A Study of Algorithms for the pth Root of Matrix

Langote Ulhas Baban Assistant Professor, Waghire College, Sasawad, Pune

Abstract:- Some results for Pth root of square matrix are revived. It shows that matrix sign function and Wiener-Hopf factorization plays important role in Pth root of matrix. Some new algorithms for computing Pth root numerically can design by these results. We can analyze Stability properties of iterative methods for convergence.

Keywords:- Pth Root Of Matrix, Matrix Sign Function, Newton's Method, Cyclic Reduction, Wiener – Hopf Factorization, Graeffe- Iteration, Laurent Polynomial.

I. INTRODUCTION

A is n^{th} ordered square matrix with real or complex entries having all positive eigenvalues (Positive definite matrix) are non-negative real number. p & N the set of positive integer. We get matrix uniquely having.

- $X^p = A$.
- λ the eigenvalue of X such that $\lambda \in \left\{z: -\frac{\pi}{p} < \arg(z) < \frac{\pi}{p}\right\}$. where $X = A^{\frac{1}{p}}$.
- > Applications:
- **Application1**. Matrix logarithm, $log(A) = p * log(A)^{1/P}$. for, well approximated p by polynomial or function of rationales.
- **Application2**. Function from matrix sector $sect_p(A^p)^{(-1/p)} * A$. Function from matrix sector P₂ is matrix sign function.
- **Application3**. Hoskins and Walton iteration method discussed in [18]. By Newton's formula of iteration,

 $X_{k+1} = \left(\frac{1}{p}\right) * \left[(p-1) * X_k + A * X_k^{1-p}\right]. \text{ And } X_0 = A.$ (1.1)

A symmetric positive definite. (X_k converges is $A^{1/p}$ but convergence is not definite. by Smith [27].

• Application 4. Benner et al. [1] has columns of $U = [U_1^*, \dots, U_p^*] \in \mathbb{C}$

C^{pnxn}this spans invariant subspace of

Dr. Mulay Prashant P. Assistant Professor, Annasaheb Magar College, Hadapsar Pune

$$U = \begin{bmatrix} 0 & 1 & - & - & - & - & - \\ - & 0 & 1 & - & - & - & - \\ - & - & 0 & 1 & - & - & - \\ - & - & - & 0 & 1 & - & - \\ - & - & - & - & 0 & 1 \\ A & - & - & - & - & 0 \end{bmatrix} \in \operatorname{Cpn} x \operatorname{pn}$$
(1)

Where, C * U = U * Y, such that, $Y \in C^{nxn}$, and $|U_1| \neq 0$.

then
$$X = U_2 * U_1^{-1} = A^{1/p}$$
.

• **Application5**. Algorithm for computing A^{1/p} by Shiel et al. [26].

 $A^{1/p}$ contain $X_k = G^k * [I_n, 0, 0, 0]^T$.

For G = C + I. and matrix C like (1.2).

That is Compute $\lim_{k \to \infty} Xk(1:n, :) Xk(n+1:2n, :))^{-1}$

- **Application6**. For Tsay et al [29]. It gives other way to find A^{1/p} square matrix. It is like General continued fractions of block for Toeplitz matrix. Method have O(n⁵) flops and O(n³) storage. It is in [28]. Some time it is unstable.
- **Application7**. Tsay et al [28]. It is iterative method convergence proof is not available, but it is Numerically stable like

$$G_{K+1} = G_k * [(2 * I + (P - 2) * G_k) * (I + (P - 1) * G_k)^{-1}]^p,$$

Where $G_0 = A$.

$$R_{K} + I = R_{k} * (2 * I + (P - 2) * R_{k})^{-1} * (I + (P - 1) * G_{k}),$$

Where $R_0 = I$.

Here $G_k \rightarrow I$ and $R_k \rightarrow A^{1/p}$.

It's proof of convergence not in [28].

