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Abstract:- Clustering algorithms play a critical role in data 

analysis by grouping similar data points to reveal hidden 

pat- terns and structures. This study investigates the 

performance of several clustering algorithms using two 

distinct datasets: moons and circles. The primary focus is 

on evaluating and comparing the execution times of these 

algorithms to determine their efficiency and effectiveness 

in handling different types of data distributions. Through 

a series of experiments and performance measurements, 

this paper aims to provide a detailed analysis of each 

algorithm’s computational efficiency and suitability for 

various clustering tasks. The findings are expected to offer 

practical insights into the selection and application of 

clustering methods, contributing to enhanced data 

analysis techniques and informed decision-making in 

diverse fields. 
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I. INTRODUCTION 

 

In recent years. the data produced has different variety 

and complexity and because of that we need to select and 

specify how to treat them differently, the need for an 

efficient and effective methods are urgently needed[1]. One 

well know algorithm used in various fields of research and 
industry is clustering, where they have ability to group 

evaluated data points in a cluster and possibly uncover hidden 

pattern[2], [3]. Such that it can help to increasing the insights 

for data driven-decision making and increasing the 

understability of the data distribution and structure. 

 

The distribution of data in clustering is divided into two 

type: Convex and Non-Convex, these data distribution are 

affecting the performance of clustering algorithms such as k 

means. here we consider the shapes are the form where the 

data are clustered and grouped together forming a form of 

shape. Convex distribution is if we draw a line between any 
two points within the shape and it still remain entirely within 

the shapes, this distribution is relatively straight- forward for 

k means to handle[4]. Whereas, Non-Convex distribution is if 

two line draw together are disconnected, this distribution is a 

significant challenges for k means to handle, which assumes 

the data distribution to be convex, this limitation affecting 

accuracy of cluster which k means produce[5], [6]. 

 

Our paper explores the performance of several tech- 

niques, that helping k means algorithm to achieve higher 

performa in handling Non-Convex distribution, focusing 

on two distinct dataset from scikit learn: Moons[7] and 

Circles[8]. This research comparing execution time and ex- 

ecution accuracy for ten selected technique under k means 

clustering algorithm. By conducting a comprehensive eval- 

uation of these techniques, this study aims to provide the 

insights to help to choose the technique for increasing k means 

performa for handling Non-Convex distribution. 

 

II. RELATED WORKS 

 

Salim and Ismail(1983) Their paper explain the conver- 

gence of k means, presenting a generalized convergence 

theorem for k means algorithm. They demonstrated k means 

limitation to Non-Convex distribution, as this algo- rithm is 

prone to converging to local minima rather than the global 

optimum. This limitation underscores the need for advanced 

initialization techniques, such as to set the initial centroids 

strategically to avoiding poor local minima and enhancing 

outcomes. 

 
Xu and Wunsch(2005) They conducting the compre- 

hensive analysis of the clustering algorithms focusing on Non-

Convex distributions. Addressing the shortcoming of k means 

in handling Non-Convex data structure also high- lighting 

their effectiveness to handle such limitation. 

 

Bhagav and Pavar(2016) In their review paper they sum- 

marized the impact of Non-Convexity for various existing 

algorithms, even in the presence of missing and noisy data. 

Their review underscores the robustness of selected algorithms 

to manage complexities associated with Non- Convex 
distribution. 

 

III. METHODOLOGY 

 

 K Means Algorithm 

A common method for clustering datasets is the k-means 

algorithm, which divides the dataset into k clusters, each of 

which has a single data point that corresponds to the cluster 

with the closest mean[12]. Steps of the k-means Algorithm: 
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 Initialization: Choose k data points at random to serve as 

the dataset’s initial centroids. This step can also be 

improved using the k-means++ initialization to spread out 

the initial centroids more effectively. 

 Assignment Step: Determine the distance to each centroid 

for each data point. The most common distance metric 

used is the Euclidean distance: The distance between xi 

and c j is given by: 

 

                      (1) 

 

 
Fig 1 K means Flow Chart 

 

                                      (2) 

 

Assign every data point to the closest centroid’s cluster. 

