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Abstract:- In this paper, the boundary layer flow of a 

viscous incompressible fluid across a stretching cylinder 

has been considered to investigate the flow field. Because 

the dynamic region is nonlinear, the velocity function has 

been calculated numerically using the trigonometric cubic 

spline method. The expression of skin friction was also 

obtained. Graphs have been used to analyze the velocity 

profile on the dimensionless parameter. 
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I. INTRODUCTION 

 

In fiber technology and extrusion operations, the 

boundary layer flow caused by stretching flat plates or 

cylinders is theoretically as well as practically significant and 

fascinating. This method is used to produce plastic films and 

polymer sheets. Examples include the aerodynamic extrusion 

of plastic sheets, the cooling of an infinite metallic plate in a 

cooling bath, the boundary layer in condensation processes 
along a liquid film, the blowing of glass, the spinning of 

metal, the drawing of plastic films, and the extrusion of 

polymers. It was Sakiadis (1961) who first brought the 

boundary layer flow on a moving continuous solid surface into 

consideration. Using a stretching sheet with linearly variable 

surface speed, Crane (1970) expanded this idea and provided 

an exact solution for the steady two-dimensional flow across 

a stretching surface in a quiescent fluid. A similarity solution 

is one that, typically through a coordinate transformation, 

reduces the number of independent variables by at least one. 

The concept is similar to dimensional analysis, except the 

coordinates themselves are reduced into dimensionless units 
that scale the velocities rather than parameters, such as the 

Reynolds number, see  F. M. White (2006). 

 

The works of Weyl (1942), Coppel (1960), Lin and Chen 

(1998), Liao (1999), Partha et al. (2005), Anderson (2005), 

Ishak (2009), Kudenatti (2012) and Rangi et al. (2012) have 

discussed the boundary layer flow caused by a stretching 

vertical surface in a quiescent viscous and incompressible 

fluid when the buoyancy forces are taken into account. The 

laminar boundary layer and heat transfer along horizontally 

and vertically moving cylinders with constant  velocity were 
examined by Lin and Shih (1980, 1981) who discovered that 

the cylinder’s curvature effect prevented the similarity 
solutions from being reached. Because the primary 

differential equations governing fluid motion in 

hydrodynamics contain nonlinear components, an exact 

solution is necessary. It becomes challenging, if not 

impossible, to find the closed-form solution to such types of 

differential equations. This leads to the researchers arriving 

to obtain the solution for similarity. Researchers such as 

Chen and Char (1988), Wang (1981), Magyari and Keller 

(2000), Vajravelu and Cannon (2006), Ahmad et al. (2010), 

Bachok et al. (2012), Khan et al. (2012) and Begum et al. 

(2020) investigated these types of nonlinear problems using 
numerous numerical approaches such as Begum et al. (2023), 

Alam et al. (2020), Alam et al. (2021) and Alam et al. (2022) 

to find the solution. 

 

In this paper, we determine the velocity component of 

boundary layer flow past a stretching cylinder moving 

continuously. Because of the nonlinearity present in the flow 

problem, we employ the trigonometric cubic spline method to 

investigated the impact of velocity. 

 

This paper is arranged as follows: Section 2 portrays the 
mathematical modelling for the flow problem. In section 4 we 

have derived the trigonometric cubic spline method. The error 

analysis is given in section 5. In section 6, numerical 

experiments of the flow problem are given by displaying the 

numerical values of velocity functions through tables and 

figures and is discussed briefly. In Section 7, we present the 

conclusion. 

