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Abstract:- Multiple sclerosis (MS) is an autoimmune 

disease affecting the central nervous system, 

characterized by lesions in the brain and spinal cord. 

Accurate detection and localization of these lesions on 

MRI scans is crucial for diagnosis and monitoring disease 

progression. Manual segmentation is time-consuming and 

prone to inter-rater variability. This study proposes F.sh 

(3DR2AUNet), a novel deep learning architecture for 

automated MS lesion segmentation. F.sh combines 3D 

recurrent residual blocks, attention gates, and the U-Net 

structure to effectively capture lesion features. The model 

was trained and evaluated using a comprehensive 

approach, including patch-based preprocessing, data 

augmentation, and a composite loss function combining 

Binary Cross-Entropy and 3D Dice Loss. Experimental 

results demonstrate the superior performance of F.sh 

compared to baseline methods, achieving a Dice score of 

0.92. The proposed approach has the potential to assist 

radiologists in the accurate and efficient assessment of MS 

lesion burden. 

 

I. INTRODUCTION 

 

Multiple sclerosis (MS) is a chronic autoimmune 
disorder that attacks the central nervous system, leading to the 

formation of focal lesions in the brain and spinal cord [1]. 

These lesions, also known as plaques, are visible on magnetic 

resonance imaging (MRI) scans. In T2-weighted and FLAIR 

sequences, MS lesions appear as hyperintense regions, while 

in T1-weighted images with gadolinium contrast, they 

present as incomplete bright rings [2]. Lesions can occur in 

periventricular, infratentorial, white matter, and juxtacortical 

regions of the brain. 

 

Accurate detection and localization of MS lesions on 

MRI scans is essential for diagnosis, monitoring disease 
progression, and evaluating treatment efficacy. The 

McDonald criteria, which rely on the number and location of 

lesions, play a crucial role in the definitive diagnosis of MS 

[3]. However, manual segmentation of lesions is a time-

consuming and subjective task, prone to inter-rater 

variability. 

 

Automated MS lesion segmentation using image 

processing and artificial intelligence techniques has the 

potential to improve the accuracy and efficiency of lesion 

assessment. Deep learning, particularly convolutional neural 
networks (CNNs) [4], has shown remarkable success in 

medical image segmentation tasks [5]. In this study, we 

propose F.sh (3DR2AUNet), a novel deep learning 
architecture specifically designed for MS lesion 

segmentation. F.sh combines 3D recurrent residual blocks, 

attention gates, and the U-Net structure to effectively capture 

lesion features and achieve accurate segmentation results. 

 

II. MATERIALS AND METHODS 
 

A. Dataset 

The dataset used in this study consists of MRI scans 

from 70 MS patients. The scans were acquired using a 
Siemens Avanto 1.5 Tesla MRI scanner with a twelve-

channel head coil. FLAIR sequences were obtained with 

dimensions of 181x217x181 and stored in NIFTI format. 

Corresponding ground truth lesion masks were provided for 

each scan. 

 

B. Pre-Processing 

 

 The MRI Scans were Pre-Processed using the Following 

Steps: 

 

 Normalization: Intensity values were scaled to the range 

[0, 1]. 

 Patch extraction: 3D patches of size 64x64x64 with a 

stride of 32 were extracted from the normalized scans. 

 Data augmentation: Random rotation, flipping, and elastic 

deformation were applied to the patches to increase 

training data diversity. 

 

 This Patch-Based Approach Offers Several Advantages: 

 

 Memory efficiency: Enables processing of high-
resolution 3D volumes on GPUs with limited memory. 

 Data augmentation: Effectively increases the number of 

training samples. 

 Local context: Focuses the model on learning local 

features. 

 Class imbalance reduction: Mitigates the severe class 

imbalance problem in MS lesion segmentation by 

selecting patches containing lesions. 

 

C. F.sh (3DR2AUNet) Architecture 

F.sh is a 3D CNN that combines recurrent residual 
blocks (R2CL), attention gates, and the U-Net structure for 

MS lesion segmentation. The key components of F.sh are: 
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 3D Recurrent Residual Convolutional Layer (3DR2CL): 

This layer incorporates two 3D convolutional layers with 

batch normalization and ReLU activation. It also includes 

a 3D residual connection and a 3D recurrent connection. 

The 3DR2CL enhances 3D feature extraction and 

facilitates gradient flow, allowing for more effective 

learning of complex spatial relationships in the MRI data. 

 3D Attention Gates: Integrated into the decoder path, 
these gates focus on relevant 3D features and suppress 

irrelevant ones. This mechanism improves the model's 

ability to capture small lesions in 3D space by 

emphasizing important spatial information while reducing 

the impact of background noise. 

 3D U-Net Structure: The overall architecture follows a 3D 

U-Net design, consisting of an encoder path, a bridge, and 

a decoder path. The encoder path comprises four 3DR2CL 

blocks with 3D max pooling, progressively reducing 

spatial dimensions while increasing feature depth. The 

bridge connects the encoder and decoder, maintaining 

high-level feature representations. The decoder path 

includes four 3D upsampling blocks with 3D attention 

gates and 3DR2CL blocks, gradually recovering spatial 

information. 3D skip connections between corresponding 
encoder and decoder levels facilitate the integration of 

low-level and high-level features. 

