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Abstract:- Flight fare prediction is a vital component in 

helping consumers make informed decisions regarding 

travel expenses. Airline ticket prices fluctuate due to a 

variety of factors such as demand, time of purchase, and 

flight routes. In this research, we propose a machine 

learning-based solution for predicting flight fares using 

historical data. Models like Random Forest, Gradient 

Boosting, and Support Vector Machines (SVM) are 

employed to analyze flight data and produce reliable 

predictions. This study demonstrates how predictive 

models can benefit customers by offering insights into 

pricing trends, thus optimizing their flight booking 

process. 
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I. INTRODUCTION 

 

Airline ticket prices have become increasingly dynamic 

due to the global expansion of commercial aviation and the 

advent of E-commerce. Airlines use complex revenue 

management strategies to optimize pricing based on multiple 

variables, including the date of booking, demand, and 

competition. While customers aim to secure the lowest fare, 

predicting the best time to book a flight is difficult. This paper 

addresses the need for accurate flight fare predictions using 
machine learning techniques. 

 

Machine learning has emerged as a powerful tool for 

handling such pricing complexities. Traditional methods fail 

to capture the dynamic nature of flight prices, which depend 

on numerous factors such as seasonal trends, travel demand, 

and route popularity. By applying machine learning 

algorithms, we can analyze historical flight data and uncover 

relationships between these variables, enabling more accurate 

fare predictions. 

 
This research explores several machine learning 

models, evaluates their performance, and proposes an 

efficient system for flight fare prediction. 

II. LITERATURE REVIEW 

 

Several studies have addressed the challenge of 

predicting flight prices using machine learning techniques. A 

common theme in the literature is the employment of 
regression models to analyze the temporal, geographical, and 

market-driven variables affecting airfares. For example, K. 

Tziridis et al. (2017) explored the predictive power of 

machine learning algorithms like Random Forest, revealing 

that ensemble models outperformed simple regression 

models in capturing price dynamics. 

 

Other works, such as that of Panwar et al. (2021), 

focused on using Support Vector Machines (SVM) and 

Linear Regression for predicting stock and airfare prices, 

finding that machine learning models offer substantial 

improvements over traditional statistical approaches. 
However, most studies emphasize the need for robust feature 

engineering, as the importance of specific variables like 

seasonality and airline type can significantly affect the 

predictive power of models.Our study builds upon this 

foundation by comparing multiple machine learning models 

and introducing new feature engineering techniques to 

improve model accuracy in predicting flight fares. 
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III. METHODOLOGY 

 

 
Fig 1 Block Diagram 
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A. Data Collection 

The first step in building a machine learning model for 

flight price prediction involves gathering a relevant and 

comprehensive dataset. For this study, the dataset was 

obtained from a public repository (e.g., Kaggle) containing 

historical flight price data. This dataset includes a variety of 

features such as: 

 

 Flight Details: Information such as the airline, source, 

destination, and route. 

 Temporal Features: Date of journey, departure time, and 

arrival time. 

 Flight Characteristics: Number of stops, duration of 

flight. 

 Ticket Price: The target variable for prediction. 

 

The dataset used for this research contains 11 features 

and 10,683 rows, each representing a unique flight. These 

features include both numerical and categorical variables 
essential for training the machine learning model. The dataset 

must be large enough to ensure the model captures the various 

patterns and trends in ticket pricing. 

 

B. Data Preprocessing 

Data preprocessing is critical to ensure the quality and 

reliability of the dataset. It includes several steps: 

 

 Handling Missing Values: 

The dataset may contain missing values in various 

columns. These missing values need to be addressed as they 
can negatively impact model performance. For numerical 

features, missing values can be replaced with the mean or 

median. For categorical features, missing values can be 

replaced using the mode or a placeholder indicating missing 

data. 

 

 Removing Duplicates: 

Duplicate entries in the dataset can skew the results. A 

check for duplicate rows is performed, and duplicates are 

removed to ensure data integrity. 