 

 Update Step:  

For each cluster, update the centroid by calculating the 
mean of all data points assigned to that cluster. The centroid c 

j of a cluster Cj is given by: 

 

𝑐𝑗 =
1

|𝐶𝑗|
∑ 𝑥𝑖𝑥𝑖∈𝐶𝑗

                                                                  (3) 

 

Where: 

 

 | Cj | is the number of points in cluster Cj. 

 

 ∑ 𝑥𝑖𝑥𝑖∈𝐶𝑗
  is the sum of all points xi in cluster Cj. 

 

 Convergence Check :  

Check if the centroids have changed significantly. If not, 

the algorithm has converged. Another convergence criterion 

can be if the cluster as- signments no longer change, or if a 

predefined maximum number of iterations is reached. 

 

 Why Non-Convex not suit for k-means 
K-means clustering, a widely used algorithm for par- 

titioning datasets into distinct clusters, faces significant 

challenges when applied to non-convex shapes. These chal- 

lenges stem from its inherent characteristics, particularly in the 

initial step, iteration process, and stopping criterion. 

The initial step of K-means involves selecting initial 

centroids either randomly or through strategies like k- 

means++. This step presumes that clusters are approxi- 

mately spherical (convex) and of similar size, which does not 

hold true for non-convex shapes such as crescents or 

rings. Consequently, the initial placement of centroids may 

not accurately represent the actual structure of non- convex 

clusters, leading to suboptimal clustering outcomes. For 

example, a centroid placed within a crescent-shaped cluster 

might not effectively capture the cluster’s unique form, 

causing the algorithm to misinterpret the true cluster 

configuration. 
 

Every data point is assigned by K-means to the closest 

centroid throughout the iteration phase, and the centroids are 

then recalculated using the average of the assigned points. 

This method is ineffective for non-convex geome- tries, but 

it performs well for convex clusters when a central point 

may accurately represent the cluster. In non- convex clusters, 

points that are close in Euclidean space may belong to 

different non-convex regions, whereas points farther apart 

might actually belong to the same cluster.K-means thus 

fails to capture the underlying structure of the data and may 
wrongly split a non-convex cluster into multiple convex 

regions or combine several non-convex clusters into a single 

group. 

 

The stabilization of centroids, or the algorithm 

reaching a maximum number of iterations, is the basis for the 

K- means stopping criterion, which states that point assign- 

ments to clusters cease to vary. This criterion assumes that 

the clusters identified during the iterations are accurate. 

However, for non-convex shapes, K-means may converge to 

a local minimum where the final clusters do not accurately 
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reflect the data’s structure. This local minimum can trap the 

algorithm into producing clusters that do not align with the 

true non-convex nature of the data. 

 

 K-Means Techniques 

The various techniques for enhancing the K-means al- 

gorithm focus on addressing its inherent limitations, par- 

ticularly in managing complex clustering scenarios. These 
techniques make substantial improvements by optimizing 

key aspects such as initial centroid placement, iteration 

processes, and stopping criteria. For instance, k-means++ 

Initialization enhances the initial step by probabilistically 

selecting more dispersed cluster centers, which helps avoid 

poor local minima and improves clustering accuracy. 

Genetic Algorithms for K-means and Simulated Annealing 

in- troduce advanced strategies for initial centroid placement, 

using evolutionary and probabilistic methods to explore a 

wider range of potential solutions and thereby enhance the 

chances of finding a global optimum. 
 

During the iteration process, techniques such as 

Spectral Clustering and Kernel K-means transform the data 

into higher-dimensional or similarity-based spaces, making 

it easier to identify and separate complex clusters that tra- 

ditional K-means might struggle with. This transformation 

helps K-means handle intricate and non-convex shapes by 

modifying the data representation before clustering. By en- 

abling data points to have differing degrees of membership 

in various clusters, fuzzy C-means enhances the iteration 

process and offers a more flexible and sophisticated method 

of cluster assignment. 

