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Abstract:- The rapid rise of electronic waste (commonly 

referred to as "e-waste") has become a world's growing 

challenge which should be managed by creative 

approaches. The number of e-waste produced is estimated 

to be 53.6 million metric tons in 2019. From this we can 

see that the seriousness of the issue direly calls upon 

taking the measures to prevent the environmental and 

public health risks associated with this expanding crisis 

[1]. Since a lot of the e-waste may contain hazardous 

materials such as mercury, lead and cadmium, which can 

impact the health and the environment if not treated 

properly, the mismanagement of it increases the problem 

[2]. In the case of e-waste, there is wide assortment of the 

electronic devices and components hence, it becomes 

difficult to classify them into their product categories 

properly. Sorting processes can't keep up with the pace of 

production waste as a result of being tedious, error-prone, 

and slow. This research employs deep learning 

approaches to segregate E-waste items using images for 

automated category. Utilizing contemporary models like 

VGG16, DenseNet121, InceptionV3, MobileNetV3, and 

ResNet50, the research designs classification systems that 

have these great attributes. Dataset building (training and 

assessment) become easy when an extensive dataset of 

3000 images from 10 different types of equipment is 

developed. This research study helps to offer useful 

implications for managing current methods of electronic 

waste disposal and developing sustainable circular 

economies with quantitative analyzing of model 

performance factors that include accuracy, precision, F1-

score, mean squared error (MSE), and mean absolute 

error (MAE). 
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I. INTRODUCTION 

 

The situations in which the environment and the health 

of the public are greatly jeopardized by the "e-waste" which 
is the electronics junk produced by worldwide usage and 

demise of electronic equipment. As there tends to be a series 

of new technologies keeping on emerging at a rapid pace, 

there is always a risk of more electronics ending up in 

landfills, which is quite significant in terms of human health 

and the environment [4]. For instance, hazardous substances 

such as lead, mercury, cadmium, and brominated flame 

retardants may contain the essence of e-waste into water and 

soil sources and cause ecotoxicity and a risk to the health of 

populations exposed [5].   

 
E-waste created nationwide from the twenty-one (21) 

forms of EEE specified under the E-Waste (Management) 

Rules, 2016, as of Financial Year (FY) 2017–18 is given 

below (Figure 1), based on statistics kept by CPCB, according 

to reports [6] from the India Press Information Bureau:  

 

 
Fig 1: Yearly E-Waste Generation 
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Due to its varied composition and the inclusion of 

potentially harmful elements, managing e-waste poses 

difficult issues. Conventional techniques for classifying and 

disposing of e-waste sometimes entail labor-intensive, time 

consuming, and inaccurately prone manual sorting 

procedures. Furthermore, incorrect disposal techniques, such 

as the unofficial recycling procedures used in many areas, 

pollute the environment and endanger the health of those who 
handle e-waste [7].  

 

In regard to these challenges, creative e-waste 

management techniques that can boost productivity, lower 

threats to the environment and public health, and speed up the 

classification process are becoming more and more 

important. Because deep learning techniques are capable of 

extracting characteristics from complex data, they have 

shown promise in solving e-waste classification difficulties 

[8]. Transfer learning, which is especially helpful for e-waste 

classification applications, uses pre-trained models on 
massive databases for adaptation to new tasks that require 

fewer annotated data [9].   

 

The effectiveness of many well-known deep learning 

techniques, including VGG16, DenseNet121, InceptionV3, 

MobileNetV3, and ResNet50, for e-waste classification is 

investigated in this work. Evaluating these models' 

performance at two distinct image sizes (150x150 and 

224x224 pixels) is the study's special objective. Choosing the 

appropriate image size is crucial since it significantly affects 

the performance of deep learning algorithms.   

A dataset including pictures of 10 distinct electronic 

applications, developed in order to carry out this study. A 

total of 3000 photos makes up the dataset, with 300 images 

per application. The dataset's variety of electronic 

applications seeks to represent the heterogeneity found in 

actual e-waste situations, improving the findings' 

generalizability.  

 
 This Study Aims to Achieve Two Main Goals:  

  

 To evaluate, via transfer learning approaches, the 

classification performance of VGG16, DenseNet121, 

InceptionV3, MobileNetV3, and ResNet50 models on e-

waste photos.  

 To find the ideal picture size for e-waste classification 

tasks by comparing these models' performance across two 

distinct image sizes (150x150 and 224x224 pixels).   