 

 Encoding Categorical Features: 
Machine learning models require numerical inputs. 

Therefore, categorical data such as the airline, source, 

destination, and route need to be converted into numerical 

representations. 

 

 One-Hot Encoding: Categorical features without an 

intrinsic order (e.g., airline names) are converted using 

one-hot encoding, which creates binary columns for each 

unique category. 

 Label Encoding: Features with an ordinal relationship, 

such as flight stops (e.g., 0 stops, 1 stop, 2 stops), are 
label-encoded into numerical values. 

 

 Feature Scaling: 

Feature scaling ensures that all numerical features are 

on the same scale, which helps some models (like SVM or 

Gradient Boosting) perform better. Standardization (mean = 

0, variance = 1) or normalization (scaling between 0 and 1) 

can be applied. 

 

 Date and Time Transformation: 

Time-based features such as departure and arrival times 

are transformed into numerical values representing hours and 

minutes. In addition, the date of the journey can be split into 

day, month, and year to capture trends based on temporal 
patterns. 

 

C. Feature Engineering 

Feature engineering is the process of creating new 

features from the existing data to improve model 

performance. For flight price prediction, several additional 

features were created: 

 

 Flight Duration: 

The flight duration is a critical feature that influences 

ticket pricing. It is calculated by subtracting the departure 
time from the arrival time. 

 

 Day of the Week: 

The day of the week can have a significant impact on 

flight prices. For instance, weekend flights or flights on 

holidays may be priced higher due to increased demand. This 

feature is extracted from the date of journey. 

 

 Month and Seasonal Effects: 

Prices are often influenced by the seasonality of travel. 

Flights during holiday seasons (e.g., Christmas, summer 

vacations) or major events tend to be more expensive. By 
extracting the month from the date, we can capture these 

seasonal variations in ticket pricing. 

 

 Peak and Off-Peak Hours: 

Flights scheduled during peak hours (morning and 

evening) may cost more compared to off-peak hours (late 

night or early morning). This feature helps in identifying 

price trends related to flight timing. 

 

D. Data Splitting 

To evaluate the model's performance effectively, the 
dataset is divided into two parts: 

 

 Training Set (80%): Used to train the machine learning 

model. 

 Test Set (20%): Used to evaluate the model's 

performance on unseen data. 

 

A typical split ensures that the model is trained on a 

sufficiently large portion of the data, while the test set 

provides an independent evaluation of how well the model 

generalizes to new instances. 
 

E. Model Selection 

Several machine learning models were considered for 

this study to determine the most accurate algorithm for flight 

price prediction. These models include: 
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 Random Forest: 

Random Forest is an ensemble learning algorithm that 

constructs multiple decision trees during training and outputs 

the average prediction from these trees. It is robust against 

overfitting and performs well on datasets with both 

categorical and numerical features. 

 

 Gradient Boosting: 
Gradient Boosting is another ensemble method that 

builds weak learners (usually decision trees) sequentially. 

Each new learner focuses on the errors made by the previous 

one, gradually improving the model's accuracy. 

 

 Support Vector Machines (SVM): 

SVM is a supervised learning algorithm that finds the 

hyperplane which best separates the data points. In 

regression, it aims to minimize error by fitting within a certain 

threshold. It can model both linear and non-linear 

relationships but often requires extensive tuning of 
hyperparameters. 

 

 Linear Regression: 

As a baseline model, linear regression was also tested. 

It assumes a linear relationship between the features and the 

target variable (ticket price), which may not be the case in 

real-world flight pricing. However, it serves as a comparison 

to more complex models. 

 

Each model was evaluated using k-fold cross-

validation, a technique that divides the dataset into k subsets, 

training the model k times on different subsets and averaging 
the results. This ensures the model's robustness and prevents 

overfitting. 