 

In terms of stopping criteria, methods like Mini-Batch 

K- means introduce efficiency by converging centers 
through iterative updates with mini-batches of data, making 

the algorithm scalable to larger datasets. The EM Algorithm 

for Gaussian Mixture Models employs convergence of the 

log- likelihood function as a stopping criterion, offering a 

more comprehensive measure of model fit, especially in 

complex distributions. Techniques like Constraint-Based 

Clustering ensure that the algorithm respects additional 

constraints during both the assignment and updating phases, 

improv- ing clustering accuracy while adhering to specific 

require- ments. 

 
Overall, these optimization techniques refine K-means 

by enhancing its initial conditions, iteration process, and 

stopping criteria. They enable the algorithm to better man- age 

complex data structures, handle overlapping clusters, and 

improve efficiency and scalability, resulting in more accurate 

and robust clustering outcomes for non-convex and intricate 

datasets. 

 

Table 1 Comparison of K-Means Optimization Techniques 

Technique Initial Step Iteration Process Stopping Criteria 

k-means++ 

Initialization [13] 

Probabilistic selection of 

initial centers to spread out1 

Assign points to nearest center, 

update centers to mean 

Centroid convergence, 

assignment stability, max 

iterations 

Genetic Algorithms 

for k-means [14] 

Generate initial population 

of cluster centers 

Apply selection, crossover, 

mutation; evaluate fitness 

Convergence of fitness 

scores, max generations 

Simulated Annealing 
for k-means [15] 

 
Random initial solution 

 
Generate neighbor solutions; 

probabilistically accept/reject2 

Convergence of cost 
function, min temperature, 

max iterations 

Hierarchical K-

means (Bisecting K-

means) [16] 

 

Start with one cluster 

 

Split clusters iteratively using 

k-means 

Desired number of clusters 

achieved 

Constraint-Based 

Clustering [17] 

Initialize centers considering 

constraints 

Modify k-means to respect 

constraints during assignment 

and updating 

Convergence while 

respecting constraints, 

max iterations 

 
Spectral Clustering 

[18] 

 
 

Construct similarity matrix 

Eigenvalue decomposition; 
apply k-means to lower-

dimensional representation3 

 
Convergence in k-means 

step, max iterations 

Kernel K-means [19] Apply kernel function to 

transform data4 

Perform k-means in 

transformed space 

Convergence in kernel 

space, max iterations 

Fuzzy C-means [20] Initialize membership 

values5 

Update centers and 

membership values iteratively 

Convergence of 

membership values, max 

iterations 

EM Algorithm for 

GMM [21] 

Initialize Gaussian 

parameters 
Expectation step (E-step),6 

Maximization step (M-step)7 

Convergence of log-

likelihood, parameter 

change below threshold, 

max iterations 

Mini-Batch K-means 

[22] 

Random or k-means++ 

initialization 
Use mini-batches8to update 

centers iteratively 

Convergence of centers, 

max mini-batch iterations 
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 The k-means++ algorithm improves the initial selection 

of cluster centers to enhance convergence and accuracy. 

 Simulated annealing probabilistically accepts solutions 

that are worse than the current solution to escape local 

minima. 

 Eigenvalue decomposition is used to reduce the 

dimensionality of data by finding new axes (principal 

components) that capture the most variance. 

 Kernel functions are used to transform data into a higher-

dimensional space where it may be easier to separate 

clusters. 

 In fuzzy c-means, each data point has a degree of 

belonging to each cluster, represented by membership 

values rather than a hard assignment. 

 Expectation step (E-step) is where the probability of each 

data point belonging to each Gaussian component is 

calculated. 

 Maximization step (M-step) is where the parameters of 

the Gaussian components are updated based on the 

probabilities calculated in the E-step. 

 Mini-batches are small random subsets of the dataset used 

in each iteration to update cluster centers, making the 
algorithm faster and scalable to large dataset. 