 

II. LITERATURE REVIEW 
 

In the following literature review section, where we 

have meticulously compiled and analyzed the works of 

various authors who have published papers on the topic of e-

waste, focusing specifically on algorithms and their 

corresponding results, providing a comprehensive analysis of 

how these works have contributed to our understanding and 

management of e-waste related challenges.  Table 1 contains 

the work done in related domain.  

 
Table 1: Related Work 

S. No Citation Methodology Results 

1. [10] (CNN) Image recognition 

algorithm. 

For 164 color images, the CNN model had a validation accuracy 

of 93.9% and a training accuracy of 96.9%. 

2. [11] Faster region based convolutional 

neural network (RCNN) 210 

Images 

For classification, the CNN model had a 96.7% accuracy rate, 

and the RCNN model had a 90% accuracy rate, which was less 

than the best CNN. 

3. [12] Neural networks with gradient 

boosting regression trees  

(GBRT, NN) 

Machine learning computation increases the correctness of 

arrangements by 99.1% when employing the best approach. 

4. [13] YOLOv5 After 500 epochs of training with 2400 e-waste pictures, the 

model generated a 0.352 mAP value. 

5. [14] RESNET-18 The ability of the proposed research to combine IOT segregation 

with E-waste identification was demonstrated by the creation of a 

prototype. The average accuracy of this method is 93%. 

6. [15] Convolution neural networks 

(CNN) and support vector 

machines (SVM) 

The author proposed a non-standard method here using   600 

images which yielded 82.2% and 79.4% accuracy for CNN and 

SVM respectively. 

7. [16] YOLOv4, DSSD, and Faster-
RCNN were merged into one 

network by MCCNN 

30000 images from 52 various categories were used to build this 
model. The accuracy achieved using this strategy is 93% on 

average. 

8. [17] FLANN-based object 

classification- IRD object 

recognition (DLSODC-GWM) 

The model was intended to classify small garbage objects. The 

author used 2400 images of 6 different categories of Ewaste. 

DLSODC-GWM technique yielded 98.61% accuracy. 

9. [18] YOLOv3 The dataset used contains close to 7800 images of 6 different 

categories of Organic and Inorganic waste. The accuracy of 

YOLOV3 reached 85.29%. 
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10. [19] Resnet-50 serves as the 

foundation of the depth-wise 

separable convolution attention 

module (DSCAM) model. 

After evaluating VGG16, Xception, MobileNet-v3, and GNet, the 

author found that 98.9% of DSCAM modules had the highest 

accuracy possible. 

  
[20] Presented the YOLO-Green waste identification 

methodology. Seven of the most common kinds of solid 

waste were identified by the algorithm after it was trained on 

a dataset made up of real waste. After just 100 training 

epochs, YOLO-Green has an amazing map of 78.04%.  
 

In [21], a method for identifying trash in aquatic habitats 

was proposed. The author used the YOLOV5 algorithm and 

the MobileNetV3 network for feature extraction. The Model 

was designed to distinguish between various trash cans in an 

aquatic environment.  

 

In order to reduce monitoring costs and better match the 

information collected with the vital information needs of 

cities, [22] proposed a system for monitoring urban garbage. 

The scientists used a deep convolutional neural network 
model and vehicle-mounted cameras to assess the quantity of 

urban garbage that was collected along roadsides. Mask R-

CNN emerged as the most successful algorithm, with 91% 

recall, 83% precision, and 77% accuracy, among the three 

trash recognition systems they tested.  

 

The author's Retina-Net model, which was created in 

[23], is based on Resnet-50 and has an average precision of 

0.814. Six different types of inorganic waste, including glass, 

paper, cardboard, plastic, metal, and trash, were represented 

by the author using 2527 images.  

 
To identify and classify garbage and trash, [24] 

designed a semi-smart trash separation. Conductive metal is 

collected with the aid of magnetic separators, while non-

conductive materials are then categorized based on their 

degree of hardness. By assigning each material a barcode or 

QR code, precycling processes made it possible to separate 

the materials according to the assigned code. 75% and 83% 

of the materials can be accurately detected, according to 

Alex-Net and Google-LeNet findings, respectively.  

 

[25] has created and deployed an image-based detection 
system that is capable of differentiating between different 

trash cans for the purpose of classification.  

 

[26] A smartphone software called SpotGarbage was 

created that leverages user-clicked, geo-tagged photographs 

to find trash in real time environments. Garbage-In-Images 

(GINI) was the dataset used, and it produced accuracy of 

87.69%.  