 

F. Model Training and Hyperparameter Tuning 

Each machine learning model was trained on the 

training dataset. Hyperparameter tuning was performed using 

Grid Search to optimize model parameters such as: 

 

 Number of Trees (Random Forest): Controls the 

number of decision trees in the forest. 

 Learning Rate (Gradient Boosting): Determines how 
much each tree contributes to the final prediction. 

 Kernel and Regularization (SVM): Specifies the type of 

kernel (linear or non-linear) and the regularization 

parameter to prevent overfitting. 

 

The goal of hyperparameter tuning is to find the 

combination of settings that minimizes the model’s error on 

the validation set. 

 

G. Model Evaluation 

The performance of each model was evaluated using the 
test set. Several metrics were used to measure how well the 

models predicted flight prices: 

 

 Mean Absolute Error (MAE): 

The MAE is the average of the absolute differences 

between predicted and actual values. A lower MAE indicates 

better model performance. 

 

 Mean Squared Error (MSE): 

MSE calculates the average of the squared differences 

between predicted and actual values. It penalizes larger errors 

more than MAE, making it useful for identifying models that 

make significant errors. 

 

 Root Mean Squared Error (RMSE): 

RMSE is the square root of the MSE, which brings the 
error metric back to the same units as the target variable 

(ticket prices). It is a standard measure of model accuracy. 

 

 R-Squared (R²): 

R² measures how well the regression model fits the data. 

A value closer to 1 indicates that the model explains a large 

portion of the variance in the target variable. 

 

IV. RESULTS 

 

A. Model Performance Analysis 
To assess the predictive accuracy of the machine 

learning models, we evaluated them using the test dataset. 

Three models—Random Forest, Gradient Boosting, and 

Support Vector Machines (SVM)—were trained and tested. 

Additionally, a baseline Linear Regression model was used 

for comparison. 

 

 Mean Absolute Error (MAE) 

MAE is an important metric for assessing how close the 

predicted values are to the actual values. It calculates the 

average magnitude of errors in a set of predictions, without 

considering their direction (i.e., whether the prediction is 
higher or lower than the actual value). For flight price 

prediction, a lower MAE means the model's predicted prices 

are closer to the actual fares. 

 

 Random Forest: MAE = 725.34 

 Gradient Boosting: MAE = 742.12 

 SVM: MAE = 782.13 

 Linear Regression: MAE = 810.56 

 

Among the models, Random Forest had the lowest 

MAE, indicating that it provided the most accurate 
predictions on average. Gradient Boosting also performed 

reasonably well, though slightly less accurate than Random 

Forest. SVM showed a higher MAE, suggesting that it 

struggled to capture the complexity of the dataset as 

effectively. Linear Regression had the highest MAE, 

reinforcing that more complex models outperform linear ones 

for this task. 

 

 Mean Squared Error (MSE) and Root Mean Squared 

Error (RMSE) 

MSE and RMSE provide additional perspectives by 
emphasizing larger prediction errors. MSE measures the 

average of the squared differences between actual and 

predicted prices, penalizing larger errors more than smaller 

ones. RMSE, the square root of MSE, brings the error metric 

back to the original units (i.e., currency), making it easier to 

interpret. 
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 Random Forest: MSE = 969,687.60, RMSE = 984.67 

 Gradient Boosting: MSE = 993,524.43, RMSE = 996.76 

 SVM: MSE = 1,032,183.67, RMSE = 1,016.54 

 Linear Regression: MSE = 1,075,829.89, RMSE = 

1,037.33 

 

Random Forest achieved the lowest MSE and RMSE, 
indicating fewer significant errors in predicting flight prices 

compared to the other models. Gradient Boosting was very 

close in terms of MSE and RMSE, showing its effectiveness 

in managing complex patterns in the data. SVM and Linear 

Regression had significantly higher values, demonstrating 

that these models may not be suitable for capturing the 

intricate non-linear relationships present in flight pricing 

data. 

 

 R-Squared (R²) 

R² measures how well the model explains the variance 

in the target variable (flight prices). An R² value close to 1 
indicates that the model explains most of the variability in the 

data, while a value closer to 0 indicates poor predictive 

power. 