 

 

 

 

 

 

 

 

 

IV. COMPARATIVE ANALYSIS 

 

This section presents a comparative study of different 

clustering algorithms on non-convex data. By evaluating each 

method based on both clustering performance and ex- ecution 

time, we aim to provide insights into the strengths and 

limitations of each approach. This comparison will help in 

understanding which algorithms are best suited for different 
types of data and computational requirements. 

 

 Non-Convex Clusters Dataset 

In this subsection, we explore datasets that contain non- 

convex clusters, which pose a significant challenge for tra- 

ditional clustering algorithms. Non-convex clusters do not 

conform to a single shape, such as a circle or ellipse, and often 

require more sophisticated techniques to accurately identify 

and separate them. Two prominent examples of non-convex 

clusters are circular clusters and moon-shaped clusters. 

 

 Circular Clusters:  

Circular clusters are designed to form ring-like shapes, 

which are inherently non-convex. These clusters are 

particularly challenging for algorithms like K-Means, which 

assume convex shapes by trying to minimize the distance 

within each cluster. Circular clusters are useful for testing the 

capability of clustering algorithms to handle complex 

geometric arrangements. In our exper- iments, we generated 

circular clusters to assess how well each algorithm can 

manage these non-traditional cluster shapes. The dataset 

consists of data points arranged in concentric circles, 

providing a clear test for the algorithm’s ability to detect and 
separate clusters with non-linear boundaries. 

 

 
Fig 2 Circular Cluster 
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 Moon-Shaped Clusters:  

The moon-shaped clusters, also called the "two 

moons" dataset, are made up of two crescent-shaped 

clusters that interlock. This dataset is widely used in the 

literature to benchmark clustering algorithms, particularly 

those designed to handle non- convex shapes. The intertwined 

nature of the clusters poses a substantial challenge for 

algorithms that rely on distance- based metrics assuming 

linear separability. The moon- shaped clusters are an 

excellent test for evaluating the robustness and flexibility 

of clustering algorithms. For our study, we utilized a synthetic 

two moons dataset to com- pare the performance and 

accuracy of different clustering techniques in identifying and 

correctly classifying the non- convex structures inherent in 

the data. 
 

 
Fig 3 Moon Cluster 

 

 Accuracy Calculation 

To evaluate the accuracy of the clustering algorithms, 

we use a mapping-based accuracy metric. This involves 
mapping each cluster label to the most frequent true label 

within that cluster. The accuracy is then computed as the 

proportion of correctly mapped labels to the total number 

of data points. The equation for accuracy (A) is given by: 

 

                                                 (4) 

 

Where N is the total number of data points, yi is the true 

label of the i -th data point, yˆi is the mapped cluster label of 

the i -th data point, and δ is the Kronecker delta function 

defined as: 

 

                                  (5) 
 

This accuracy metric provides a straightforward way 

to quantify the effectiveness of clustering algorithms by 

considering the most representative label for each cluster. 
 

This table presents the accuracy results of various 

cluster- ing algorithms on two types of non-convex clusters: 

circular and moon-shaped. By comparing the accuracies, we 

can determine which algorithms are better suited for handling 

complex, non-linear cluster structures. 

 

 Execution Time for Moons and Circles Datasets 

This subsection presents the execution times of different 

clustering algorithms when applied to two distinct datasets: 

moons and circles. The moons dataset consists of 300 
samples with a two-moon structure, while the circles dataset 

features 300 samples arranged in concentric circles. 
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Table 2 Accuracy Results of Clustering Algorithms on Circular and Moon-Shaped Clusters 

Clustering Algorithm Circular Moon-Shaped 

Standard K-means 0.5000 0.8467 

K-means++ Initialization 0.5033 0.8467 

Simulated Annealing K-means 0.5033 0.8467 

Hierarchical K-means 0.5033 0.8467 

Constraint-Based Clustering 0.5000 0.8467 

Spectral Clustering 1.0000 0.9733 

Kernel K-means 0.5067 0.8700 

Gaussian Mixture Models 0.5033 0.8467 

Mini-Batch K-means 0.5133 0.8467 

Fuzzy C-Means 0.5000 0.8500 

Genetic Algorithm K-means 0.5000 0.8467 

 

