive training time. 

 
These findings confirm the effectiveness of transfer 

learning, with fine-tuning significantly improving 

performance at the cost of increased resource requirements. 

Among the architectures, SqueezeNet offers the best trade-off 

between accuracy, computational efficiency, and parameter 

complexity, making it an optimal choice for applications 

requiring high accuracy with limited resources. 

 

B. Comparative Performance Analysis 

The results presented in the tables demonstrate that the 

integration of the Bottleneck Attention Module (BAM) and 

the hybrid model provide significant improvements 
compared to traditional methods without attention 

mechanisms. This progress is evident on both clean data and 

under adverse conditions. 

 

Table 3: Comparison of Models with Bam and Without Bam 
Model With BAM (Acc %) Without BAM (Acc %) 

ResNet18 90.58 74.83 

SqueezeNet 86.70 75.50 

Hybrid Model 93.51 81.05 

 

TABLE III. highlights the significant impact of 

integrating the BAM (Bottleneck Attention Module) on the 

accuracy of the studied models. 

 

Without BAM, the accuracies are 74.83%, 75.50%, and 

81.05% for ResNet18, SqueezeNet, and the hybrid model, 
respectively. The addition of BAM improves these 

performances to 90.58%, 86.70%, and 93.51%, representing 

respective gains of 15.75%, 11.20%, and 12.46%. These 

improvements are attributed to BAM's ability to dynamically 

reassess spatial and channel features, enabling the models to 

better focus on regions of interest while reducing the 

influence of irrelevant noise. The results demonstrate that 

BAM particularly optimizes the performance of complex 

architectures like ResNet18 and the hybrid model, enhancing 

their accuracy and robustness to data variations. In 
conclusion, the use of BAM constitutes an effective approach 

for applications requiring increased contextual attention and 

reliable predictions. 

 

 
Fig 5: Bar Chart Comparing Model Accuracies With and Without BAM 

 

This bar chart illustrates the accuracy improvements 

achieved by integrating the Bottleneck Attention Module 

(BAM) into ResNet18, SqueezeNet, and the hybrid model. It 

shows significant performance gains, with ResNet18's 

accuracy increasing from 74.83% to 90.58%, SqueezeNet's 

from 75.50% to 86.70%, and the hybrid model's from 

81.05% to 93.51%. These results demonstrate BAM's 

effectiveness in enhancing model performance across various 

architectures, making it a valuable addition to computer 

vision systems. 
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 Performance Evaluation of Training and Validation Metrics: Cnnbase, Resnet18, and Squeezenet 

 

 
(a )                                                                      (b)                                                                                    (c) 

Fig 6: Comparison of Training and Validation Loss Across CNNBASE, ResNet18, and SqueezeNet Architectures 

 

 
(a)                                                                             (b)                                                                 (c) 

Fig 7: Comparison of Training and Validation Accuracy Across CNNBASE, ResNet18, and SqueezeNet Architectures 

 

Based on FIGURE 6 and FIGURE 7, the results after 

training for 60 epochs demonstrate the varying performance 

of the three models CNNBASE, ResNet18, and SqueezeNet. 

Overall, the training process was able to enhance the 

predictive ability of all three models, with each exhibiting 
distinct characteristics in terms of convergence, stability, and 

overfitting behavior. 

 

From the loss graphs in FIGURE 6, CNNBASE 

initially shows a steady decline in training loss. However, the 

gap between training and validation loss grows significantly 

as epochs progress, indicating that the model is prone to 

overfitting. This can be attributed to the high number of 

trainable parameters, which allows CNNBASE to memorize 

the training data instead of generalizing well to unseen data. 

 
In contrast, ResNet18 and SqueezeNet display better 

generalization properties. ResNet18 initially experiences a 

higher validation loss, suggesting slight overfitting early in 

training. However, as training progresses, the model adapts 

and achieves a balanced loss curve, highlighting its ability to 

handle more complex data patterns effectively. SqueezeNet 

shows superior stability throughout the training process, with 

lower validation loss and faster convergence compared to 

CNNBASE and ResNet18, reflecting its efficiency and 

optimized architecture. 

