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I. INTRODUCTION 

 
A is nth ordered square matrix with real or complex 

entries having all positive eigenvalues (Positive definite 

matrix) are non-negative real number. p ℇ N the set of positive 

integer. We get matrix uniquely having. 

 

 𝑋𝑝 = 𝐴. 

 λ the eigenvalue of X such that λ ∈ {z:−
𝜋

𝑝
< arg(z) <

𝜋

𝑝
}. where 𝑋 = 𝐴

1

𝑝. 

 

 Applications: 

  

 Application1. Matrix logarithm, log(𝐴) =  𝑝 ∗ log(A)1/P. 

for, well approximated p by polynomial or function of 

rationales. 

 

 Application2. Function from matrix sector 

𝑠𝑒𝑐𝑡𝑝(𝐴𝑝)(−1/𝑝) ∗ 𝐴. Function from matrix sector P2 is 

matrix sign function. 

 

 Application3. Hoskins and Walton iteration method 

discussed in [18]. By Newton’s formula of iteration,  

 

𝑋𝑘+1 = ( 
1

𝑝
 ) ∗ [(p − 1) ∗ 𝑋𝑘 + 𝐴 ∗ 𝑋𝑘

1−𝑝]. And 𝑋0 = 𝐴.      

(1.1) 

 

A symmetric positive definite. (Xk converges is A1/p but 

convergence is not definite. by Smith [27].    

 

 Application 4. Benner et al. [1] has columns of  𝑈 =
[𝑈1

∗, . , . , . , . 𝑈𝑝
∗] ∈

𝐶𝑝𝑛𝑥𝑛this spans invariant subspace of  
 

𝑼 = 

[
 
 
 
 
 
𝟎 𝟏 −
− 𝟎 𝟏
− − 𝟎

− − −
− − −
𝟏 − −

− − −
− − −
𝑨 − −

𝟎 𝟏 −
− 𝟎 𝟏
− − 𝟎]

 
 
 
 
 

  ∈ Cpn x pn                   (1)      

 

Where,  𝐶 ∗ 𝑈 = 𝑈 ∗ 𝑌, such that, 𝑌 ∈
 𝐶𝑛𝑥𝑛 , 𝑎𝑛𝑑 |𝑈1| ≠ 0. 

 

then 𝑋 = 𝑈2 ∗ 𝑈1
−1 = 𝐴1/𝑝. 

 

 Application5. Algorithm for computing A1/p by Shiel et 

al. [26].  
 

𝐴1/𝑝𝑐𝑜𝑛𝑡𝑎𝑖𝑛 𝑋𝑘 = 𝐺𝑘 ∗ [𝐼𝑛, 0,0,0]𝑇 . 
 

For 𝐺 =  𝐶 +  𝐼. and matrix C like (1.2). 

 

That is Compute   lim
𝑘→∞

𝑋𝑘(1: 𝑛,  ∶) 𝑋𝑘(𝑛 + 1 ∶ 2𝑛,  ∶) ))
−1

 

 

 Application6. For Tsay et al [29]. It gives other way to 
find A1/p square matrix. It is like General continued 

fractions of block for Toeplitz matrix. Method have O( n5 

) flops and O( n3 ) storage. It is in [28]. Some time it is 

unstable.     

 

 Application7. Tsay et al [28].  It is iterative method 

convergence proof is not available, but it is Numerically 

stable like 

 

𝐺K+1 =  𝐺k ∗  [(2 ∗  𝐼 + ( 𝑃 –  2 )  ∗  𝐺k )  ∗  ( 𝐼 +
 ( 𝑃 –  1 ) ∗  𝐺k  )-1 ]p,              

 

Where 𝐺0 =  𝐴.   

 

𝑅K + 1 =  𝑅k ∗  ( 2 ∗ 𝐼 + ( 𝑃 –  2 )  ∗  𝑅k )-1 ∗  ( 𝐼 +
 ( 𝑃 –  1 )  ∗  𝐺k),  
 

Where 𝑅0 =  𝐼. 

 

𝐻𝑒𝑟𝑒 𝐺k →  𝐼 𝑎𝑛𝑑  𝑅k →  𝐴1/p. 
 