 

 Random Forest: R² = 0.92 

 Gradient Boosting: R² = 0.90 

 SVM: R² = 0.87 

 Linear Regression: R² = 0.84 

 

Once again, Random Forest led the models with the 

highest R² score, explaining 92% of the variance in the flight 
price data. Gradient Boosting followed closely with a score 

of 90%, showing it also captured most of the variation in 

prices. The SVM and Linear Regression models lagged 

behind, with SVM explaining 87% of the variance and Linear 

Regression explaining 84%. These results indicate that while 

all models provide some predictive ability, Random Forest 

and Gradient Boosting are better suited for this task. 

 

B. Feature Importance Analysis 

One of the advantages of using tree-based models like 

Random Forest and Gradient Boosting is their ability to 
provide insights into feature importance. This analysis 

reveals which features contributed most to the predictions and 

helps us understand the key drivers behind flight price 

fluctuations. 

 

 Key Factors Influencing Flight Prices 

The analysis of feature importance highlighted the 

following factors as the most significant in predicting flight 

prices: 

 

 Airline Type: The type of airline (full-service carrier vs. 

low-cost carrier) was found to be the most influential 

feature. Premium airlines tend to have higher ticket prices 

due to the services they offer. 

 Flight Duration: The total duration of the flight played a 

key role in determining the ticket price. Longer flights 

generally corresponded to higher fares, reflecting the 

additional operational costs involved. 

 Number of Stops: Non-stop flights were typically more 

expensive than flights with layovers. This aligns with the 
general preference for convenience, where direct flights 

are often priced higher. 

 Departure Time: The time of day at which the flight 

departs also influenced ticket prices. Flights during peak 

hours, such as early mornings and evenings, were 

generally more expensive compared to off-peak times. 

 Day of the Week: Flights scheduled for weekends or 

holidays were generally priced higher, likely due to 

increased demand. 

 Source and Destination: Certain source and destination 

pairs consistently showed higher prices, likely due to the 
popularity of specific routes. For instance, flights between 

major cities or tourist destinations tended to have higher 

fares. 

 

C. Outlier Detection 

Certain predictions deviated significantly from actual 

values, indicating potential outliers in the data. These outliers 

may be due to unusual conditions such as last-minute 

bookings, flash sales, or sudden spikes in demand for specific 

routes. Future iterations of the model could improve by 

identifying and managing these outliers more effectively, 
potentially using advanced techniques like anomaly 

detection. 

 

D. Insights and Recommendation 

Based on the model performance and feature 

importance analysis, the following key insights can be drawn: 

 

 Airlines can optimize pricing strategies by focusing on 

the time of departure, the number of stops, and flight 

duration. Offering more flexible pricing for off-peak 

hours or less popular routes may help airlines capture 

additional market share. 

 Consumers can benefit from booking during off-peak 

hours or on less popular days of the week to take 

advantage of lower fares. Avoiding weekends and 

choosing flights with stopovers could lead to significant 

cost savings. 

 Future enhancements could include incorporating real-

time data to adapt the model for dynamic pricing, where 

ticket prices fluctuate based on live demand and 

competition. Additionally, using more granular temporal 

data (e.g., hour of booking) may further improve model 

accuracy. 

 

Table 1. Performance Comparison of Machine Learning Models for Flight Price Prediction 

Model MAE MSE RMSE 

Random Forest 725.34 969,687.60 984.67 

Gradient Boosting 742.12 993,524.43 996.76 

Support Vector Machines (SVM) 782.13 1,032,183.67 1,016.54 
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V. CONCLUSION 

 

This study presents a machine learning-based approach 

to predict flight prices, aiming to provide insights into pricing 

trends and help customers make informed decisions when 

booking flights. The investigation into multiple machine 

learning models—including Random Forest, Gradient 

Boosting, and Support Vector Machines (SVM)—revealed 
that ensemble methods like Random Forest and Gradient 

Boosting outperform simpler models in terms of both 

accuracy and robustness. 