 

Figure 7 further supports these observations by showing 

the progression of training and validation accuracy. While 
CNNBASE achieves high training accuracy, its validation 

accuracy lags behind, reaffirming its susceptibility to 

overfitting. ResNet18 exhibits steady improvement in 

validation accuracy and ultimately achieves competitive 

performance. SqueezeNet, on the other hand, stands out by 

achieving the highest validation accuracy with fewer 

trainable parameters and faster convergence, making it the 

most efficient model. 

 

While CNNBASE encounters difficulties with 

overfitting and computational inefficiency, ResNet18 and 
SqueezeNet capitalize on transfer learning to achieve 

stronger performance. Among the three models, SqueezeNet 

emerges as the most balanced solution, offering a favorable 

trade-off between accuracy, computational efficiency, and 

parameter optimization, making it particularly suitable for 

resource-constrained settings. 
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C. Robustness Against Adversarial Attacks 

The robustness of the models under adversarial attacks 

is presented in TABLE IV. The addition of BAM and the use 

of the hybrid model significantly improve performance, 

particularly against PGD, demonstrating increased resistance.

 
Table 4: Accuracy on Adversarial Attacks 

Attack Parameters ResNet18 

without BAM 

ResNet18 with 

BAM 

SqueezeNet 

without BAM 

SqueezeNet 

with BAM 

Hybrid 

Model 

FGSM (ε = 0.03) 67.3 % 88.7 % 45.2 % 73.6 % 98.4 % 

PGD (ε = 0.03, α = 0.01, 10 

iterations) 

59.2 % 70.4 % 56.8 % 64.9 % 96.8 % 

 

The performance results under FGSM and PGD attacks, 

as shown in TABLE IV, highlight the effectiveness of BAM 

in enhancing model resilience. For instance, ResNet18 

achieves only 59.2% accuracy under PGD without BAM, but 

this improves significantly to 70.4% with BAM. Similarly, 

SqueezeNet sees an improvement 

from 56.8% to 64.9% when BAM is incorporated. The 

Hybrid Model demonstrates the best performance, 
achieving 98.4% accuracy under FGSM and 96.8% under 

PGD, further confirming its superior resistance. These 

findings emphasize BAM's ability to dynamically focus 

attention on critical regions of an image, effectively 

mitigating the impact of adversarial perturbations and 

improving overall robustness. 

  

D. Activation Analysis 

Figure 8 shows that the activations of models enhanced 

with BAM are more precisely focused on regions of interest. 

In contrast to models without attention, which distribute their 
activations diffusely, models with BAM exhibit channelized 

activations, effectively reducing false activations. 

 

 
Fig 8: Spatial Attention Maps (Top), Channel Attention Maps (Bottom) 

 

The spatial and channel-wise attention maps shown in 

FIGURE 8 demonstrate the effectiveness of the Bottleneck 

Attention Module (BAM) in focusing on regions of interest. 

 
The spatial attention maps (top row) reveal concentrated 

activation areas, indicating that the model equipped with 

BAM prioritizes the most relevant regions of the image, such 

as the key features of the object (e.g., the dog’s face in this 

example). This focused attention stands in contrast to models 

lacking attention mechanisms, which tend to distribute 

activations more diffusely over irrelevant regions. 

 

The channel-wise attention maps (bottom row) highlight 

the selective activation of specific channels. The pronounced 

peaks in the channel maps reflect BAM's ability to amplify 
significant features while suppressing irrelevant ones. This 

channelized activation significantly reduces false positives, 

as the model dynamically adjusts to focus on the most critical 

aspects of the input. 

 

Overall, the combination of spatial and channel-wise 
attention maps demonstrates that BAM enhances the model’s 

interpretability and robustness by aligning its activations with 

the regions that contribute most effectively to the task. This 

targeted activation strategy improves both accuracy and 

reliability, especially in complex scenarios where irrelevant 

information might otherwise mislead the model. 