It’s proof of convergence not in [28]. 

 

Analysis of perturbation in [15] as follows, 

 

𝐴
(
1

𝑝
)
= 

𝑝 ∗  sin(
𝜋

𝑝
)

𝜋
∗ 𝐴 ∗ ∫ ( 𝑥𝑝 ∗ 

∞

0

𝐼 + 𝐴 )−1𝑑𝑥          (2) 
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It shows iterations are numerically stable in complex 

computing pth root of triangular matrix, by Hasan et al. [13]. 

 

 The Paper is Divided in to Two Parts: 

 

 Section 2 to 6 theoretical properties. 

 Section 7 to 10 algorithmic results. 

 

 Part: 1. 

 

 Section 2: 
 

 Represent A(1/p)  in integral analytic function with unit 

complex circle in   plane of complex. 

 A1/p approximated by numerical Fourier integration 

point for error r2*N, N is Fourier point number and r < 1 

depends on p as well as A. 

 

 Section 3: 
 

 Using sign function of matrix prove A(1/p) is multiple of 

(2.1). 

 Constant of multiplication can known can explicitly. 

 

 Section4:     
 

 F(z) =  𝑧−
𝑝

2((1 + 𝑧)𝑝 𝐴 − (1 − 𝑧)𝑝𝐼) is Matrix 

factorization by Wiener-Hopf. 

 Key tool is Cayley transformation 𝑋 → z =
( 1 – 𝑥 )

( 1 + 𝑥 )
 it 

gives mapping function to imaginary axis to unit circle. 

 It relates 𝑋𝑝 − 𝐴 with imaginary axis to F (z) with 

respective to unitary circle. 

 

 Section5:  
 

 𝐴
1

𝑝 relates with central coefficients 𝐻0, . , . , . , . , . 𝐻(
𝑝

2
)−1

. 

 𝐴
1

𝑝 is related to central coefficient H0, …., Hp/2-1of matrix 

Laurent series    
 𝐻(𝑧) = 𝐻0 + ∑ (𝑧𝑖 + 𝑧−𝑖)𝐻𝑖 

+∞
𝑖=1  where 𝐻(𝑧) ∗ 𝐹(𝑧) =

 𝐼. 
 

 Section6: 
 

 Observe 𝐴
1

𝑝as an inverse of fix point function (
1

𝑝
) ∗

[(1 + 𝑝) ∗ 𝑋 − 𝑋𝑝−1 ∗ 𝐴] 
by iterative 𝑋−𝑝 − A = 0. 

 It gives sufficiency to convergence and stability. 

 

 Section7:  
 

 Obtain Algorithm for inverting Anp x np matrix to n x n 

blocks. 

 Polynomial interpretation of A - circulate matrix for 

finding A1/p.  

 block companion matrix C ( 1.2 ) forms A – circulate  

matrix. 

 

 Section8:  
 

 Form some iterations F(z) initially evaluate process and 

then use on Graeffe’s iteration.   

 

 Section9:  
 

 Two algorithms on F(z). 
 Apply to reduce F(z) and on poly Laurent inverse matrix. 

 

 Section10:  
 

 Analyze results of preliminary numerical experiments. 

 

II. RESULTS 

 

 As p = 2q there exist at least one real root and remaining 

complex roots. 

 There exist exactly equal positive real and negative real 
roots. 

 

 Sections in Detail: 

 

 Section 2: Define Matrix Polynomial 
 

Ψ(z) = (1 + z)p ∗ A – (1 − z)p ∗ I =  ∑ 𝑧𝑗 ∗
𝑝
𝑗=0 (

𝑝
𝑗) ∗ (𝐴 +

(−1)𝑗+1 ∗ 𝐼)..  (2.1) 

 

Ψ(z) is non singular in |𝑧| = 1. 