Table 3 Execution Times for Clustering Algorithms on the Moons and Circles Datasets 

Clustering Algorithm Circles (s) Moons (s) 

Standard K-means 0.0086 0.0096 

K-means++ Initialization 0.0090 0.0119 

Simulated Annealing K-means 4.8480 4.9387 

Hierarchical K-means 0.0137 0.0102 

Constrained K-means 0.0029 0.0023 

Spectral Clustering 0.0649 0.0405 

Kernel K-means 0.0521 0.0341 

EM Algorithm for GMM 0.1077 0.0049 

Mini-Batch K-means 0.0176 0.0085 

Fuzzy C-means 0.0882 0.0029 

Genetic Algorithm K-means 0.7073 0.7177 

 

To evaluate the computational efficiency of each cluster- 

ing algorithm, we measure the execution time (T ) taken to 

complete the clustering process for both datasets. The 

execution time for an algorithm A on a dataset D is given by: 

 

TA (D) = end_timeA (D) − start_timeA (D)                           (6) 

 

Where start_timeA (D) is the recorded time just 

before the algorithm A begins processing the dataset D, and 

end_timeA (D) is the recorded time just after the algorithm 

completes processing. The following table summarizes the 

execution times for each algorithm on both datasets. This 

comparison helps to understand how each clustering method 

scales with differ- ent data structures and how their 

computational demands vary. The results highlight both the 
efficiency and potential trade-offs of various clustering 

approaches in practice. 

 

Overall, algorithms like Standard K-means and Con- 

strained K-means are among the fastest, while Simulated 

Annealing and Genetic Algorithm K-means tend to be slower 

due to their more complex nature. The choice of algorithm 

may depend on the specific requirements for accuracy versus 

computational efficiency. 

 

V. RESULTS 

 
Spectral Clustering consistently outperformed other al- 

gorithms in terms of accuracy, achieving a perfect score on 

the circular dataset (1.0000) and a very high score on the 

moon-shaped dataset (0.9733). Kernel K-means also showed 

strong performance, especially on the moon- shaped dataset, 

where it achieved an accuracy of 0.8700. Most other 

algorithms, including Standard K-means and its variants, 

demonstrated similar and slightly lower accuracy, with values 

clustering around 0.8467 for the moon-shaped dataset and 

closer to 0.5000 for the circular dataset. This suggests that 

Spectral and Kernel K-means are particularly well-suited for 

handling non-convex shapes, while tradi- tional methods may 

struggle with these types of data. 

 
In terms of execution time, traditional algorithms like 

Standard K-means and Constrained K-means were the fastest, 

completing clustering tasks in milliseconds. More complex 

methods, such as Simulated Annealing K-means, were 

significantly slower, requiring several seconds to com- plete 

the same tasks. Spectral Clustering and Kernel K- means, 

despite their higher accuracy, had moderate exe- cution times, 

balancing both accuracy and computational efficiency. 

 

VI. FUTURE ENHANCEMENT 

 
Future enhancements to this study could include explor- 

ing different types of non-convex clusters beyond the circu- 

lar and moon-shaped datasets analyzed here. For instance, 

extending the analysis to more complex shapes such as 

spirals, polygons, or even irregular real-world clusters would 

offer a broader understanding of algorithm performance 

across diverse non-convex structures. Additionally, tuning 

the parameters of these algorithms, such as the number of 

clusters, initialization methods, or distance metrics, could 

yield significant improvements in both accuracy and ef- 
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ficiency. Systematic parameter optimization could further 

enhance the effectiveness of clustering algorithms when 

applied to non-convex datasets. 

 

VII. CONCLUSION 

 

The choice of a clustering algorithm should be guided 

by the specific requirements of the task. For applications 
where accuracy in non-convex shapes is critical, Spectral and 

Kernel K-means are recommended despite their higher 

computational cost. Conversely, for tasks requiring rapid 

execution, traditional methods like Standard K-means may be 

preferable, albeit with potentially lower accuracy. 
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