Analysis of perturbation in [15] as follows,

$$A^{(\frac{1}{p})} = \frac{p * \sin(\frac{\pi}{p})}{\pi} * A * \int_0^\infty (x^p * I + A)^{-1} dx \qquad (2)$$

ISSN No:-2456-2165

It shows iterations are numerically stable in complex computing pth root of triangular matrix, by Hasan et al. [13].

- > The Paper is Divided in to Two Parts:
- Section 2 to 6 theoretical properties.
- Section 7 to 10 algorithmic results.
- ➢ Part: 1.
- Section 2:
- ✓ Represent A(1/p) in integral analytic function with unit complex circle in plane of complex.
- ✓ A1/p approximated by numerical Fourier integration point for error r2*N, N is Fourier point number and r < 1 depends on p as well as A.

• Section 3:

- ✓ Using sign function of matrix prove A^(1/p) is multiple of (2.1).
- ✓ Constant of multiplication can known can explicitly.

• Section4:

- ✓ $F(z) = z^{-\frac{p}{2}}((1+z)^p A (1-z)^p I)$ is Matrix factorization by Wiener-Hopf.
- ✓ Key tool is Cayley transformation $X \to z = \frac{(1-x)}{(1+x)}$ it gives mapping function to imaginary axis to unit circle.
- ✓ It relates X^p − A with imaginary axis to F (z) with respective to unitary circle.

• Section5:

- ✓ $A^{\frac{1}{p}}$ relates with central coefficients $H_0, \ldots, H_{\frac{p}{2}-1}$.
- ✓ $A^{\overline{p}}$ is related to central coefficient H₀,, H_{p/2-1}of matrix Laurent series
- ✓ $H(z) = H_0 + \sum_{i=1}^{+\infty} (z^i + z^{-i}) H_i$ where H(z) * F(z) = I.

• Section6:

✓ Observe $A^{\frac{1}{p}}$ as an inverse of fix point function $\left(\frac{1}{p}\right) *$ [(1 + p) * X - X^{p-1} * A]

by iterative $X^{-p} - A = 0$.

 \checkmark It gives sufficiency to convergence and stability.

• Section7:

- ✓ Obtain Algorithm for inverting A_{np x np} matrix to n x n blocks.
- ✓ Polynomial interpretation of A circulate matrix for finding A^{1/p}.
- ✓ block companion matrix C (1.2) forms A circulate matrix.

• Section8:

✓ Form some iterations F(z) initially evaluate process and then use on Graeffe's iteration.

https://doi.org/10.38124/ijisrt/IJISRT24SEP1314

• Section9:

- ✓ Two algorithms on F(z).
- ✓ Apply to reduce F(z) and on poly Laurent inverse matrix.
- Section10:
- ✓ Analyze results of preliminary numerical experiments.

II. RESULTS

- As p = 2q there exist at least one real root and remaining complex roots.
- There exist exactly equal positive real and negative real roots.
- Sections in Detail:
- Section 2: Define Matrix Polynomial

$$\Psi(z) = (1+z)^{p} * A - (1-z)^{p} * I = \sum_{j=0}^{p} z^{j} * {p \choose j} * (A + (-1)^{j+1} * I).. (2.1)$$

 $\Psi(z)$ is non singular in |z| = 1.

 $\Psi(z)$ and its inverse is analytic in

$$A = \left\{ z \in \mathcal{C} : \dot{\rho} < |z| < \frac{1}{\dot{\rho}} \right\}$$
(3)

Where $\dot{\rho} = \max \{ z \in C : \det \Psi(z) = 0, |z| < 0 \}$

Proposition proved, Proposition2.1 Pth root of A becomes

$$X = \frac{p \cdot \sin(\frac{\pi}{p})}{i \cdot \pi} * A * \int_{|z|=1} ((1+z)^{p-2} * \Psi(z)^{-1}) dz$$
(2.3)

Moreover,

$$X = \frac{2*p*\sin\left(\frac{\pi}{p}\right)}{N} * A * \sum_{i=0}^{N-1} \left(A - \left(\frac{1-u_N^i}{1+u_N^i}\right)^p I\right)^{-1} * \frac{u_N^i}{(1+u_N^i)^2} + O(r^{2N})$$
(4)