 

Ψ(z) and its inverse is analytic in 

 

𝐴 = {𝑧 𝜖 𝐶 ∶  ῤ < |𝑧| <
1

ῤ
}         (3) 

 

Where ῤ = max {𝑧 𝜖 𝐶 ∶ det Ψ(z) = 0, |𝑧| < 0} 

 

Proposition proved, Proposition2.1 Pth root of A becomes 
 

𝑋 = 
𝑝 ∗sin(

𝜋

𝑝
)

𝑖∗𝜋
∗ 𝐴 ∗ ∫ ((1 + 𝑧)𝑝−2 ∗ Ψ(z)−1)

|𝑧|=1
𝑑𝑧                                         

(2.3) 

 

Moreover, 
 

𝑋 = 
2∗𝑝∗sin(

𝜋

𝑝
)

𝑁
∗ 𝐴 ∗ ∑ (𝐴 − (

1−ɯ𝑁
𝑖

1+ɯ𝑁
𝑖
)
𝑝

 𝐼 )
−1

∗
ɯ𝑁

𝑖

(1+ɯ𝑁
𝑖)2

𝑁−1
𝑖=0 + 𝑂(𝑟2𝑁)     (4) 

 

Where p <r < 1 

 

 Algorithm 2.1 

 

 For obb p put 𝑃 = 2 ∗ 𝑃 and 𝐴 = 𝐴 = A2. 

 For p multiple 4 then repeat 𝑃 =
𝑝

2
.   

 And  𝐴 = √𝐴, till odd p/2. 

 Set 𝑁 = 𝑁0. 

 Where 𝑋𝑁 = 
2𝑝sin(

𝜋

𝑝
)

𝑁
𝐴 ∑ (𝐴 − (

1−ɯ𝑁
𝑖

1+ɯ𝑁
𝑖
)
𝑝

 𝐼 )
−1

ɯ𝑁
𝑖

(1+ɯ𝑁
𝑖)2

𝑁−1
𝑖=0  

 If ‖𝐴 − 𝑋𝑁
𝑝‖ > ɛ set 𝑁 = 2 ∗ 𝑁 and repeat step 3, 

otherwise output 𝑋𝑁 → 𝑋. 
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 Section3: Reduction for Matrix Sign Computation. 
 

 Proposition3.1. Let  Ώ = 𝑤𝑝  
𝑖𝑗
, 𝑖, 𝑗 = 0 𝑡𝑜 𝑝 − 1. 

 

Let 𝑋 =  𝐴(1/p) define block diagonal matrix  

  

𝐷 =  𝑑𝑖𝑎𝑔 (𝐼, 𝑋, 𝑋2, 𝑋3, …… . , 𝑋(𝑝−1)). 
 

Then C = 
1

𝑝
∗ ( 𝐷(𝛺⦻ I)𝑆(Ώ⦻𝐼)𝐷−1. 

 

Where S = diag(I, 𝑤𝑝  
1 X, 𝑤𝑝  

2 x2, 𝑤𝑝  
3 X,……., 𝑤𝑝  

𝑝−1
Xp-1).  

 

And ⦻ denotes kronecker product. Consequence of this is,  

 

sign (C) = 
1

𝑝
 𝐷(𝛺 ∗ ⦻ ∗  I) sign(𝑆) (Ώ ∗ ⦻ ∗ 𝐼) ∗ 𝐷−1. (5) 

 

Where 𝑠𝑖𝑔𝑛 (𝑆) = 𝑑𝑖𝑎𝑔 (𝑠𝑖𝑔𝑛(𝑋),𝑤𝑝  
1 𝑠𝑖𝑔𝑛(𝑋), 𝑤𝑝  

2 𝑠𝑖𝑔𝑛(𝑋), … . . , 𝑤𝑝  
𝑝−1

𝑠𝑖𝑔𝑛(𝑋)). 

 

 Proposition 3.2 If 𝑝 = 2 ∗ 𝑞 where p is odd, then the 

first block column of the matrix sign(C)                         

 

is given by 𝑉 = 
1

𝑝

[
 
 
 
 
 

𝑦0𝑋
0

𝑦1𝑋
1

𝑦2𝑋
2

⋮
𝑦𝑝−1𝑋

𝑝−1]
 
 
 
 
 

 , 

 

where 𝑋 = 𝐴𝑝 and 𝛾𝑖 = ∑ 𝑤𝑝
𝑖𝑗𝑝−1

𝑗=0 𝜃𝑗 . And 

 

𝑖 = 0 𝑡𝑜: 𝑝 − 1, 𝑓𝑜𝑟 𝑗 =  [
𝑞

2
] + 1: [

𝑞

2
] + 𝑞, 𝜃𝑗 = 1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. 