 

II. MATHEMATICAL FORMULATION OF THE 

PROBLEM 

 

Consider an axisymmetric, continuous boundary layer 
flow of a viscous incompressible fluid past a continuously 

stretched cylinder. The stretching velocity 𝑊(𝑥) is 

expressed as the relation 𝑊(𝑥) =
𝑊0(𝑥)

𝑙
, where l is the 

characteristic length and 𝑊0 ≻ 0 is a constant. With these 

presumptions along with the boundary layer estimations, the 

model equation can be written as follows: 
 

𝜕

𝜕𝑥
(𝑟𝑤) +

𝜕

𝜕𝑟
(𝑟𝑣) = 0                                                     (1) 
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 𝑤
𝜕𝑤

𝜕𝑥
+ 𝑣

𝜕𝑤

𝜕𝑟
=

𝜈

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑤

𝜕𝑟
),                                             (2)  

 

With boundary conditions  (BCs)                              

 

𝑟 = 𝑅,   𝑤(0) = 𝑤(𝑥),   𝑣(0) = 0,                                       (3)                                                     
 

𝑟 → ∞,                     𝑤(𝑟) → 0 ,                                               (4)                                                     
 
Where the velocity components in the x and r directions 

are represented by the variables w and v, respectively.  

 

By implementing a stream function, 𝜒, such that 𝑢 =
1

𝑟

𝜕𝜒

𝜕𝑟
 and 𝑣 = −

1

𝑟

𝜕𝜒

𝜕𝑟
, the continuity equation (1) can be 

satisfied. We define 𝜆 and 𝜒 as 

 

𝜆 =
𝑟2 − 𝑅2

2𝑅
(

𝑈

𝜈𝑥
)

1
2
, 

 

𝜒 = 𝑅(𝑈𝜈𝑥)
1

2⁄  𝑉(𝜆), 

 

So that the momentum equation becomes 

 
(1 + 2𝛼𝜆)𝑉′′′(𝜆) + 2𝛼𝑉′′(𝜆)+𝑉(𝜆)𝑉′′(𝜆) − 𝑉′2(𝜆)=0,            (5) 

 

With relevant BCs: 

 

𝜆 = 0,                     𝑉(𝜆) = 0,   𝑉′(𝜆) = 1,                             (6)          
                                            

 𝜆 → ∞,                     𝑉′(𝜆) = 0                                                 (7)                                                    
 

A non-linear boundary-value problem (bvp) in an 

infinite domain is illustrated by Equations (5) with (6) and 

(7). We solve this nonlinear bvp numerically using the finite 

difference method for various curvature parameters α, since 

there are no conventional methods for handling such 

problems. 

 

III. SKIN FRICTION 

 

 To compute the surface sheer stress, let 
 

 𝝉𝒘 = −𝝁 (
𝝏𝒖

𝝏𝒓
)

𝒓=𝑹
         (𝟖) 

 

𝐨𝐫,      𝝉𝒘 = −𝝁𝐔 (
𝐦

𝜸
)

𝟏
𝟐

𝑽′′(𝟎),               (𝟗) 

 
Hence, for the given bvp, the skin friction co-efficient is 

 

    𝑪𝑽 = −(𝑹𝒆
−𝟏) (

𝐦

𝜸
)

𝟏
𝟐

𝑽′′(𝟎).       (𝟏𝟎) 

 

IV. TRIGONOMETRIC CUBIC SPLINE METHOD 

(TCSM) 

 
To obtain trigonometric cubic spline approximation of 

the equations (5)-(7), we divide the interval [𝑎, 𝑏] into M 

equal subintervals as follows: 

 

𝜆𝑖 = 𝑖ℎ, 𝑖 = 0(1)𝑀, ℎ =
𝑏 − 𝑎

𝑀
  

 

Now, using the non-polynomial spline 𝐴𝑖 (𝜆) we 
construct a numerical algorithm to interpolate the unknown 

function 𝑉(𝜆) at the grid points {𝜆𝑖|𝑖 = 1,2,3 … , 𝑀} given as: 

 

  𝐴𝑖 (𝜆) = 𝐶1𝑖𝑠𝑖𝑛𝜔(𝜆 − 𝜆𝑖) + 𝐶2𝑖𝑐𝑜𝑠𝜔(𝜆 − 𝜆𝑖) + 𝐶3𝑖(𝜆 − 𝜆𝑖) + 𝐶4𝑖 ,                                          (11) 
 

where  𝐶𝑗𝑖, 𝑗 = 1,2,3,4, are real finite constants and 

𝐴𝑖 (𝜆) has been interpolated at the mesh points 𝜆𝑖 which 

depends on the parameter 𝜔.  