Where p < r < 1

- ✓ Algorithm 2.1
- For obb p put P = 2 * P and $A = A = A^2$.
- For p multiple 4 then repeat $P = \frac{p}{2}$.
- And $A = \sqrt{A}$, till odd p/2.
- Set $N = N_0$.
- Where $X_N = \frac{2p \sin(\frac{\pi}{p})}{N} A \sum_{i=0}^{N-1} \left(A \left(\frac{1-u_N^i}{1+u_N^i}\right)^p I \right)^{-1} \frac{u_N^i}{(1+u_N^i)^2}$
- If $||A X_N^p|| > \varepsilon$ set N = 2 * N and repeat step 3, otherwise output $X_N \to X$.

- Section3: Reduction for Matrix Sign Computation.
- **Proposition3.1.** Let $\Omega = w_p^{ij}$, i, j = 0 to p 1.

Let $X = A^{(1/p)}$ define block diagonal matrix

$$D = diag (I, X, X^2, X^3, \dots, X^{(p-1)}).$$

Then C = $\frac{1}{p} * (D(\Omega \otimes I)S(\Omega \otimes I)D^{-1})$.

Where S = diag(I, $w_p^1 X$, $w_p^2 x^2$, $w_p^3 X^{.....,} w_p^{p-1} X^{p-1}$).

And \otimes denotes kronecker product. Consequence of this is,

sign (C) =
$$\frac{1}{p} D(\Omega * \bigotimes * I)$$
 sign(S) ($\Omega * \bigotimes * I$) * D^{-1} . (5)

Where sign $(S) = diag(sign(X), w_p^1 sign(X), w_p^2 sign(X), \dots, w_p^{p-1} sign(X)).$

• **Proposition 3.2** If p = 2 * q where p is odd, then the first block column of the matrix sign(C)

is given by $V = \frac{1}{p} \begin{bmatrix} y_0 X^0 \\ y_1 X^1 \\ y_2 X^2 \\ \vdots \\ y_{p-1} X^{p-1} \end{bmatrix}$,

where $X = A^p$ and $\gamma_i = \sum_{j=0}^{p-1} w_p^{ij} \theta_j$. And

i = 0 to: p - 1, for $j = \left[\frac{q}{2}\right] + 1$: $\left[\frac{q}{2}\right] + q$, $\theta_j = 1$ otherwise.

- ✓ Algorithm 3.1 (Matrix pth root by Matrix sign function).
- **Input:** For p, n are integers, A EC^{nxn}
- **Output:** X, the pth root of A.

For obb p put p = 2 * p and $A = A^2$.

For p multiple 4 then repeat $P = \frac{p}{2}$.

And $A = \sqrt{A}$, till odd p/2.

- ✤ Compute sign(C) and let V = (V_i) for i = 0 to p − 1, be first block column.
- Compute $X = (p/(2 * \alpha)) * V_1$.

Where $\alpha = 1 + 2 * \sum_{j=1}^{[q/2]} \cos\left(\frac{2\pi}{p}\right)$, and q = p/2.

- ✤ It gives generalization of (3.2) as follows.
- $\operatorname{sect}_{p}(\mathbf{C}) = \begin{bmatrix} 0 & X^{-1} & \dots & 0 \\ \vdots & 0 & \ddots & \vdots \\ 0 & \ddots & \ddots & X^{-1} \\ AX^{-1} & 0 & \dots & 0 \end{bmatrix}.$

International Journal of Innovative Science and Research Technology

https://doi.org/10.38124/ijisrt/IJISRT24SEP1314

- Section4: Reduction to Weiner Hopf Factorization.
- **Proposition 4.1** Let S(z) is any polynomial of matrix like $F(z) = U(z) * U(z^{-1})$.

Where $U(z) = zp * S(z^{-1})$.