 

 Algorithm 3.1 (Matrix pth root by Matrix sign function). 

 

 Input: For p, n are integers, 𝐴 ℇ𝐶𝑛𝑥𝑛    
 Output: X, the pth root of A. 

 

For obb p put 𝑝 =  2 ∗ 𝑝 𝑎𝑛𝑑 𝐴 = 𝐴2. 
 

For p multiple 4 then repeat 𝑃 =
𝑝

2
.   

 

And A = √𝐴, till odd p/2. 

 

 Compute 𝑠𝑖𝑔𝑛(𝐶) 𝑎𝑛𝑑 𝑙𝑒𝑡 𝑉 =  (𝑉i) 𝑓𝑜𝑟 𝑖 = 0 𝑡𝑜 𝑝 −
1, be first block column. 

 

 Compute 𝑋 =  (𝑝/(2 ∗ 𝛼)) ∗  𝑉1.  
 

Where α = 1 + 2 ∗ ∑ cos (
2𝜋

𝑝
) , 𝑎𝑛𝑑 𝑞 = 𝑝/2

[𝑞/2]
𝑗=1 . 

 

 It gives generalization of (3.2) as follows. 

 

 sectp(C) = [

0 𝑋−1

⋮ 0
… 0
⋱ ⋮

0 ⋱
𝐴𝑋−1 0

⋱ 𝑋−1

… 0

]. 

 

 Section4: Reduction to Weiner Hopf Factorization. 

 

 Proposition4.1 Let 𝑆(𝑧) is any polynomial of matrix 

like 𝐹(𝑧)  =  𝑈(𝑧) ∗ 𝑈(𝑧-1).  

 

Where 𝑈(𝑧)  =  𝑧p ∗  𝑆(𝑧-1). 
 

Then pth root X of A is. 

 

𝑋 =  − 𝜎-1∗ (𝑞 ∗ 𝐼 +  2 ∗ 𝑆(−1) ∗ 𝑆(−1)-1). 
 

Where  σ = ∑ 𝑤𝑝
𝑗[

𝑞

2
]

𝑗=−[
𝑞

2
]

 = 1 + 2 *∑ cos (
2𝜋

𝑝
) .

[
𝑞

2
]

𝑗=−[−1]
 

 
 Algorithm 4: pth root of A by Weiner-Hopf 

factorization). 

 

 Input: p and n are integers, 𝐴 ɛ 𝐶 nxn. 
 Output: Approximation of pth root X of A. 

 

 For obb p put 𝑝 =  2 ∗ 𝑝 and 𝐴 = A2. 
 

For p multiple 4 then repeat 𝑃 =
𝑝

2
.   

 

And  𝐴 = √𝐴, till odd p/2. 

 

 Compute 𝐹(𝑧)  =  𝑈(𝑧) ∗ 𝑈(𝑧-1)  

 

Where 𝐹(𝑧)  =  𝑧-q ∗ 𝛹(𝑧) and set 𝑆(𝑧) = 𝑧𝑝 ∗ 𝑈(𝑧−1). 

 

 Find 𝑋 =  −𝜎-1∗ (𝑞 ∗ 𝐼 +  2 ∗ 𝑆(−1) ∗ 𝑆(−1)-1),  
 

Where  σ = ∑ 𝑤𝑝
𝑗[𝑞/2]

𝑗=−[𝑞/2]  =  1 + 2 ∗ ∑ cos(
2𝜋

𝑝
) .

[𝑞/2]

𝑗=−[−1]  

 

 Section 5: Reduce to Matrix Laurent Polynomial 

Inversion. 

 

 Proposition5.1 Principal pth root X of A can be written  

as, 

 

X = 4 ∗ 𝑝 ∗ sin(
𝜋

𝑝
) ∗𝐴 ∗  ∏ ∝𝑗∗ 𝐻𝑗

𝑞−1
𝑗=0 .                            (6) 

 

Here H(z) is Laurent series. 

