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Abstract:- We study the convergence of the Morse-

Feshbach nonlinear perturbation series (MFNPS) series to 

find out the energy levels of a PT symmetric complex cubic 

anharmonic oscillator. Perturbation series on energy has 

been calculated up to 15th order for the ground state and 

the first excited state. All orders of the MFNPS are found 

to be real and positive for this non-Hermitian but PT -

symmetric Hamiltonian. The convergent energy spectra 

nicely match with the results of calculation of matrix 

diagonalization method. Some discussions on wave 

functions have been made using the nonlinear series. 
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I. INTRODUCTION 

 

Perturbation theory is a powerful method for obtaining 

energy levels. It has been first studied extensively by Bender 

and Wu[1] on anharmonic oscillator. Later on Halliday and 

Suryani[2] suggested feasible way of dealing with perturbation 

theory in large order. Further Weniger[3], Janke and 

Klernet[4], Rath[5,6] have focused on larger order 

perturbation series on anharmonic oscillator. However the 
convergence criteria by Halliday and Suryani can hardly be 

applied to complex cubic oscillator having Hamiltonian of the 

type[7, 8, 10, 11] 

 
322 xixpH                                                              (1) 

 

In fact the Hamiltonian of this type is non-Hermitian 

having PT-symmetric nature satisfying the condition [7, 8, 10, 

11] 

 
[H, PT]=0                                                                            (2) 

 

Here P stands for parity reflection operator, whose effect 

is to change the sign of position and momentum operator and 

T stands for time reversal operator, which changes the sign of 

momentum operator and complex number i as it is an 

antiunitary operator.  

 

The operator behavior of P is 

 

P x P-1= - x 

P p P-1= - p                                                                            (3) 
P i P-1= i 

The operator behavior of T is 
 

T x T-1= x 

T p T-1= - p                                                                             (4) 

T i T-1= - i 

 

 It is noted that the Hamiltonian H is neither invariant 

under parity P nor under time reversal T, but invariant under 

PT. Hence the reality and positive value of the spectrum of H 

is due to PT symmetry [7]. Spectral analysis on this oscillator, 

has basically focused using non-perturbative analysis by many 

authors. Some authors [14] believe that, wave functions of this 

model oscillator are non-orthogonal in nature without any 
explicit calculations. Considering the previous literature, we 

focus our attention on this oscillator. In fact, Feranchuk et.al 

[8, 9] have successfully applied perturbation series but for 

constant series. Apart from constant perturbation series, we 

applied for non linear perturbation series [12], in which both 

LHS and RHS are unknown functions of energy eigenvalue E 

as 

 

)(EfE                                                                      (5) 

 

Such type of series is well known Morse-Feshbach non-

linear perturbation series [12]. 

 

II. MORSE-FESHBACH NONLINEAR 

PERTURBATION SERIES (MFNPS) 

 

Before applying to complex cubic anharmonic oscillator 

Hamiltonian, we write the MFNPS in a simplified language. 

we split the Hamiltonian H as follows. Here we consider  

 
22

0 xpH                                                                       (6) 

 

As unperturbed Hamiltonian having known eigenenergy 
)0(

nE    and eigenstate n  

 

nEnH n

)0(

0                                                        (7) 

 

Where 12)0(  nEn . Here we consider the perturbation 

term Hp as   
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xiHH p                                                                  (8) 

 

According to MFNPS, the explicit form of the series for 

nth eigenstate energy En for the PT-symmetric Hamiltonian H 
can be written as 
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 Here K is the order of the perturbation in MFNP series. 

 

III. CALCULATION OF EIGENVALUES OF A PT 

SYMMETRIC COMPLEX CUBIC OSCILLATOR 

 

Adopting second quantization formalism, we use the 

transformation 

 

2

†aa
x


                                                           (10) 

 

2

†aa
ip


                                                                (11) 

 

Here a† is the creation operator and a is the annihilation 

operation satisfying the commutation relation 

 

  1, † aa                                                                         (12) 

 

Using unperturbed eigenstate |n⟩ for harmonic oscillator, 
we calculate the non zero expectation values of the 

perturbation Hamiltonian H
~

 and are given as 
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Now we use MFNPS in Eq. 9 to calculate the energy 

levels for the ground state and first excited state energy of the 

complex cubic anharmonic oscillator using numerical 

programming. 