 

[27] employs a deep learning strategy to automatically 

detect waste. It was advised to use a data fusion and 

augmentation strategy together with the FastRCNN model to 
boost the method's precision. The investigations show that the 

approach has a high-precision detection function and good 

generalization properties.  

 

In the study by [28], waste detection and recognition are 

carried out using an enhanced YOLOv3 network model. The 

dataset acquired for this purpose was used to fine-tune the 

network. The data suggest that the suggested strategy might 

significantly improve trash management in smart cities.  
 

Using data from [29] research, a technique is suggested 

for locating trash that is clearly visible and floating on urban 

canals' water surfaces. The first of its type, the scientists also 

offer a sizable dataset with object-level annotations of waste 

in water channels. A brand-new attention layer is suggested 

to enhance the identification of tiny things.  

 

Low image resolution prompted a study by [30] that 

resulted in the development of an algorithm that is an 

enhanced single-shot multibox detector (SSD): a brand-new, 
compact feature fusion module. This study switched the 

VGG16 backbone network to ResNet-101 in order to gain 

more accurate identification.  

 

Using deep learning and narrowband IOT, [31] 

proposed an autonomous trash identification system. The 

system directly detects and recognizes decorative waste 

inside the embedded front-end monitoring module and 

manages thousands of monitoring front ends via the 

background server and narrow-band identification system 

should be developed. The Internet of Things. An improved 

YOLOV2 was used to identify the waste.  
 

According to [32] research, a new, portable garbage 

Yolov5 algorithm is modified and used by the system. 

Additionally, the researchers developed two methods known 

as video backtracking and tracking object transmission. 

These strategies were provided by the researchers, along with 

a tracking system built on a kernelized correlation filter.    

 

To visually recognize trash in realistic underwater 

situations, one study [33] investigated various deep-learning 

algorithms. It is intended to inspect, map, and remove 
garbage using autonomous underwater vehicles (AUVs). 

Using a sizable dataset of actual debris seen in open-water 

environments, the researchers train several convolutional 

neural network architectures for object detection. The dataset 

is made available to the public and annotated to ensure 

transparency and encourage more research in this field. 

 

III. DATASET OVERVIEW 

 

This research uses a dataset consisting of 3000 well 

selected images from various sources, categorized into ten 

distinct classes, some shown in Figure 2. These images are 
intended to support machine learning model development and 

evaluation for tasks involving object detection and 

classification, with a particular emphasis on consumer 

electronics and appliances. The dataset includes a broad range 

of electrical devices that are frequently utilized in daily life.  
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Fig 2: Dataset Images 

 
A. Data Sources  

The data was gathered from three sources (Images.cv, 

Kaggle, Web Scraping) to guarantee thorough coverage in all 

areas. Batteries, microwaves, televisions, washing machines, 

and certain printer pictures are among the photos that were 

only retrieved from the images.cv collection. For these 

particular categories, this provider offered a large selection of 

images. Images from the Keyboard, Mobile Phone, and 

Mouse classes were taken from the Kaggle dataset, which 

included a large number of imagery of gadgets. Furthermore, 

pictures for PCBs, Players, and Printers were carefully 

collected from the internet via web scraping methods, which 
made it possible to get a variety of images for these 

categories. 

  

 

B. Data Subset  

Three subsets of the dataset are separated out, each with 

a specific function in the creation and assessment of machine 

learning models. 2400 photos that have been evenly divided 

into the ten classes make up the training subset, which gives 

training models a starting point for identifying the 

characteristics and patterns connected to each class. With 300 

images in the test subset, an objective evaluation of the 

model's performance is possible. In order to guarantee that the 

model is sensitive to fresh, testing data, samples from each of 

the ten classes are incorporated. Ultimately, the validation 

subset has 300 pictures that are evenly distributed over the 10 
classes. Distribution of data is show in Figure 3. This allows 

for the optimization of hyper-parameters, which in turn 

prevents overfitting and improves the generalization of the 

model.  

 

 
Fig 3: Distribution of Image Dataset 

 

C. Data Augmentation  

Through the data augmentation method, more training 

samples were generated to the end of modifying the images. 