 

𝐻(𝑧) = 𝐹(𝑧)−1 = ∑ 𝑧𝑗𝐻𝑗
∞
𝑗=−∞ = 𝐻0 + ∑ (𝑧𝑗 + 𝑧−𝑗∞

𝑗=1 ) 𝐻𝑗 and 

 

∝0 = 
1

2
 (

𝑝 − 2
𝑞 − 1

) , ∝0𝑗 = (
𝑝 − 2

𝑞 − 𝑗 − 1
) , 𝑗 = 1: 𝑞 − 1.  

 

 Algorithm: 5.1 (pth root of matrix using Laurent 

polynomial). 
 

 Input: p and n ∈  𝑁., 𝐴 ∈  𝐶𝑛𝑥𝑛. 

 Out put: Approximation of  pth root X of A. 

 

 For obb p put 𝑝 =  2 ∗ 𝑝 𝑎𝑛𝑑 𝐴 = 𝐴 = 𝐴2. 
 

For p multiple 4 then repeat 𝑃 =
𝑝

2
.   
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And A = √𝐴, till odd p/2. 

 

 Find coefficients H0,……., Hq-1 of inverse 𝐻𝑗 = 𝐻0 +

 ∑ (𝑧𝑗 + 𝑧−𝑗∞
𝑗=1 ) ∗  𝐻𝑗 of F(z) = 𝑧−𝑞 ∗  Ψ(z). 

 

Find X = 4 𝑝 sin (
𝜋

𝑝
)𝐴 ∏ ∝𝑗 𝐻𝑗

𝑞−1
𝑗=0 ,  

 

Where ∝0 = 
1

2
 (

𝑝 − 2
𝑞 − 1

) , ∝𝑗 = (
𝑝 − 2

𝑞 − 𝑗 − 1
) , 𝑗 = 1: 𝑞 − 1.  

 

 Section 6: (Newton’s Iteration for pth Root). 

 

 Proposition6.1: Residuals 𝑅𝑘 = 𝐼 − 𝑋𝑘
𝑝
𝐴. 

 

for 𝑋k+1 =  (1/𝑝) ∗ [ (𝑝 −  1) ∗ 𝑋k –  𝐴 ∗ 𝑋k
1+p], 𝑎𝑛𝑑 𝑋𝑛 =

𝐼 obeys 𝑋0,  

 

𝑅𝑘+1 = ∑ 𝑎𝑖 ∗
𝑝+1
𝑖=2 𝑅𝑘

𝑖 , where 𝑎𝑖 >0.and ∑ 𝑎𝑖
𝑝+1
𝑖=2 = 1  

 

That is for ‖𝑅0‖  < 1, {‖𝑅0‖} →0 as k→∞. 
 

 Proposition 6.2: For every eigen values ƛ >0 of matrix A. 

Iteration  

 

𝑋k+1 =  (1/𝑝) ∗ [ (𝑝 +  1) ∗ 𝑋k − 𝑋k
1+p ∗ 𝐴], 𝑋0 =  𝐼, 

accelerates to A-1/p. 

 

if  ƿ(𝐴)  =  𝑝 +  1. the value not accelerates to inverse  pth 

root of A.  

 

 
Fig 1: Convergence Regions (Shaded) in Circle for Iteration (6.5), together with Unit Circle 

Note:  Differing Axis Limits 

 

 Section 7.  Inversion of A-Circulenes Matrix. 

 

 Algorithm 7.1: 
 

 Input: p, n ∈ 𝑁 and  𝐴 ∈  𝐶𝑛𝑥𝑛 and commuting matrices  

 

W0….Wp-1 ∈  𝐶𝑛𝑥𝑛defining matrix p = 

[
 
 
 

𝑊0 𝑊1

𝐴𝑊𝑝−1 𝑊0

⋯ 𝑊𝑝−1

⋱ ⋮
⋮ ⋱

𝐴𝑊1 ⋯
⋱ 𝑊1

𝐴𝑊𝑝−1 𝑊0]
 
 
 
  

 

 Out put: Initial column block of p-1. 
 