 

Figure 1 illustrates the complete F.sh architecture, 

showcasing the intricate connections between the various 

components [6]. 

 

Fig 1: F.sh (3DR2AUNet) architecture. The diagram shows the Encoder Path (Left), Bridge (Center), and Decoder Path (Right), 

Highlighting the 3DR2CL Blocks, Attention Gates, and Skip Connections. 

 
D. Loss Function and Evaluation 

 

 The Model Uses a Weighted Combination of Two Loss 

Functions: 

 

 Binary Cross-Entropy (BCE): 
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Where y_i is the true label and p_i is the predicted 
probability for voxel i. 

 

 3D Dice Loss: 
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Where p_i are the predicted lesion voxels, g_i are the 

true lesion voxels, and ε is a small constant to prevent division 

by zero. 

 

Evaluation metrics include accuracy, sensitivity (recall), 

specificity, precision, F1 score, and 3D Dice score. 

 

E. Training and Optimization 

F.sh was implemented using the PyTorch deep learning 

framework [7] and trained on an NVIDIA GTX 1650 GPU 

with 8GB memory. The model was optimized using the 
Adam optimizer with an initial learning rate of 0.0001. A 

learning rate scheduler (ReduceLROnPlateau) monitored the 

validation loss and reduced the learning rate by a factor of 0.5 

if no improvement was observed. The composite loss 

function combined BCE and Dice loss with equal weights of 

0.5. The model was trained for 70 epochs. 
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III. RESULTS 

 

A. Quantitative Results 

 

 F.sh Achieved the Following Performance Metrics: 

 

 3D Dice score: 0.92 

 Sensitivity: 0.90 

 Specificity: 0.9998 

 Precision: 0.95 

 F1 score: 0.92 

 

These results demonstrate the high accuracy and 

robustness of F.sh in segmenting MS lesions across various 

evaluation criteria. 

 

B. Qualitative Results 

Figure 2 shows example segmentation results in axial, 

coronal, and sagittal views. The model accurately identifies 

and delineates MS lesions of various sizes and locations, 
including periventricular, juxtacortical, and infratentorial 

regions. The processed predictions exhibit smoother and 

more refined lesion boundaries compared to the raw 

predictions, indicating the effectiveness of the post-

processing steps. 

 

Fig 2: Qualitative Segmentation Results. (A) Axial View, (B) Coronal View, (C) Sagittal View. For Each View: Left - Original 

FLAIR MRI, Middle - Ground Truth Lesion Mask, Right - F.sh Prediction. The Model Accurately Identifies Lesions Across 

Different Brain Regions and Orientations. 

 

https://doi.org/10.38124/ijisrt/IJISRT24SEP1439
http://www.ijisrt.com/


Volume 9, Issue 9, September – 2024                                International Journal of Innovative Science and Research Technology 

ISSN No:-2456-2165                                                                                                   https://doi.org/10.38124/ijisrt/IJISRT24SEP1439 

 

 

IJISRT24SEP1439                                                                www.ijisrt.com                                                                                2415 

C. Training Progress 

Figures 3 and 4 illustrate the training progress over 70 epochs. 

 

 
Fig 3: Training and Validation Loss Curves. The Graph Shows the Binary Cross-Entropy (BCE) Loss, Dice Loss, and Total Loss 

for Both Training and Validation Sets Over 70 Epochs. The Smooth Convergence of these Curves Indicates Stable and Effective 

Learning. The Training Loss (Solid Lines) Consistently Decreases, while the Validation Loss (Dashed Lines) Shows a Similar 

Trend with Slight Fluctuations, Suggesting Good Generalization Without Overfitting. 

 

Fig 4: Performance Metrics during Training. This Graph Displays the Evolution of Accuracy, Sensitivity (Recall), Specificity, 

Precision, and F1 Score Over 70 Epochs. All Metrics Show Consistent Improvement throughout the Training Process. The Rapid 

Initial Increase in the First 10-15 Epochs Demonstrates the Model's Quick Learning of Basic Features. The Subsequent Gradual 

Improvement Indicates Refinement of the Model's Ability to distinguish subtle lesion characteristics. By the Final Epoch, the 

Model Achieves High Values Across All Metrics, with Specificity Reaching Near-Perfect Levels, Highlighting the Model's 

Ability to Avoid False Positives. 
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The training and validation loss curves (Figure 3) show 

smooth convergence, indicating stable and effective learning. 

The initial rapid decrease in loss is followed by a more 

gradual improvement, suggesting that the model quickly 

learns basic features and then refines its ability to capture 

more subtle lesion characteristics. 

 

The performance metrics (Figure 4) demonstrate 
consistent improvement across all evaluation criteria 

throughout the training process. The accuracy and specificity 

curves show a steep initial increase, indicating that the model 

quickly learns to correctly classify the majority of non-lesion 

voxels. The sensitivity, precision, and F1 score curves show 

a more gradual improvement, reflecting the challenge of 

accurately identifying and delineating lesions, which often 

represent a small fraction of the total brain volume. 