Methods were made to enable rotation (up to 40°), shearing, 
shifting (up to 20% of image's size) and zooming (up to 20% 

zoom). To lift the patch size, the nearest pixel filling method 

was utilized. With these changes the data became more 

branched, followed the laws of nature, and that they avoided 

overfitting. Besides, the black-and-white image was 

normalized to [0, 1] white-black scale. In the training 

procedure batch were used with the image size of 128 and the 

shuffle was ensured to expose the model to different instances 

during each epoch. Resizing was done to adjust this to 

(224,224) and (150x150) pixels, to fit the input size expected 

by the pre-trained models. The generator for validation we 

built normalized the images in a way that was consistent with 
the training data, this normalization was done to make the 

model more consistent when training batch data, making it 

easy and just to evaluate model performance. The purpose of 

this careful preprocessing is to train the models on augmented 

and normalized data so that they will perform better and have 

higher accuracy in assigning the right waste electronic item 

classification to the input data.  
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IV. EXPERIMENTAL SETUP 

  

A. The Experimental Setup:  

Cloud computing was used for the experiments that 

were executed in Google Colab environment to be able to run 
them properly and efficiently. The computing infrastructure 

here is made up of an Intel Xeon CPU with 2.00GHz clocks, 

consisting 2 physical cores, each with 2 threads, so totally 

there are 2 logical cores. In order to get all computationally 

challenging tasks carried out that include training deep 

learning models or processing large data in a short time the 

experimental setup made use of a NVIDIA Tesla T4 GPU of 

15360 MB of dedicated GPU memory. This formidable GPU 

allowed to successfully execute efficient tasks in parallel, 

supporting arithmetic matrix operations as well as many other 

machine learning and data processing functions.  

  
B. Experimental Design:  

The historical impact of pre-trained CNN models used 

for image classification tasks were estimated by means of our 

experiment. The experimental design involved training and 

testing these models on two different image sizes: 150x150 

and 224x224 images in size.  

 

The dataset is imported into the program, which has 

images and target classes as input. In the preprocessing 

situation, images are processed by data augmentation 

methods. VGG16, Densenet121, Resnet50, InceptionV3 and 
MobilenetV3 are already pre-trained models. Their initial 

weights and the trained model are loaded. After that, a new 

global average pooling layer (CNN model) is created to train 

a new freeze of pre-trained layers with dataset. The CNN 

model is used by the classifier to obtain the prediction of the 

input images (YP). The training, validation (10%), and test 

(10%) data portions are 80%, 10% and 10%, respectively. 

The next stage is a dense layer which is fully-connected with 

10 neurons (equal to the number of classes) and an activation 

function is added to the model. The weights of this output will 

be re-trained with the amount of data provided by our training 
and validation sets. The validation set is employed to gauge 

the model's performance and the training is stopped after 200 

epochs. Eventually, the model performance is traced using 

the test set predicted labels (XS, YS). Figure 4 shows flow of 

steps followed for experiment. The specific details of the 

experimental setup are as follows:   

 

 Number of Epochs: Two pre-trained CNN models were 

trained in twenty epochs for two hundred epochs to 

achieve a sufficient level of convergence. During the 

training, we observed how the model behaved over a 

period of time. Number of epochs was attained after trials 

and error and consulting some related works for image 

classification challenges.  

 Batch Sizes: Concerning the training process, a batch size 
of 128 samples. This batch size was chosen to be 

appropriate in order to allow for the passage of full 

gradients during training while not wasting resources on 

oversized batches. This is the stage where validation and 

testing were done with the batch size set at 1 to teach us 

the specific output of a single sample and how accurate 

our statistics were.  

 Image Sizes: We did some experiments with two image 

sizes scales, which aimed at the assessment of the model 

performance and the measuring of the impact of the input 

resolution on the classification accuracy. The two image 
sizes used were:  

 150x150 pixels: We converted and retrained VGG16, 

DenseNet121, InceptionV3, and ResNet50 models on 

images each with dimension 150x150 using.  

 24x224 pixels:  In addition to the other models introduced 

here, we also used the MobileNetV3 model, which is a 

network that got trained on images with the resolution size 

of 224x224 pixels.  

 

The image sizes of these were chosen according to the 

system resources and network capacity that was required by 
the pre-trained models. Via the years of an exercise on 

various sizes of the images we were able to determine the 

compromises between the complexity of the model, input 

resolution, and its performance.  