 Leads (𝑝 − 1) ∈ 𝑁 as 𝑝 − 1 = ∑ 2𝑚𝑖𝑑+1
𝑖=0 . 

 

 𝑆𝑒𝑡 𝐵0=  𝐷-1∗ 𝑃 ∗ 𝐷. 
 

 For i = 0, find  𝐵𝑖 = 𝐵𝑖−1 ∗ (𝐷−1 ∗ 𝐵𝑖−1 ∗ 𝐷𝑖). 

 

 Compute 
 

 𝑉 = [𝐼, 0,0,… 0]𝑆 = 

[𝐼, 0,0, …0]𝐵𝑚0
𝐷−2𝑚0𝐵𝑚1

𝐷−2𝑚1 … . 𝐵𝑚𝑑−1
𝐷𝑝−1−2

𝑚(𝑑−1)
 

 

 Output 𝑉 ∗ (𝐼 ∗ ⦻ ∗ 𝑘−1) 
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 Section 8: (Inverting Matrix Laurent Polynomial). 

 

 8.1 Evaluation / Interpolation: 

 

 Algorithm8.1:  
 

 Input: Multiples 𝐹0, … , . , 𝐹p 𝑜𝑓 𝐹(𝑧); 
 

Here ℎ = ∑ ‖𝐻𝑖‖∞𝑖>ℎ  𝑖𝑠 negociabel. 

 

 Output: Guise of 𝐻𝑖 for i = 0, q-1 of Laurent series matrix 

𝐻(𝑍) = 𝐹(𝑍)−1. 

 

Find integer 𝑁 =  2v 𝑓𝑜𝑟  𝑁 >  2 ∗ ℎ +  1,. 
 

𝑤𝑁
𝑖  the nth root of unity for i = 0 to N-1. 

 

Where 𝑤𝑁  = cos(
2𝜋

𝑁
) + i * sin(

2𝜋

𝑁
). 

 

 Find 𝑤𝑖 = 𝐹(𝑤𝑛
𝑖 ), 𝑖 = 0 𝑡𝑜 (𝑁 − 1). 

 

 Find 𝑉𝑖 = (𝑤𝑖
−1)  𝑓𝑜𝑟 𝑖 = 0 𝑡𝑜 (𝑁 − 1). 

 

 Repeat value of 𝑉𝑖 to recover 𝐾𝑖  𝑜𝑓 𝐾(𝑧) =  ∑ 𝑧𝑖𝐾𝑖
ℎ
𝑖=−ℎ ,  

 
that interpolate H(z) at root of unity. 

 

 Results 𝐾𝑖𝑡𝑜 𝐻𝑖 . for i = 0 to q -1. 

 

 (Graeffe Iteration): 

 

 Proposition 8.1: Assume that P(z) = ∑ 𝑧𝑖 ∗ 𝑃𝑖
𝑞
𝑖=−𝑞  has 

P(z) = U(z) * V(z-1), 

 

For 𝑈(𝑍) = (𝑧 ∗ 𝐼 − 𝑋1) ∗ (𝑧 ∗ 𝐼 − 𝑋2)… . . (𝑧 ∗ 𝐼 − 𝑋𝑞), 

 

𝑉(𝑍) = (𝑧 ∗ 𝐼 − 𝑌1) ∗ (𝑧 ∗ 𝐼 − 𝑌2)…… (𝑧 ∗ 𝐼 − 𝑋𝑞), 

 

And matrices Xj, Yj are of the form, 

 

‖𝑋𝑗‖, ‖𝑌𝑗‖  ≤  𝜎 ≤ 1, 𝑗 = 1: 𝑞, 𝑓𝑜𝑟 𝑠𝑢𝑖𝑡𝑎𝑏𝑙𝑒 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 ‖ . ‖. 

Moreover AB = BA  

 

for any 𝐴,𝐵 ∈ {𝑋1, ⋯ , 𝑋𝑞} ∪ {𝑌1, ⋯ , 𝑌𝑞}.  