The coefficients 𝐶𝑗𝑖, 𝑗 = 1,2,3,4, have been obtained by 

using the following interpolation conditions: 

 

𝐴𝑖 (𝜆𝑖) = 𝑉𝑖 ,  𝐴
′
𝑖 (𝜆𝑖) = 𝐸𝑖,  𝐴

′′′
𝑖 (𝜆𝑖) = 𝐹𝑖 ,      𝑖 = 0,1,2, … , 𝑀             (12) 

 

Using the conditions given in equation (12) in the 

equation (11), we obtain the values of the co-efficients 𝐶𝑗𝑖, 

𝑗 = 1,2,3,4. Further, following the continuity condition 

defined for spline as well as its derivatives, the relations 

have been obtained as: 

 

  𝜏1𝐸𝑖 + ℎ𝐸𝑖+1 = −2(𝑉𝑖−1 − 𝑉𝑖) + 𝛼1𝐹𝑖−1 + 𝛼1𝐹𝑖 ,                                              (13)  
 

 𝜏2𝐸𝑖 − ℎ𝐸𝑖+1 = (𝑉𝑖−1 − 2𝑉𝑖 + 𝑉𝑖+1) + 𝛼2𝐹𝑖−1 + 𝛼3𝐹𝑖 + 𝛼4𝐹𝑖+1                    (14) 
 
Where, 

 

𝜏1 =
ℎ − ℎ𝑐𝑜𝑠𝜔ℎ − ℎ𝑠𝑖𝑛𝜔ℎ

1 − 𝑐𝑜𝑠𝜔ℎ
,  

 

𝜏2 = −ℎ𝑐𝑜𝑠𝜔ℎ, 

𝛼1 =
2 − 2𝑐𝑜𝑠𝜔ℎ − ℎ𝜔 𝑠𝑖𝑛𝜔ℎ

ℎ𝜔3𝑠𝑖𝑛𝜔ℎ
, 
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𝛼2 =
𝑠𝑖𝑛𝜔ℎ − 2ℎ𝜔 𝑐𝑜𝑠𝜔ℎ

2𝜔3
 

 

𝛼3 =
ℎ2𝜔2𝑐𝑜𝑠𝜔ℎ − ℎ𝜔

2𝜔3
, 

 

𝛼4 =
2𝜔ℎ − 2𝑠𝑖𝑛𝜔ℎ

2𝜔3
. 

 

Solving the equations (13) and (14), we obtain the relation 

 

   −𝑉𝑖−2 + 3𝑉𝑖−1 − 3𝑉𝑖 + 𝑉𝑖+1 = ℎ3(𝜉1𝐹𝑖−2 + 𝜉2𝐹𝑖−1 + 𝜉2𝐹𝑖 + 𝜉1𝐹𝑖+1),   𝑖 = 2(1)𝑀 − 1     (15) 

 

Where  

𝜉1 =
2 − 2𝑐𝑜𝑠𝜔ℎ − ℎ2𝜔2

2𝜔3𝑠𝑖𝑛𝜔ℎ
, 

 

𝜉2 =
2ℎ2𝜔2𝑐𝑜𝑠𝜔ℎ + 2𝑐𝑜𝑠𝜔ℎ − ℎ2𝜔2 − 2

2ℎ𝜔3𝑠𝑖𝑛𝜔ℎ
. 

 

The equations in (15) yield (M − 2) linear equations 

involving M unknowns in 𝑉𝑖 , 𝑖 = 1,2,3, … , 𝑀. 
 

In order to solve the system of equations, we need two 

additional equations, which can be obtained as: 

∑ 𝛽1𝑘

2

𝑘=0

𝑉𝑘 + 𝛽2ℎ𝑉0
′ + ℎ3 ∑ 𝛽3𝑘

3

𝑘=0

𝑉𝑘
′′′ − 𝑡1 = 0,         𝑖 = 1                                                  (16) 

 

    ∑ 𝛽4𝑘

𝑀

𝑘=𝑀−2

𝑉𝑘 + 𝛽5ℎ𝑉𝑀
′ + ℎ3 ∑ 𝛽6𝑘

𝑀

𝑘=𝑀−3

𝑉𝑘
′′′ − 𝑡𝑀 = 0,         𝑖 = 𝑀.                                 (17)  

 

Now, implementing the above method in the equations 

(5)-(7), and with the help of Newton-Raphson method we find 

the approximate solution to (5)-(7), which is computed with 

the help of MATLAB. 