 

During the implementation of our experiments, we kept 

data preprocessing consistent with procedures, for instance, 

normalization and augmentation techniques so that fair 

comparisons would be obtainable by the models 

implementing in various sizes of images. The evaluation 

metrics, comprising accuracy, precision, recall, and F1-score, 

along with the Mean Squared Error (MSE), Mean Absolute 
Error (MAE), and Root Mean Squared Error (RMSE), are the 

metrics used to assess the level of precision of the model's 

performance. 
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Fig 4: The Flow Chart of the Experimental Algorithms (Generalized) 

 

V. THE METHODS EMPLOYED 

 

In the following section, I go on to explore the models 
that are the subject of the study and explain their structures 

and characteristics. A brief snapshot of those classic networks 

which are used in this particular project will be showcased; 

the literature background for the same will be discussed in 

this context only. The last step is to elucidate the performance 

evaluation of the learning models, where the chosen 

methodology will be described.  

 

A. The Convolution Neural Networks  

The belief that Convolutional Neural Networks (CNNs) 

have become one of the most powerfully used classes of deep 

learning model for image analysis tasks, such as image 
classification, object detection, and semantic segmentation, is 

been strengthening day by day. Having a CNN, the main 

elements of its architecture as a combination of convolutional 

layers, pooling layers, and fully connected layers. The 
convolutional layers are the ones that extract local features 

out of the image by doing slide operation over the image with 

learnable filters, and performing element wise matrix 

multiplication and summations operation. It is set up to gain 

the particular characteristics or patterns that can be observed 

at different positions within the original image, for example, 

corners, lines, or textures. Figure 5 shows general structure of 

CNN. 
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Fig 5: CNN Model Structure [34] 

 

Mathematically, the convolution operation in a CNN 

can be expressed as:  

 

(I × K)(i, j) = Σm Σn I(i + m, j + n) × K(m, n) 

 

with where represents an input picture, K is the kernel 
or filter, i and j indicate the spatial positions that are 

considered as the grid, and m and n are dimensions or the size 

of the kernel. Convolution operation does an element - by - 

element multiplication between input image and kernel 

followed by summing up over all dimensions of the kernel. 

CNNs are especially suitable for image classification tasks 

because they can automatically build up complex and abstract 

features from low-level ones like edges and corners and 

eventually form the image hierarchical representation starting 

from the less complex to the more complicated details.  

 
 

B. Vgg16  

The convolutional neural networks (CNNs) have 

evoked a good impression on different visual tasks like image 

classification, and it is the VGG16 model that the two 

researchers (Simonyan and Zisserman, 2014) [35] designed 

which stands out for its profound structure and conceptual 

simplicity; and because of the features it captured from 

images, it has helped it perform well.  
 

The structure of VGG16 comprises up to 16 weight 

layers where only 13 of those are convolutional and another 

3 are fully-connected. Five blocks, each consisting of series 

of convolutional filters with 3×3 convolutional layers and 

max-pooling layers for spatial downsizing, are designed to 

make up the convolutional layers. The number of channels 

increases in every block by 2, starting with the first block 

which has 64 channels, and bumping up after the max-

pooling layer until the last pooling layer which has 512 

channels.  
 

To execute VGG16 with our 10-class e-waste 

classification task, the fully connected finishing layer 

appended covering 128 units, followed by softmax output 

layer with 10 units conforming to our target classes is 

deployed (as shown in figure 6). While the VGG16 

parameters were kept window-free, the layers newly 

introduced where for training. The noteworthy aspect of this 

method is the fact that it is capable of retaining the principal 

feature extraction abilities of the pre-trained model and at the 

same time using the later layers in order to perform the e-

waste categorization task.   
 

 
Fig 6: VGG16 Model Architecture 

 

With the pre-trained layers being frozen, the model 

development spent on retrieving common generic image 

features (which include edges, texts and shapes) became 

easier as a result of the existing rich representation power of 

VGG16. At the same time, the trainable layers were learning 
the class-specific knowledge, which was in fact tuning the 

high-level representations to the feature of e-waste 

classification. This method so directly braids learning ability 

from a well-gained model with other methods and our 

specific model, and consequently, presents the efficient 

learning and improved generalization performance. Then the 

model trained and validated on same dataset for 200 epochs. 
Demonstrated training loss and accuracy for dimensions 

150x150 and 224x224 in figures 7 and 8 respectively. 
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Fig 7: The Learning Curves Depicting Loss and Accuracy During the Training of the VGG16 Model on Image Size 150x150 

 

 
Fig 8: The Learning Curves Depicting Loss and Accuracy During the Training of the VGG16 Model on Image Size 224x224 

 

C. Resnet50  

Residual Networks (ResNets) has been an integral tool 

of deep learning technology to be applied to computer vision. 