 

Then the sequence generated by 𝑃(𝑖)(𝑧) =

 ∑ 𝑧𝑗𝑃𝑗
(𝑖)𝑞

𝑗=−𝑞  is such that, 

 

‖𝑃0
(𝑖)

− 𝐼‖ ≤ 𝑞2𝜎2.2𝑖
, ‖𝑃𝑗

(𝑖)‖ < (
𝑞
𝑗)𝜎𝑗2𝑖

+

 𝑂((
𝑞

𝑗 + 1) 𝜎(𝑗+2)2
𝑖

). 

 

 𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝟖. 𝟐: (𝐈𝐧𝐯𝐞𝐫𝐬𝐢𝐨𝐧 𝐛𝐲 𝐆𝐫𝐚𝐞𝐟𝐟𝐞 𝐢𝐭𝐞𝐫𝐚𝐭𝐢𝐨𝐧). 
 

 Input: 

 The coefficients F0,… , . , . Fq of F(z);  an error tolerance 𝜀 >
0.  

 Output: Approximation of 𝐻𝑖 = 0 𝑡𝑜𝑞 − 1, 

of matrix Laurent series,   
 

H(z)  =  F(z) − 1.  

 

 Find coefficients 

𝑄−𝑞
(𝑖)

… .𝑄𝑞
(𝑖)

 𝑜𝑓 𝑚𝑎𝑡𝑟𝑖𝑥 𝑝𝑜𝑙𝑖𝑛𝑜𝑚𝑖𝑎𝑙 𝑄(0)(𝑧) = 𝐹(𝑧),  

 

𝑄(𝑖+1)(𝑧) = 𝐺𝑖
−1𝑄(𝑖) (−𝑧)𝑄(𝑖)(𝑧), 𝑖 ≥ 0. For i = 0,1,…,h-1, 

together with matrix Gi , until ‖𝑄(𝑖)(𝑧) − 𝐼‖
∞

≤  𝜀. 

 

 𝐹𝑖𝑛𝑑 2 ∗ 𝑞 − 1 central coefficient of 𝐿(𝑖)(z) = 𝐿(𝑗−1)𝑍2 ∗

𝐺𝑖−𝑗
−1 ∗ 𝑄(𝑖−1) ∗ (−Z).  and 𝐿(𝑖)(z) = 𝐺𝑖−𝑗

−1 ∗ 𝑄(𝑖−1) ∗
(−Z). for j = 2 ∗ i. 
 

 Result is 𝐿(ℎ)(𝑍). 

 

 Section9. For Computing Wiener-Hopf. Factorization. 

 

 Proposition 9.1: Consider 𝐹(𝑍) = 𝑍−𝑝𝛹(𝑧)𝑜𝑓 𝐹(𝑍). 
 

𝐹(𝑍) = 𝑍−𝑝𝛹(𝑧) = 𝑆(𝑍−1) ∗ 𝑆(𝑍) = 𝑆(𝑍) ∗ 𝑆(𝑍−1). 
 

And let 𝐻(𝑍) = 𝐹(𝑍)−1 = ∑ 𝑧𝑗𝐻𝑖
+∞
𝑖=−∞ .H(z). 

 

𝐹(𝑍) = 𝑆(𝑍−1), and it is by (m + 1) ∗ (m − 1) Toplitz 

system 

 

𝑇𝑚 [

𝑋0

𝑋1

⋮
𝑋𝑚

] = [

𝐼
0
⋮
0

], 𝑇𝑚 = [

𝐻0 𝐻1

𝐻1 𝐻0

⋯ 𝐻𝑚

⋱ ⋮
⋮ ⋱

𝐻𝑚 ⋯
⋱ 𝐻1

𝐻1 𝐻0

] where m≥ 𝑞, 

 

and by series Ŝ(z) = ∑ 𝑧𝑞−𝑗 ∗ 𝑋𝑗
𝑞
𝑗=0 . Moreover xj = 0 for j = q+1:m. 

 

 Proposition 9.2: Define U, V, W the (q + 1) ∗ (q + 1) block Toeplitz  matrises. 
 

𝑈 = ((
𝑝

𝑞 + 𝑖 − 𝑗) ∗ (𝐴 + (−1)𝑖−𝑗 ∗ 𝐼) )            𝑤ℎ𝑒𝑟𝑒 𝑖, 𝑗 = 1: 𝑞 + 1. 