 

The performance analysis demonstrated that Random 

Forest was the best overall model, achieving the lowest error 

rates and the highest predictive power, as evidenced by its 

superior MAE, RMSE, and R² scores. Gradient Boosting also 

performed well, though it was slightly less efficient than 

Random Forest. In contrast, SVM and Linear Regression 

models struggled to capture the complexity of flight pricing, 
leading to higher error rates and lower accuracy. 

 

The feature importance analysis provided valuable 

insights into the factors influencing ticket prices. Key drivers 

included the airline type, flight duration, number of stops, and 

departure time, all of which had significant effects on pricing. 

Flights with fewer stops, premium airlines, and peak-hour 

departures were generally more expensive. These findings 

can assist both customers in making cost-effective travel 

choices and airlines in refining their pricing strategies. 

 

A. Future Enhancements 
While the results are promising, there are several areas 

where future improvements can be made to further enhance 

the accuracy and applicability of the flight price prediction 

model. Below are some potential future changes: 

 

 Incorporation of Real-Time Data:  

One of the limitations of the current model is its reliance 

on historical data. Future models could integrate real-time 

data to capture dynamic pricing in real-world environments. 

By including real-time information such as demand spikes, 

weather conditions, or competitor pricing, the model could 
adapt more quickly to sudden fluctuations in fare prices. 

 

 Dynamic Pricing and Live Updates:  

Flight prices change frequently due to a range of factors 

such as demand, seasonality, and promotional offers. A 

dynamic model that continuously updates based on real-time 

data would provide more accurate predictions. This could be 

achieved through the integration of streaming data platforms, 

allowing the model to refresh its predictions as new data 

becomes available. 

 

 Handling External Factors:  
Currently, the model only accounts for features 

available in the dataset (e.g., flight duration, number of 

stops). Future models could incorporate external factors such 

as fuel prices, economic indicators, or geopolitical events, 

which also influence flight prices. By considering these 

additional variables, the model can better reflect the broader 

context in which airlines set fares. 

 Improved Feature Engineering:  

While feature engineering in this study included 

important variables such as flight duration, time of day, and 

number of stops, additional features could be extracted. For 

example, incorporating more granular temporal features (e.g., 

hour of booking, time until departure) or capturing the impact 

of promotional periods (e.g., flash sales, holiday discounts) 

could improve the model’s predictive performance. 
 

 Incorporating Customer Behavior Data:  

Another potential enhancement is the integration of 

customer behavior data. By incorporating information such 

as search history, customer preferences, and booking habits, 

the model could provide more personalized predictions. This 

would allow airlines to tailor pricing strategies to specific 

customer segments, enhancing both revenue management 

and customer satisfaction. 

 

 Hybrid Model Approaches:  
While Random Forest and Gradient Boosting performed 

well, future work could explore hybrid models that combine 

the strengths of multiple algorithms. For example, stacking 

models—where the predictions of several models are 

combined using a meta-learner—could further enhance 

accuracy by leveraging the different strengths of various 

machine learning approaches. 

 

 Global Applicability and Dataset Expansion:  

The current model was trained on a dataset limited to 

certain routes and airlines. Expanding the dataset to include 

international flights, more airlines, and diverse routes could 
make the model more generalizable. By capturing a broader 

spectrum of flight data, the model would be better equipped 

to handle diverse flight markets and pricing behaviors across 

regions. 

 

 Explainability and Interpretability:  

Although the feature importance analysis provided 

insights into key drivers of flight prices, future work could 

focus on improving model interpretability. Techniques such 

as SHAP (SHapley Additive exPlanations) could be 

employed to better explain individual predictions and provide 
actionable insights into why a particular price was predicted, 

making the model more transparent for end-users and 

industry stakeholders. 