ResNet50 architecture published by He et al. (2016) [36] is 

working amazingly fine in terms of capturing fine details 

from images. ResNet50 has 50 trainable weight layers 

comprising convolutional layers, batch normalization layers 

and residual sub-blocks as layers. Residual blocks are the 

cornerstone of architectures facilitating solutions to the 

vanishing gradient difficulty when deep neural networks are 

performed. These blocks apply the connectivity that lets the 

input flow through the convolutional layers, and this releases 

the gradients during backpropagation, so that the network can 

reap the maximum benefits.  

 

 
Fig 9: ResNet50 Model Architecture 

 

https://doi.org/10.38124/ijisrt/IJISRT24OCT851
http://www.ijisrt.com/


Volume 9, Issue 10, October – 2024                              International Journal of Innovative Science and Research Technology 

ISSN No:-2456-2165                                                                                                 https://doi.org/10.38124/ijisrt/IJISRT24OCT851 

 

 

IJISRT24OCT851                                                             www.ijisrt.com                                                                                   1258 

We used ResNet50 in our work-flow since this network 

features a deep architectural structure and many powerful 

residual blocks, that can be trained for this particular purpose 

of 10-class e-waste classification (as shown in figure 9). To 

adopt ResNet50 for our task, we included a new fully 

connected layer with 256 neurons, the next that leads to a 

softmax output layer with 10 units, respectively assigned to 

our target categories. Fundamentally, the entire ResNet50 
structure was optimized in a way that allowed fine-tuning and 

adaptation of the network to the structural and visual formats 

that of e-waste items. In making this decision the model has 

access to precise elements (of domain) and therefore, improve 

its performance and generalization ability. Then training with 

this configuration of model went for 200 epochs working with 

consistent datasets, taking care for 150x150 and 224x224 

image sizes in figures 10 and 11. (The accuracy and loss 

training charts of the models are shown in figures 10 and 11 
respectively).  

 

 
Fig 10: The Learning Curves Depicting Loss and Accuracy During the Training of the ResNet50 Model on Image Size 150x150 

 

 
Fig 11: The Learning Curves Depicting Loss and Accuracy During the Training of the ResNet50 Model on Image Size 224x224 

 

D. Densenet121  

DenseNet-121, which is an architecture of the 

convolutional neural network introduced by Huang et al., 

(2017) [37], utilizes a certain patter which is known as dense 

connectivity in which, every layer is connected to every other 

layer in the feedforward fashion. By virtue of this connection 

with in-network pattern, the process of reusing the network 

input features becomes more reliable and thus the network is 
able to generate more accurate and informative 

representations of the most intricate features. The architecture 

of DenseNet121 possesses of these four dense blocks of 

which are made of the stacks of multiple convolutional layers 

and a positive activation function (batch normalization + 

ReLU). For all the follow-up layers, the feature maps that 

were created in previous segments are concatenated into a 

single input and extracted by the following layers (as shown 

in figure 12).  
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Fig 12: DenseNet121 Model Architecture 

 

Our research took the advantage of high-efficiency 

DenseNet121 that was created to meet the challenges faced 

in classification and discrete form of e-waste. The structure 

utilizes normalization and dropout layers being used for 

model regularization and lowering the baseline of the curve. 

Moreover, we have grabbed a fully connected layer of 256 

units which is reinforced with a softmax output layer with 10 

units that matching our 10 sorting ewaste categories. Through 

its status quo, the model grasps the significant characteristics 

of e-waste objects alongside keeping a compact 

representation which makes it easy to interpret and leads in 

good classification results. The model was trained for 200 

epochs using consistent dataset for image dimensions of 

150x150 and 224x224, see accuracy and loss images in 

Figures 13 and 14.  

 

 
Fig 13: The Learning Curves Depicting Loss and Accuracy during the Training of the DenseNet121 Model on  

Image Size 150x150 
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Fig 14: The Learning Curves Depicting Loss and Accuracy During the Training of the DenseNet121 Model on  

Image Size 224x224 

 

E. Inceptionv3  

The InceptionV3 architecture [38], which was put into 
use by Szegedy et al. (2016), is basically a convolutional 

neural network for image classification jobs that is not only 

efficient but also highly effective. It utilizes a newcomer 

building block called "the Inception module" which is a layer 

translating a convolution operation in parallel with different 

size of filter, hence capturing multi-scale features. 

Consequently, the concept of diversification of 
representations gets realized within the learning neural 

network from the input data in this type of structure. The 

InceptionV3's layered of inception modules is then 

interleaved by Pools layers or concatenation operations which 

forms a deep and complex structure.  