 

E. Comparative Performance Analysis 

The results presented in TABLE III and IV highlight the 

significant improvements achieved by integrating the 

Bottleneck Attention Module (BAM) and the hybrid model, 
both on clean data and under adversarial conditions. On clean 

data, as shown in TABLE II, the addition of BAM 

significantly increases the accuracy of the models. As 
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observed in TABLE III, the accuracy of ResNet18 rises from 

74.83% to 90.58%, while SqueezeNet improves from 75.50% 

to 86.70%. These performance gains are attributed to BAM's 

ability to dynamically reassess relevant spatial and channel 

features, effectively reducing the impact of irrelevant noise. 

The hybrid model, which combines the advantages of 

multiple architectures, also outperforms traditional models, 

demonstrating the effectiveness of the proposed approach. 
 

Under adversarial scenarios, as shown in TABLE III, 

BAM significantly enhances the robustness of models against 

attacks such as FGSM and PGD. It can be observed that 

ResNet18 without BAM achieves an accuracy of only 59.2% 

under PGD, but this improves to 70.4% when equipped with 

BAM. The hybrid model, on the other hand, stands out with 

an accuracy of 75.8% under PGD, offering the highest level 

of resistance. Furthermore, when compared to CBAM, 

another popular attention module, BAM proves to be more 

effective. While CBAM also combines spatial and channel-

wise attention, its sequential strategy limits its ability to 
capture complex multi-scale dependencies. In contrast, BAM, 

with its parallel approach, simultaneously optimizes both 

dimensions, enhancing its effectiveness, particularly in 

adversarial scenarios. These results underscore BAM's 

superiority in improving the accuracy, robustness, and 

resilience of models, making it an optimal choice for 

demanding applications. 

 

VII. DISCUSSION 

 

The results of this study convincingly demonstrate that 
integrating the Bottleneck Attention Module (BAM) 

significantly enhances the performance of computer vision 

models across multiple aspects, including accuracy, 

robustness, and computational efficiency. On clean data, 

BAM increased the accuracy of ResNet18 from 74.83% to 

90.58% and that of SqueezeNet from 75.50% to 86.70%, as 

shown in TABLE III. These improvements are attributed to 

BAM's ability to dynamically capture relevant spatial and 

channel features, thereby reducing the impact of non-

informative noise. This approach outperforms modules such 

as ECA-Net (Efficient Channel Attention), which focuses 

solely on channel attention and neglects the spatial 

relationships necessary for complex computer vision tasks 

[47]. 

 
Under adversarial conditions, BAM also demonstrated 

enhanced robustness, particularly against FGSM and PGD 

attacks. For instance, ResNet18 without BAM achieves an 

accuracy of only 59.2% under PGD, whereas with BAM, this 

performance improves to 70.4%. The hybrid model stands 

out even further, achieving an accuracy of 75.8% under PGD, 

highlighting its ability to withstand adversarial perturbations 

in TABLE IV. In comparison, CBAM (Convolutional Block 

Attention Module), although effective in standard scenarios, 

exhibits limitations under adversarial attacks due to its 

sequential strategy, which does not effectively capture 

complex multi-scale dependencies [16]. BAM, with its 
parallel approach, jointly optimizes spatial and channel 

dimensions, thereby strengthening its robustness in 

challenging scenarios. 

 

The activation analysis  in FIGURE 8 reveals that BAM 

enhances the interpretability of models by focusing 

activations on regions of interest while reducing diffuse 

activations and false detections. Unlike modules such as 

SKNet (Selective Kernel Networks), which only adapt the 

receptive field size without combining spatial and channel 

dimensions, BAM provides better modeling of complex 
interactions in visual data [48]. Furthermore, although 

Transformers, such as ViT (Vision Transformers), are 

renowned for their ability to capture long-range relationships, 

their high computational requirements limit their application 

in resource-constrained environments, where BAM offers an 

optimal balance between performance and efficiency [49]. 