Then pth root X of A is.

$$X = -\sigma^{-1} * (q * I + 2 * S(-1) * S(-1)^{-1}).$$

Where
$$\sigma = \sum_{j=-\left[\frac{q}{2}\right]}^{\left[\frac{q}{2}\right]} w_p^j = 1 + 2 * \sum_{j=-\left[-1\right]}^{\left[\frac{q}{2}\right]} \cos\left(\frac{2\pi}{p}\right).$$

- ✓ Algorithm 4: pth root of A by Weiner-Hopf factorization).
- **Input:** p and n are integers, $A \in C^{nxn}$.
- **Output:** Approximation of pth root X of A.
- For obb p put p = 2 * p and $A = A^2$.

For p multiple 4 then repeat $P = \frac{p}{2}$.

And
$$A = \sqrt{A}$$
, till odd p/2.

• Compute $F(z) = U(z) * U(z^{-1})$

Where $F(z) = z^{-q} * \Psi(z)$ and set $S(z) = z^p * U(z^{-1})$.

★ Find
$$X = -\sigma^{-1} * (q * I + 2 * S(-1) * S(-1)^{-1}),$$

Where
$$\sigma = \sum_{j=-[q/2]}^{[q/2]} w_p^j = 1 + 2 * \sum_{j=-[-1]}^{[q/2]} \cos\left(\frac{2\pi}{p}\right).$$

- Section 5: Reduce to Matrix Laurent Polynomial Inversion.
- **Proposition5.1** Principal pth root X of A can be written as,

$$X = 4 * p * \sin\left(\frac{\pi}{p}\right) * A * \prod_{j=0}^{q-1} \propto_j * H_j.$$
(6)

Here H(z) is Laurent series.

$$H(z) = F(z)^{-1} = \sum_{j=-\infty}^{\infty} z^{j} H_{j} = H_{0} + \sum_{j=1}^{\infty} (z^{j} + z^{-j}) H_{j} \text{ and}$$
$$\alpha_{0} = \frac{1}{2} \binom{p-2}{q-1}, \alpha_{0j} = \binom{p-2}{q-j-1}, j = 1: q-1.$$

- ✓ Algorithm: 5.1 (pth root of matrix using Laurent polynomial).
- **Input:** p and $n \in N$, $A \in C^{nxn}$.
- **Out put:** Approximation of pth root X of A.
- For obb p put p = 2 * p and $A = A = A^2$.

For p multiple 4 then repeat $P = \frac{p}{2}$.

And $A = \sqrt{A}$, till odd p/2.

★ Find coefficients H₀,..., H_{q-1} of inverse H_j = H₀ + ∑_{j=1}[∞](z^j + z^{-j}) * H_j of F(z) = z^{-q} * Ψ(z).

Find X = 4 $p \sin\left(\frac{\pi}{p}\right) A \prod_{j=0}^{q-1} \propto_j H_j$,

Where $\propto_0 = \frac{1}{2} \begin{pmatrix} p-2 \\ q-1 \end{pmatrix}$, $\propto_j = \begin{pmatrix} p-2 \\ q-j-1 \end{pmatrix}$, j = 1: q-1.

- Section 6: (Newton's Iteration for pth Root).
- **Proposition6.1: Residuals** $R_k = I X_k^p A$.

International Journal of Innovative Science and Research Technology

https://doi.org/10.38124/ijisrt/IJISRT24SEP1314

for $X_{k+1} = (1/p) * [(p - 1) * X_k - A * X_k^{1+p}]$, and $X_n = I$ obeys X_0 ,

$$R_{k+1} = \sum_{i=2}^{p+1} a_i * R_k^i$$
, where $a_i > 0$.and $\sum_{i=2}^{p+1} a_i = 1$

That is for $||R_0|| < 1$, $\{||R_0||\} \to 0$ as $k \to \infty$.