 

 
Fig 15: InceptionV3 Model Architecture 

 

 
Fig 16: Inception Block Layers 
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In this study, the inception module of InceptionV3 is 

used and its capability to extract the features as well as the 

inception module is used to the classification of e - waste as 

a complex task. To modernize InceptionV3 for our task, we 

included a fully connected layer of 1024 units, and an output 

layer with 10 units that is generalized as softmax along with 

a 10-unit softmax output layer pertaining to different classes 

of e-waste. In its case, this modification made InceptionV3 
distinguishable by providing exact classifications with 

around 10 e-waste categories (as shown in Figure 15 and 

Figure 16). The usage of a method where we froze an initial 

portion of layers and let perform training on later layers was 

another part of our strategy. Hence it is a middle way in 

making use of a transfer learning from a pre-trained model 

for the task of e-waste classification with the possibility of 

adapting the approach to the specific needs of e-waste 

classification. Choosing the right optimizer and setting the 

learning rate to maximize InceptionV3 recognition in the 

electronics waste classifying system, the model would 

optimize and enhance its performance. Then this model 

underwent training and validation over 200 epochs, utilizing 
data, while the 150x150 and 224x224 image sizes training are 

shown in figures 17 and 18, respectively; the accuracy and 

loss training graphs are depicted on the corresponding 

figures.  

 

 

 
Fig 17: The learning curves Depicting Loss and Accuracy During the Training of the Inceptionv3 Model on Image Size 150x150 

 

 
Fig 18: The Learning Curves Depicting Loss and Accuracy During the Training of the InceptionV3 Model on Image Size 224x224 

 

F. Mobilenetv3  

MobileNet presented by Howard et al., (2017) [39], is 

an architecture of convolutional cloud neural works built to 

perform efficiently on mobile and embedded devices. The 

architecture uses depth wise separable convolutions which 

perform depthwise convolution and pointwise convolution in 

place of single convection step. The reduced number of 

parameters together with the lesser computational complexity 

makes up a stock worth for MobileNet adoption by real-world 

applications who choose efficiency with inference.  
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Fig 19: MobileNetV3 Model Architecture 

 

In a study we exploited MobileNet's lighter architecture 

and the way it was using global average pooling, which are 

two of the best features of the model for real time applications 
like e-waste classification. In order to adopt Mobilenet for our 

purpose, we added dense layers with a final layer of 10 units 

that enabled the model to perform the function of multiple 

feature extraction and prediction of the probabilities of the 10 

e-waste inventory. The 2 parts in the model that were omitted 

during the training adaptation process will be the pre-trained 

layers. This not only will allow the model to extract higher-

order observations, but will also adequately adapt into the e-

waste classification task. We also made the learning the rate 
and optimizer choice to serve as the contributors for better 

adaption to our particular problem domain. During 200 

epochs of training together with the validation phase, which 

was aided by the use of datasets of 224x224 pixel dimensions, 

Figure 20, show the accuracy and loss training graphs.  

 

 
Fig 20: The Learning Curves Depicting Loss and Accuracy During the Training of the MobileNetV3  

Model on Image Size 224x224 

 

G. Optimizer Employed  

We used the Adam optimizer for VGG16, DenseNet121 
and MobileNetV3, while the SGD optimizer was utilized for 

ResNet50, and InceptionV3. Each model was fine-tuned to 

adapt them to the specific classification task.   

 

 

During training, the model parameters were updated 

using the Adam optimizer and SGD optimizer. According on 
the estimated first and second-order moments of the 

gradients, the Adam optimizer uses adaptive learning rates for 

each parameter. Adam's parameter update may be stated as:  
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Where 𝜃𝑡 represents the parameters at time step ,  is 

the learning rate, �̂�𝑡 is the estimate of the first-order moment 

(mean) of the gradients, �̂�𝑡 is the estimate of the second-order 

moment (uncentered variance) of the gradients, and  is a 

small constant for numerical stability.  

 
For the models trained with SGD, the parameter update 

is given by:  

 
𝜃𝑡+1 = 𝜃𝑡 − 𝜂𝛻𝐿𝑖 

 

Where 𝛻𝐿𝑖 represents the gradients of the loss function 

with respect to the model parameters.  

 

H. Transfer Learning Paradigm: Adapting Pre-Trained 
Models for E-Waste Classification  

Transfer learning is the practice of using knowledge 

gained from one activity to improve performance on another 

that is related but different. In our study, we used pre-trained 

models (𝑀𝑠𝑜𝑢𝑟𝑐𝑒) that were trained on a source task, which 

may have been a totally unrelated categorization problem. 