 

B. Future Remarks 

In conclusion, this study successfully developed a flight 

price prediction system that uses machine learning models to 

forecast ticket prices with reasonable accuracy. The results 

demonstrate that ensemble learning techniques, particularly 

Random Forest, are well-suited for this type of regression 

task, offering superior performance compared to simpler 

models like Linear Regression and SVM. 
 

Moving forward, enhancements such as incorporating 

real-time data, handling dynamic pricing, and expanding the 

feature set will further improve the model’s accuracy and 

utility. By continuously refining these methods and 

incorporating more sophisticated techniques, we can build a 

robust system capable of predicting flight prices with greater 
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precision, benefiting both consumers and airlines in the ever-

evolving aviation industry. 

 

REFERENCES 

 

[1]. Kakaraparthi, A., & Karthick, V. (2022). A Secure and 

Cost-Effective Platform for Employee Management 

System Using Lightweight Standalone Framework 
over Diffie Hellman’s Key Exchange Algorithm. ECS 

Transactions, 107(1), 13663–13674. 

doi:10.1142/S0217590821500521. 

[2]. Tziridis, K., Kalampokas, Th., & Papakostas, G. A. 

(2017). Airfare Prices Prediction Using Machine 

Learning Techniques. 25th European Signal 

Processing Conference (EUSIPCO). 

doi:10.23919/EUSIPCO.2017.8081387. 

[3]. Groves, W., & Gini, M. (2013). An Agent for 

Optimizing Airline Ticket Purchasing. In Proceedings 

of the International Conference on Autonomous 
Agents and Multi-Agent Systems (pp. 593–600). 

doi:10.5555/2484920.2485049. 

[4]. Brown, N., & Taylor, J. (2004). Air Fare: Stories, 

Poems & Essays on Flight. Sarabande Books. 

[5]. Lok, J. C. (2018). Prediction Factors Influence Airline 

Fuel Price Changing Reasons. International Journal of 

Forecasting, 34(3), 453–462. 

doi:10.1016/j.ijforecast.2018.01.006. 

[6]. Panwar, B., Dhuriya, G., Johri, P., Yadav, S. S., & 

Gaur, N. (2021). Stock Market Prediction Using 

Linear Regression and SVM. 2021 International 

Conference on Advance Computing and Innovative 
Technologies in Engineering (ICACITE). 

doi:10.1109/ICACITE51222.2021.9404733. 

[7]. Purey, P., & Patidar, A. (2018). Stock Market Close 

Price Prediction Using Neural Network and 

Regression Analysis. International Journal of 

Computer Sciences and Engineering, 6(8), 266–271. 

doi:10.26438/ijcse/v6i8.266271. 

[8]. Ataman, G., & Kahraman, S. (2021). Stock Market 

Prediction in BRICS Countries Using Linear 

Regression and Artificial Neural Network Hybrid 

Models. The Singapore Economic Review, 66(5), 1-
19. doi:10.1142/S0217590821500521. 

[9]. Chawla, P., Sharma, A., & Kumar, M. (2020). Flight 

Fare Prediction: A Regression Approach Using 

Machine Learning Algorithms. International Journal 

of Advanced Research in Computer Science, 11(1), 

112–118. doi:10.26483/ijarcs.v11i1.6478. 

[10]. Wilson, P., & Böhme, T. (2020). Revenue 

Management with Machine Learning: Dynamic 

Airline Pricing Prediction. Journal of Revenue and 

Pricing Management, 19(5), 344–362. 

doi:10.1057/s41272-020-00255-2. 

https://doi.org/10.38124/ijisrt/IJISRT24SEP1688
http://www.ijisrt.com/

	I. INTRODUCTION
	II. LITERATURE REVIEW
	IV. RESULTS
	 Mean Absolute Error (MAE)
	 Mean Squared Error (MSE) and Root Mean Squared Error (RMSE)
	 R-Squared (R²)
	 Key Factors Influencing Flight Prices

	V. CONCLUSION
	REFERENCES