• **Proposition 6.2:** For every eigen values λ >0 of matrix A. Iteration

 $X_{k+1} = (1/p) * [(p + 1) * X_k - X_k^{1+p} * A], X_0 = I,$ accelerates to A^{-1/p}.

if p(A) = p + 1. the value not accelerates to inverse p^{th} root of A.

• Section 7. Inversion of A-Circulenes Matrix.

✓ Algorithm 7.1:

• **Input:** p, $n \in N$ and $A \in C^{nxn}$ and commuting matrices

$$W_0....W_{p-1} \in C^{nxn} \text{defining matrix } p = \begin{bmatrix} W_0 & W_1 & \cdots & W_{p-1} \\ AW_{p-1} & W_0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & W_1 \\ AW_1 & \cdots & AW_{p-1} & W_0 \end{bmatrix}$$

- **Out put:** Initial column block of p⁻¹.
 - ★ Leads $(p-1) \in N$ as $p-1 = \sum_{i=0}^{d+1} 2^{m_i}$.
 - ♦ Set B0 = D 1 * P * D.
 - For i = 0, find $B_i = B_{i-1} * (D^{-1} * B^{i-1} * D^i)$.

✤ Compute

- ★ $V = [I, 0, 0, ... 0]S = [I, 0, 0, ... 0]B_{m_0}D^{-2^{m_0}}B_{m_1}D^{-2^{m_1}}...B_{m_{d-1}}D^{p-1-2^{m_{(d-1)}}}$
- Output $V * (I * \bigotimes * k^{-1})$

- Section 8: (Inverting Matrix Laurent Polynomial).
- 8.1 Evaluation / Interpolation:
- ✓ Algorithm8.1:
- **Input:** Multiples F_0, \ldots, F_p of F(z);

Here $h = \sum_{i>h} ||H_i||_{\infty}$ is negociabel.

• **Output:** Guise of H_i for i = 0, q-1 of Laurent series matrix $H(Z) = F(Z)^{-1}$.

Find integer $N = 2^v for N > 2 * h + 1$,.

 w_N^i the nth root of unity for i = 0 to N-1.

Where $w_N = \cos(\frac{2\pi}{N}) + i * \sin(\frac{2\pi}{N})$.

- ★ Find $w_i = F(w_n^i)$, i = 0 to (N 1).
- ★ Find $V_i = (w_i^{-1})$ for i = 0 to (N 1).
- Repeat value of V_i to recover K_i of $K(z) = \sum_{i=-h}^{h} z^i K_i$,

that interpolate H(z) at root of unity.

- Results K_i to H_i . for i = 0 to q 1.
- ➤ (Graeffe Iteration):
- **Proposition 8.1:** Assume that $P(z) = \sum_{i=-q}^{q} z^{i} * P_{i}$ has $P(z) = U(z) * V(z^{-1})$,

For $U(Z) = (z * I - X_1) * (z * I - X_2) \dots (z * I - X_q),$

$$V(Z) = (z * I - Y_1) * (z * I - Y_2) \dots \dots (z * I - X_q),$$

And matrices X_j, Y_j are of the form,

 $||X_j||, ||Y_j|| \le \sigma \le 1, j = 1; q, for suitable operator ||.||.$ Moreover AB = BA

International Journal of Innovative Science and Research Technology

https://doi.org/10.38124/ijisrt/IJISRT24SEP1314

$$\text{for any } A,B \in \{X_1, \cdots, X_q\} \cup \{Y_1, \cdots, Y_q\}.$$

Then the sequence generated by $P^{(i)}(z) = \sum_{j=-q}^{q} z^j P_j^{(i)}$ is such that,

$$\begin{split} \|P_0^{(i)} - I\| &\leq q^2 \sigma^{2.2^i}, \\ O(\binom{q}{j+1} \sigma^{(j+2)^{2^i}}). \end{split} \qquad \qquad \\ \|P_j^{(i)}\| &< \binom{q}{j} \sigma^{j^{2^i}} + q^{2^{2^i}} + q^{2^i} + q^{2^i}$$

- ✓ Algorithm 8.2: (Inversion by Graeffe iteration).
- Input: The coefficients F0, ..., . , . Fq of F(z); an error tolerance ε > 0.
- **Output:** Approximation of $H_i = 0 \ toq 1$, of matrix Laurent series,

H(z) = F(z) - 1.