 

V. ERROR ANALYSIS 

 

 Expanding the Relation (15) by using Taylor’s Expansion, We Deduce the Following Truncation Error of the Method: 

 

𝑡𝑖 = (1 − 2𝜉1 − 2𝜉2)ℎ3𝑉𝑖
(3)

+
1

2
(−1 + 2𝜉1 + 2𝜉2)ℎ4𝑉𝑖

(4)
+

1

4
(1 − 10𝜉1 − 2𝜉2)ℎ5𝑉𝑖

(5)
+

1

12
(−1 + 14𝜉1 + 2𝜉2)ℎ6𝑉𝑖

(6)

+
1

120
(3 − 35𝜉1 − 5𝜉2)ℎ7𝑉𝑖

(7)
+ 𝑂(ℎ8), 𝑖 = 2(1)𝑀 − 1. 

 

For different values of 𝜉1and 𝜉2, second and fourth order 

methods can be obtained. 

 

For  𝜉1 =
1

12
 and 𝜉2 =

5

12
 , second order method can be 

achieved which is given by:  

 

𝑡𝑖 = −
1

6
ℎ5𝑉𝑖

(5)
+ +𝑂(ℎ6),       𝑖 = 2(1)𝑀 − 1. 

 

For  𝜉1 = 0 and 𝜉2 =
1

2
 , fourth order method can be 

achieved which is given by:  

 

𝑡𝑖 = −
1

240
ℎ7𝑉𝑖

(7)
+ +𝑂(ℎ8),       𝑖 = 2(1)𝑀 − 1. 

 

VI. NUMERICAL EXPERIMENTS AND 

DISCUSSIONS 

 

Here, we study the results obtained by the proposed 

numerical method for the model problem (5)-(7) at different 

grid points on the interval [0, 8]. MATLAB is used to produce a 
graphical depiction of the various components for different 

values of 𝛼. Figure 1 and Figure 2 displays the numerical 

findings of 𝑉(𝜆) and 𝑉′(𝜆)  for various values of the 

parameter α. Additionally, Figure 3 provides a graphical 

depiction of 𝑉′′(𝜆) that illustrates the impact of the velocity 

component 𝑉′′(𝜆) when 𝛼 fluctuates. 
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Fig 1: 𝑉(𝜆) As the Value of α Varies 

 

With reference to Figure 1, we observe that the 

horizontal velocity profile has not been affected by the 
curvature parameter inside the dynamic area [0, 1.5], following 

this, the velocity profile decreases as the curvature of the 

stretching cylinder reduces. The outside surface of the 

cylinder acts as a flat surface when we take 𝛼 → 0. This 

indicates that as 𝛼 → 0, the viscosity effect decreases because 

fluid-contact area of the surface moves toward the tangential 

position. 

 

 
Fig 2: 𝑉′(𝜆) As the Value of α Varies 
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Fig 3: V ′′(λ ) as the Value of α Varies 

 

As we see in Figure 2, throughout the dynamic area [0, 

1], the curvature parameter has essentially negligible 

influence on the horizontal velocity profile of the velocity 

field. Within the region [1, ∞[ the velocity component 

asymptotically approaches to zero. The velocity within 
[1, ∞[ , in this case, is the free stream velocity and in this 

region as 𝛼 increases, the velocity profile increases. Figure 3 

demonstrate the stress profile 𝑉′′(𝜆) as the parameters α 

varies.. 

 

VII. CONCLUSION 

 
In this paper, we use spline approach to solve the 

boundary layer flow past a stretching cylinder. We employ 

trigonometric cubic spline method (TCSM) is used to solve 

the problem for different values of parameter 𝛼. Based on our 

approach, the results summarize that the curvature of the 

stretching cylinder is a crucial parameter that affects the flow. 
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