 

 The Results of Eigenvalues are Illustrated in the Table 1 

 

Table 1 Numerical Energy levels for Ground State and first Excited State of Complex Cubic Oscillator for λ = 0.1 Using MFNPS. 

Kth order of  Perturbation Ground state energy E0 up to Kth order First excited state energy E1 up to Kth order 

0 1 3 

1 1 3 

2 1.006 689 5 3.035 588 3 

3 1.006 689 5 3.045 588 3 

4 1.006 691 5 3.041 972 9 

5 1.006 691 5 3.041 972 9 

6 1.006 703 2 3.042 414 0 

7 1.006 703 2 3.042 414 8 

8 1.006 702 3 3.042 349 0 

9 1.006 702 3 3.042 349 0 

10 1.006 702 3 3.042 359 7 

11 1.006 702 3 3.042 359 7 

12 1.006 702 3 3.042 357 8 

13 1.006 702 3 3.042 357 8 

14 1.006 702 3 3.042 357 8 

15 1.006 702 3 3.042 357 8 
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IV. MATRIX DIAGONALIZATION METHOD 

 

In order to compare the convergent results of the 

MFNPS, we use matrix diagonalization method (MDM) on 

solving the eigenvalue relation as 

 

 EH                                                                      (17) 

 

Where 

 

 mAm  

 
Here we solve a five-term recurrence relation satisfied by 

Am as 

 

03113   mmmmmmmmmm ATASARAQAP   (18) 

Where 

 

                   (19) 
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The eigenvalues for different matrix sizes calculated 

from the MDM are tabulated in Table 2.  

 

Table 2 Numerical Energy Levels for Ground State and first 

Excited State of Complex Cubic Oscillator for λ = 0.1 Using 

MDM. 

n Matrix size (500 × 500) Matrix size (750 × 7500) 

0 1.006 702 3 1.006 702 3 

1 3.042 357 8 3.042 358 1 

 

V. RESULTS AND DISCUSSION 

 

A comparison reflects that convergent energy from 
MFNPS in Table 1 and eigenenergy from MDM in Table 2 are 

the same up to 5 decimals. So, we consider the standard 

ground state energy calculated as E0=1.00678 and the first 

excited state energy as E1=3.04235 for the complex cubic 

anharmonic oscillator. Convergent eigen values for the ground 

state energy E0 and first excited state energy of the PT-

symmetric cubic anharmonic oscillator using MFNPS is 

illustrated in Fig. 1. Using the above calculated values, we can 

now analyze the wave functions as follows   
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 (24) 

 

Here, p  is the unperturbed state and the series is 

infinite, contains contribution of odd states. The corresponding 

relation can be defined as  

 

0)(06,4,2  Kp  
                                                         (25) 

 

Similarly for the first excited state  

 

0)(17,5,3  Kp  
                                                           (26) 

However, it is easy to see that  

 

0)()( 10 KK                                                               (27) 

 

which proves the assumption of Siegl and Krejecirik [14] 

reported previously.   

  

 
Fig 1 Convergent Eigen Values for the Ground State Energy 

E0 and first Excited State Energy of the PT-Symmetric Cubic 

An Harmonic Oscillator Using MFNPS. 

 

VI. CONCLUSION 

 

The spectrum of PT -symmetric cubic anharmonic 
oscillator is confidently obtained using MFNP series. This 

nonlinear series can be easily used to check the reality of the 

energy spectra of new infinite classes of complex 

Hamiltonians, which are invariant under PT -symmetry. 

MFNP series can now be extended to analyze the nature of 

wave functions for non-Hermitian but PT -symmetric 

Hamiltonian. 
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