✤ Find coefficients $Q_{-q}^{(i)} \dots Q_{q}^{(i)} \text{ of matrix polynomial } Q^{(0)}(z) = F(z),$

 $\begin{aligned} Q^{(i+1)}(z) &= G_i^{-1} Q^{(i)}(-z) Q^{(i)}(z), i \ge 0. \text{ For } i = 0, 1, \dots, h-1, \\ \text{together with matrix } G_i, \text{ until } \left\| Q^{(i)}(z) - I \right\|_{\infty} \le \varepsilon. \end{aligned}$

- ★ Find 2 * q 1 central coefficient of $L^{(i)}(z) = L^{(j-1)}Z^2 * G_{i-j}^{-1} * Q^{(i-1)} * (-Z)$. and $L^{(i)}(z) = G_{i-j}^{-1} * Q^{(i-1)} * (-Z)$. for j = 2 * i.
- Result is $L^{(h)}(Z)$.
- Section9. For Computing Wiener-Hopf. Factorization.
- **Proposition 9.1:** Consider $F(Z) = Z^{-p}\Psi(z)of F(Z)$.

$$F(Z) = Z^{-p}\Psi(Z) = S(Z^{-1}) * S(Z) = S(Z) * S(Z^{-1}).$$

And let $H(Z) = F(Z)^{-1} = \sum_{i=-\infty}^{+\infty} z^{j} H_{i}.H(z).$

 $F(Z) = S(Z^{-1})$, and it is by (m + 1) * (m - 1) Toplitz system

$$T_m \begin{bmatrix} X_0 \\ X_1 \\ \vdots \\ X_m \end{bmatrix} = \begin{bmatrix} I \\ 0 \\ \vdots \\ 0 \end{bmatrix}, T_m = \begin{bmatrix} H_0 & H_1 & \cdots & H_m \\ H_1 & H_0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & H_1 \\ H_m & \cdots & H_1 & H_0 \end{bmatrix}$$
where m $\ge q$,

and by series $\hat{S}(z) = \sum_{j=0}^{q} z^{q-j} * X_j$. Moreover $x_j = 0$ for j = q+1:m.

• **Proposition 9.2:** Define U, V, W the (q + 1) * (q + 1) block Toeplitz matrises.

$$U = \left(\begin{pmatrix} p \\ q+i-j \end{pmatrix} * (A + (-1)^{i-j} * I) \right) \qquad \text{where } i, j = 1:q+1.$$
$$V = \left(\begin{pmatrix} p \\ q+i-j+1 \end{pmatrix} * (A + (-1)^{i-j} * I) \right) \qquad \text{where } i, \qquad j = 1:q+1$$

www.ijisrt.com

International Journal of Innovative Science and Research Technology https://doi.org/10.38124/ijisrt/IJISRT24SEP1314

$$W = \left(\begin{pmatrix} p \\ i-j-1 \end{pmatrix} * (A + (-1)^{i-j} * I) \right)$$

Where $\binom{p}{m} = 0$, if m < 0 or m > p.

Define the sequences,

$$U_{k+1} = U_k - V_k * U_k^{-1} * W_k - W_k * U_k^{-1} * U_{k+1},$$

$$V_{k+1} = V_k * U_k^{-1} * V_k,$$

where
$$i, j = 1: q + 1$$
.

 $W_{k+1} = -W_k * U_k^{-1} * W_k,$

For k = 0, 1, 2, ... and $U_0 = U$, W0 = W, U_k is non singular for any k.

Then the limit $U^* = \lim_{k \to \infty} U_k$ exist and $U^* = T_q^{-1}$.