 

𝑉 = ((
𝑝

𝑞 + 𝑖 − 𝑗 + 1) ∗ (𝐴 + (−1)𝑖−𝑗 ∗ 𝐼) )            𝑤ℎ𝑒𝑟𝑒 𝑖, 𝑗 = 1: 𝑞 + 1 
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𝑊 = ((
𝑝

𝑖 − 𝑗 − 1) ∗ (𝐴 + (−1)𝑖−𝑗 ∗ 𝐼) )            𝑤ℎ𝑒𝑟𝑒  𝑖, 𝑗 = 1: 𝑞 + 1 . 

 

Where (
𝑝
𝑚

) = 0, 𝑖𝑓𝑚 < 0 𝑜𝑟 𝑚 > 𝑝. 

 

Define the sequences, 

 

𝑈𝑘+1 = 𝑈𝑘 − 𝑉𝑘 ∗ 𝑈𝑘
−1 ∗ 𝑊𝑘 − 𝑊𝑘 ∗ 𝑈𝑘

−1 ∗ 𝑈𝑘+1, 

 

𝑉𝑘+1 = 𝑉𝑘 ∗ 𝑈𝑘
−1 ∗ 𝑉𝑘 , 

 

𝑊𝑘+1 = −𝑊𝑘 ∗ 𝑈𝑘
−1 ∗ 𝑊𝑘 , 

 

For k =  0, 1, 2,…  and 𝑈0 = U,    W0 =  W,        𝑈𝑘  is non 
singular for any k. 

 

Then the limit 𝑈∗ = lim𝑘→∞ 𝑈𝑘 exist and 𝑈∗ = 𝑇𝑞
−1.  

 

Where 𝑇𝑞is the Toeplitz matrix defined as,  

 

𝑇𝑚 [

𝑋0

𝑋1

⋮
𝑋𝑚

] = [

𝐼
0
⋮
0

], 𝑇𝑚 = [

𝐻0 𝐻1

𝐻1 𝐻0

⋯ 𝐻𝑚

⋱ ⋮
⋮ ⋱

𝐻𝑚 ⋯
⋱ 𝐻1

𝐻1 𝐻0

] where m≥ 𝑞. 

 

Moreover, the convergence of  𝑈𝑘  to 𝑈∗ is quadratic. 

 

 Section 10: Conclusion Results. 

 

 Input: Algorithms 2.1 based on 2.4. 

 

Sign: Algorithm 3.1. 

 

Li-ei: Algorithm 5.1 for Algorithm 8.1. 
 

Consider two test problems: 
 

 Test 1: For  𝑢𝑛𝑖𝑡 𝜀 –circulene Matrix A i.e.  polynomial  

Xn  𝜀. 

 

Where n =  5 and 𝜀 = 10−8. 

Eigenvalues of A are fifth root of unity multiplied by 𝜀
1

5
. 

 

Matrix is normal and limit  𝜀 → 0 has no pth root.  

 

 Test2: A is matrix of order 5x5 associate with 

polynomial ∏ (𝑥 − 𝑖)5
𝑖=5 . 

 
Clearly eigenvalues are 1, 2, 3, 4, 5 and matrix is not normal. 

 

Chart of infinity norm of residual error A - Xp for several 

values of p. 

 

Then 𝑋−→ 𝐴1/𝑝.  
 

 

Fig 2: Infinity Norm of the Recedual Error in Computing 𝐴
1

𝑝 for ε − circulent matrix A. 
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III. CONCLUSION AND OPEN PROBLEMS 

 

Various equations to expressing principal pth root of 

matrix A in different forms. It reduces calculations for 

numerical iterations of 𝐴1/𝑝 on unit circle, for finding matrix 

sign function of matrix of block companion. All the results 

are to inverting matrix Laurent polynomial to finding Wiener 

– Hopf factorization. Also for using iteration of fix point. 

 

 

Fig 3: Infinity norm of Residual Error in Computing 𝐴
1

𝑝 for Companion Matrix Corresponding  

with Polinomial ∏  (𝑥 −  𝑖).5
𝑖=1  
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