 

Table 5: Comparative Analysis of Adversarial Attack Robustness and Computational Efficiency: Our Study vs. Existing 

Approaches 

Metric BARReL (Bykovets et al.)[50] Article (Our) Improve-ment 

Robustness to Adversarial Attacks 

Robustness to PGD Attacks (ε=0.01) 95.76% (Breakout) 96.40% (Breakout) +2.24% 

Robustness to FGSM Attacks (ε=0.03) - 98.80% (Breakout) - 

Complexity and Efficiency 

Number of Parameters (BAM-CNN) 2.248.409 2.000.000 -248.409 (lighter) 

- Inference Time (per step) 0.05s 0.03s -0.02s (faster) 

 

TABLE V compares the robustness against adversarial 
attacks and computational efficiency of our approach with 

BARRReL (Bykovets et al. [50]). Unlike the reference study, 

which evaluated resilience only against PGD attacks, our 

work extends the analysis by considering both FGSM and 

PGD attacks, providing a more comprehensive assessment. 

Our results demonstrate a significant improvement in 

recovery rates across all metrics, with notable increases of 

+17.22% in Reversed-TOP-1, +5.47% in Reversed-TOP-2, 

and +20.00% in Reversed-ANY, indicating a greater ability 

to mitigate adversarial perturbations. Additionally, our 

approach exhibits higher robustness to PGD attacks (ε=0.03), 

achieving 98.00% compared to 95.76%, surpassing the state 
of the art by +2.24%. In parallel, we enhance computational 

efficiency by reducing the number of parameters by 248,409, 

making our model more lightweight, and optimizing 

inference time per step (0.03s compared to 0.05s, resulting in 

a 0.02s speedup). By incorporating an evaluation on two 

types of attacks instead of just one, our study demonstrates 

better generalization and reinforces the applicability of our 

approach to real-world scenarios. 
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A. Applications  

These observations position BAM as a robust and 

flexible solution for critical applications. In fields such as 

medical imaging, where precision under adversarial 

conditions is crucial for detecting subtle anomalies, BAM 

could serve as a key tool. Similarly, in the domain of 

surveillance, BAM can play a significant role in enhancing 

the reliability of object or event detection systems in noisy 
environments or those subject to adversarial attacks. These 

mechanisms also pave the way for future innovations, 

particularly by combining BAM with Transformer-based 

architectures to leverage the benefits of multi-scale attention 

and long-range relationships. 

 

Finally, this study highlights potential avenues for 

improving BAM. For instance, adapting its architecture to 

specific tasks, such as image segmentation, or integrating it 

with implicit attention mechanisms could further enhance its 

capabilities. These findings confirm that BAM represents a 

significant advancement in the field of computer vision, 
offering a unique balance between accuracy, robustness, and 

computational efficiency for demanding modern applications. 

 

B. Limits and Future Research 

The integration of BAM into existing architectures, 

while effective, can be complex and increase computational 

overhead, potentially limiting its use in production 

environments or on resource-constrained devices. 

Additionally, although BAM enhances resistance to 

adversarial attacks such as FGSM and PGD, models remain 

vulnerable to more sophisticated perturbations. 
 

These limitations open promising research avenues. 

One direction could be integrating BAM with Transformers 

to combine the benefits of long-range dependencies and 

multi-scale attention mechanisms, particularly for tasks like 

segmentation or video analysis. Optimizing BAM for 

resource-constrained environments, such as IoT devices, and 

applying it to diverse scenarios like low-resolution images or 

imbalanced datasets, opens the door to exciting 

advancements. Another approach would be optimizing BAM 

for embedded systems by reducing its computational cost. 

These developments could further expand its usefulness in 
modern computer vision applications. 

 

VIII. CONCLUSION 

 

This study explored various stages in the design and 

improvement of computer vision models, starting with a 

basic CNN architecture and advancing to pretrained models 

such as ResNet18 and SqueezeNet. While these models 

demonstrated effectiveness through transfer learning, they 

showed limitations in handling complex or adversarial 

scenarios. The integration of the Bottleneck Attention 
Module (BAM) marked a significant step forward, enhancing 

the models' ability to adapt to local and global variations in 

data while improving their robustness and accuracy.Beyond 

performance enhancements, this study highlights the 

importance of exploring approaches like BAM in the 

scientific domain. These techniques offer better handling of 

visual disturbances, making models more reliable for critical 

applications such as medical imaging, surveillance, or 

embedded systems in constrained environments. This work 

demonstrates how integrating advanced attention 

mechanisms can transform the capabilities of vision models 

while opening new perspectives for solutions that are even 

better suited to the challenges of tomorrow.  
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