Where T_q is the Toeplitz matrix defined as,

$$T_m \begin{bmatrix} X_0 \\ X_1 \\ \vdots \\ X_m \end{bmatrix} = \begin{bmatrix} I \\ 0 \\ \vdots \\ 0 \end{bmatrix}, T_m = \begin{bmatrix} H_0 & H_1 & \cdots & H_m \\ H_1 & H_0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & H_1 \\ H_m & \cdots & H_1 & H_0 \end{bmatrix} \text{ where } m \ge q.$$

Moreover, the convergence of U_k to U^* is quadratic.

- Section 10: Conclusion Results.
- **Input:** Algorithms 2.1 based on 2.4.

Sign: Algorithm 3.1.

Li-ei: Algorithm 5.1 for Algorithm 8.1.

Consider two test problems:

✓ **Test 1:** For *unit* ε –circulene Matrix A i.e. polynomial $X^n \rightarrow \varepsilon$.

Where n = 5 and $\varepsilon = 10^{-8}$.

Eigenvalues of A are fifth root of unity multiplied by $\varepsilon \frac{1}{5}$.

Matrix is normal and limit $\rightarrow \varepsilon \rightarrow 0$ has no pth root.

✓ **Test2:** A is matrix of order 5x5 associate with polynomial $\prod_{i=5}^{5} (x - i)$.

Clearly eigenvalues are 1, 2, 3, 4, 5 and matrix is not normal.

Chart of infinity norm of residual error A - X^{p} for several values of p.

Then
$$X \rightarrow A^{1/p}$$

Fig 2: Infinity Norm of the Recedual Error in Computing $A^{\overline{p}}$ for ε – circulent matrix A.

ISSN No:-2456-2165

CONCLUSION AND OPEN PROBLEMS

Various equations to expressing principal p^{th} root of matrix A in different forms. It reduces calculations for numerical iterations of $A^{1/p}$ on unit circle, for finding matrix

III.

sign function of matrix of block companion. All the results are to inverting matrix Laurent polynomial to finding Wiener – Hopf factorization. Also for using iteration of fix point.

https://doi.org/10.38124/ijisrt/IJISRT24SEP1314

Fig 3: Infinity norm of Residual Error in Computing $A^{\overline{p}}$ for Companion Matrix Corresponding with Polinomial $\prod_{i=1}^{5} (x - i)$.

REFERENCES

- P. Benner, R. Byers, V. Mehrmann and H. Xu, A unified deflating subspace approach for classes of polynomial and rational matrix equations, Preprint SFB393/00-05, Zentrum für Technomathematik, Universität Bremen, Bremen, Germany (January 2000).
- [2]. M.A. Hasan, J.A.K. Hasan and L. Scharenroich, New integral representations and algorithms for computing nth roots and the matrix sector function of nonsingular complex matrices, in: Proc. of the 39th IEEE Conf. on Decision and Control, Sydney, Australia (2000) pp. 4247–4252.
- [3]. N.J. Higham, Newton's method for the matrix square root, Math. Comp. 46(174) (1986) 537–549.
- [4]. W.D. Hoskins and D.J. Walton, A faster, more stable method for computing the pth roots of positive definite matrices, Linear Algebra Appl. 26 (1979) 139–163.
- [5]. L.-S. Shieh, Y.T. Tsay and R.E. Yates, Computation of the principal nth roots of complex matrices, IEEE Trans. Automat. Control 30(6) (1985) 606–608.
- [6]. M.I. Smith, A Schur algorithm for computing matrix pth roots, SIAM J. Matrix Anal. Appl. 24(4) (2003) 971–989.
- [7]. J.S.H. Tsai, L.S. Shieh and R.E. Yates, Fast and stable algorithms for computing the principal nth root of a complex matrix and the matrix sector function, Comput. Math. Appl. 15(11) (1988) 903–913.

[8]. Y.T. Tsay, L.S. Shieh and J.S.H. Tsai, A fast method for computing the principal nth roots of complex matrices, Linear Algebra Appl. 76 (1986) 205–221.