High-level features and representations have been learned by 

these models from the original challenge. However, we aim 

to make use of this information to enhance the model's 

performance on a new objective job, namely the classification 

of e-waste products.  
 

Let 𝑓𝑠𝑜𝑢𝑟𝑐(𝑥) be the output feature vector of the model 

𝑀𝑠𝑜𝑢𝑟𝑐𝑒 for an input image , and let 𝑀𝑠𝑜𝑢𝑟𝑐𝑒 represent a pre-

trained model on a source task. The high-level representations 

that the model has learnt are captured in this feature vector. 

Thus, the following is a definition of the transfer learning 

process:  

 
𝑓𝑡𝑟𝑎𝑔𝑒𝑡(𝑥) = 𝑔(𝑓𝑠𝑜𝑢𝑟𝑐𝑒(𝑥))  

 

Where 𝑔(∙) is the adaptation function, which may be a 

shallow neural network or a linear transformation, and 

𝑓𝑡𝑟𝑎𝑔𝑒𝑡(𝑥) is the adapted feature representation for the target 

task.  

  

VI. RESULTS 

 

The study compared the performance of various deep 

learning models, including VGG, ResNet50, InceptionV3, 

DenseNet121, and MobileNetV3, on image classification 

tasks using two different input image sizes: images with sizes: 

150x150 and 224x224. Alongside accuracy, precision, F1-

score, mean-squared error (MSE), and mean absolute error 

(MAE) were used as the evaluation metrics.  

 

 

 

Table 2: The Right (Appropriate) Image Size Selection Can Substantially Shape Model Output 

Metric Model Image Size 150 Image Size 224 

Accuracy VGG16 0.877 0.853 

 ResNet50 0.917 0.873 

InceptionV3 0.910 0.927 

DenseNet121 0.913 0.920 

MobileNetV3 N/A 0.897 

Precision VGG16 0.881 0.859 

 ResNet50 0.919 0.878 

InceptionV3 0.913 0.928 

DenseNet121 0.915 0.924 

MobileNetV3 N/A 0.910 

F1 Score VGG16 0.878 0.853 

 ResNet50 0.917 0.873 

InceptionV3 0.910 0.927 

DenseNet121 0.913 0.920 

MobileNetV3 N/A 0.895 

MSE VGG16 2.437 3.373 

 ResNet50 1.760 3.067 

InceptionV3 1.760 1.673 

DenseNet121 1.810 1.873 

MobileNetV3 N/A 2.777 

MAE VGG16 0.490 0.620 

 ResNet50 0.340 0.560 

InceptionV3 0.347 0.307 

DenseNet121 0.350 0.340 

MobileNetV3 N/A 0.477 

 

The results show (in Table 2) that the right (appropriate) 

image size selection can substantially shape model output. 

While some models including Inception and DenseNet 

showed a little more accuracy as well as F scores for 224 x 

224 big images, the others including VGG and ResNet 

achieved this much on the smaller 150 x 150 images. Thus, 

this result shows that the suited input image size can be 
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different from model architecture and task and it may vary 

from each other  

  

It is important to note that this model, MobileNet was 

the only one evaluated on the image size of 224x224 was also 

demonstrated competitiveness compared other when it comes 

to size that was the same. It is therefore clear that a similar 

tendency is evident in a parallel case of light-weight 
architectures similar to the MobileNet which are used in the 

efficient image classification tasks. Especially in the resource 

challenged environments.  

  

Regarding the error metric (MSE and MAE) a consistent 

trend was observed across all models: in case the large image 

size such as 224x224 was considered, the rates of errors were 

generally the higher ones while they were lower in case of the 

small image size such as 150x150. It is thus implied that while 

larger input images could have more contextual 

characteristics of the image, they may as well introduce 
additional noise or low-level information in the image and as 

a result increase the prediction errors.  

  

VII. CONCLUSION 

 

Through using pre-trained CNN models along with 

assessing their effectiveness at different images sizes, this 

study offers practical knowledge that may improve the way 

that electronic waste management practices are executed. The 

findings emphasize the adoption of transfer learning in 

conjunction with suitable model architectures and image 

resolutions in the process of e-waste classification; these 
strategies notably contribute to improved classification 

efficiency and accuracy in waste management processes and 

initiate the roadmaps to more sustainable circular economy 

initiatives.  
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