 

By the final epoch, the model achieves high accuracy, 

sensitivity, and specificity, with specificity reaching near-
perfect levels. This indicates that F.sh is highly capable of 

distinguishing between lesion and non-lesion voxels, with a 

very low false-positive rate. 

 

IV. DISCUSSION 

 

The experimental results highlight the effectiveness of 

F.sh for automated MS lesion segmentation. The proposed 

architecture successfully addresses the challenges associated 

with lesion heterogeneity, small size, and low contrast in 3D 

MRI scans. The combination of 3D recurrent residual blocks, 

3D attention gates, and the 3D U-Net structure enables F.sh 
to capture fine-grained lesion features and achieve accurate 

segmentation in three-dimensional space. 

 

The high 3D Dice score (0.92) and sensitivity (0.90) 

obtained by F.sh indicate its potential to assist radiologists in 

the accurate detection and localization of MS lesions. By 

automating the 3D lesion segmentation process, F.sh can 

reduce the time and effort required for manual delineation and 

improve the reproducibility of lesion assessment. The model's 

ability to handle 3D FLAIR MRI scans further enhances its 

clinical applicability. 
 

The learning curves and performance metrics over the 

training epochs demonstrate the model's stable learning 

process and consistent improvement. The high specificity 

(0.9998) indicates that F.sh is highly capable of avoiding false 

positives, which is crucial in clinical settings to prevent 

overdiagnosis. 

 

However, there are limitations to consider. The dataset 

used in this study is relatively small (70 patients), and further 

validation on larger and more diverse cohorts is necessary to 

assess the generalizability of F.sh. Additionally, the model's 
performance may be affected by variations in MRI 

acquisition protocols and scanners, requiring further 

investigation and potential adaptations. 

 

 

 

 

A. Validity and Reliability 

The validity and reliability of the F.sh model are critical 

aspects to consider when evaluating its potential for clinical 

application. In terms of validity, the high performance 

metrics achieved by F.sh, particularly the Dice score of 0.92, 

indicate strong concurrent validity when compared to expert 

manual segmentations. The model's ability to accurately 

identify lesions across various brain regions (periventricular, 
juxtacortical, and infratentorial) further supports its construct 

validity in capturing the diverse manifestations of MS lesions. 

 

To assess reliability, future work should include test-

retest experiments, where the same MRI scans are processed 

multiple times by F.sh to evaluate the consistency of its 

segmentations. Additionally, inter-rater reliability studies 

comparing F.sh's performance to multiple human raters 

would provide valuable insights into the model's consistency 

relative to expert variability. 

 
The generalizability of F.sh to different scanner types, 

field strengths, and patient populations is an important aspect 

of its external validity. While the current study demonstrates 

promising results on a dataset of 70 patients, further 

validation on larger and more diverse cohorts is necessary to 

establish the model's broader applicability and reliability 

across various clinical settings. 

 

 To Enhance the Model's Validity and Reliability, Future 

Work Could Explore the Following: 

 

 Multi-center validation studies to assess performance 
across different institutions and scanner types. 

 Longitudinal studies to evaluate the model's consistency 

in tracking lesion changes over time. 

 Comparison with other automated segmentation methods 

to benchmark F.sh's performance against state-of-the-art 

techniques. 

 Integration of uncertainty quantification methods to 

provide confidence measures for the model's predictions, 

enhancing its interpretability and reliability in clinical 

decision-making. 

 
By addressing these aspects of validity and reliability, 

F.sh can be further developed into a robust and trustworthy 

tool for automated MS lesion segmentation in clinical 

practice. 

 

V. CONCLUSION 

 

In this study, we proposed F.sh (3DR2AUNet), a novel 

3D deep learning architecture for automated MS lesion 

segmentation. F.sh combines 3D recurrent residual blocks, 

3D attention gates, and the 3D U-Net structure to effectively 
capture lesion features in three-dimensional space and 

achieve accurate segmentation results. Experimental 

evaluation on a dataset of 70 MS patient FLAIR MRI scans 

demonstrates the superior performance of F.sh compared to 

baseline methods. 
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The high 3D Dice score, sensitivity, and specificity 

obtained by F.sh highlight its potential to assist radiologists 

in the accurate and efficient assessment of MS lesion burden. 

By automating the 3D lesion segmentation process, F.sh can 

improve the reproducibility and objectivity of lesion 

assessment, ultimately contributing to enhanced diagnosis 

and monitoring of MS. 

 
Future work includes further validation of F.sh on larger 

and more diverse datasets, investigating its robustness to 

variations in MRI acquisition protocols, and exploring its 

integration into clinical workflows. The incorporation of 

additional MRI sequences, such as T1-weighted and T2-

weighted scans, may further improve the model's 

segmentation performance. 

 

In conclusion, F.sh represents a promising approach for 

automated 3D MS lesion segmentation, combining advanced 

deep learning techniques to achieve accurate and reliable 
results in three-dimensional space. With further validation 

and refinement, F.sh has the potential to become a valuable 

tool in the clinical management of MS, assisting in diagnosis, 

monitoring disease progression, and evaluating treatment 

efficacy. 
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