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Abstract:- This work presents a comprehensive
computational and functional analysis of special
functions, specifically focusing on cases involving
arbitrary integer  parameters. Using integral
transformations and identities, such as those from the
Beta, Gamma, poly-gamma, and Zeta functions, we
explore and derive solutions to various complex integral
expressions. The problem sets address combinations of
logarithmic, trigonometric, and exponential functions,
including of the form In(x) tan(%) and

arcsinh(csch(mx)), where b,m € Z. Each solution is
derived under generalized conditions, allowing for a
range of integer parameter values. The study
demonstrates the wuse of advanced mathematical
techniques, including substitution, binomial expansions,
and Fourier series, to simplify and compute the integrals.
The results offer insights into the computational strategies
required for complex special functions and serve as a
reference for future explorations of such functions in both
theoretical and applied mathematics.

I INTRODUCTION

In this paper, we present a comprehensive study on the
computational and functional analysis of special functions
with arbitrary values. Special functions such as Beta, Gamma,
and poly-gamma functions play a significant role in various
mathematical and physical applications. Our work aims to
derive and explore general solutions for complex integral
equations involving these functions. By leveraging algebraic
identities, binomial expansion, and trigonometric
transformations, we investigate a series of special problems
that encompass multiple levels of mathematical complexity.
This study is particularly focused on expressions involving
logarithmic and trigonometric functions, as well as
exponential and hyperbolic terms, providing generalized
solutions for integer-based parameters and constraints.
Through systematic evaluation and the use of advanced
mathematical techniques, we offer valuable insights into the
behaviors and properties of these special functions. Our
findings have potential applications in fields requiring precise
mathematical computations, including theoretical physics
and engineering.

IL. MAIN RESULTS

This study investigates several problem sets involving integrals of complex functions, where parameters are arbitrary integers.

The primary results for each problem set are as follows:

[1:1] Problem Set 1: Integration of Logarithmic and Trigonometric Functions

» Objective
To derive a general solution for integrals of the form:

@ In™ (x) tan ™" (%)
fo x% + b?

» Approach

where b,n € Z

By using substitutions involving u = tan‘l(f) and properties of logarithmic functions, we express the integral in terms of

Beta and Gamma Functions.

o Consider the Following:

fw In™(x)tan™! (%)

dx
Let:
u=tan?! (f)
B b
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~ x = btan(u)
du = dx 1 _ b dx
= b x2 + b2
72 +1

Therefore, by substituting:

n - X T
© in" (x) tan”* (7) Fu In" (b tan(w))
| —r Y= [
0 x*>+b 0 b

—1%l"b In™ d—lglbl nd
_Efo u(In™(b) + In"(tan(w)) u—EfO u(In(b) + In(tan(w)))™ du

Applying the Binomial Expansion definition:

(s+t)" = i (1:) smokik
k=0

We can apply the following algebraic identity:

% f Zu(In(b) + In(tan(w)))" du = % fu(Z (:) In"=¥(b)In* (tan(u))) du = %kzo (Z) In"~*(b) JO " un (tan(w)) du

Using the trigonometric identity:

tan(u) = %

We can substitute the following identity:

Z In"=¥ () j ? uln (tan(w)) du
— 0
- sin(u)
k(b)j ( os(u)) du

In™"*(b ? In(si -1 k d
bz ()fO u(In(sin(uw)) — In(cos(w)))* du

@Ir—x

@Ir—x

| =

Applying the Difference Binomial Expansion:
j

(s—t)y = Z (r]n> simmgm (=)™

m=0

1 z
=— E ™ *(b In(si -1 kd
5 (k) n"k( )fo u(In(sin(uw)) — In(cos(w)))* du

=
Il
(=}

= %Z n"” k(b)f Z InJ=™(sin(w)) (=1)™In™ (cos(u)) du

WWW.ijisrt.com

IJISRT24NOV1295

2438


http://www.ijisrt.com/

Volume 9, Issue 11, November — 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165

T

n j ) s
= 52 (m=® Y (7)™ [ utns i) in” cos(u) du

k=

To simplify the algebraic expression, we can denote:

s

ffu(lnf‘m(sin(u)) In™(cos(u))du= 6
0

j s

= %Z (Dm® Y (1) o f““”ﬁm(sin(u)) In™ (cos(w)) du
k=0 m=0
1S e Y (Do
k=0 m=0

Since:

6= jiu(lnf‘m(sin(u)) In™(cos(u)) du
0

We can apply Kings Property to expand the following expression:

7 . I . i i
J u(ln/~™(sin(u)) In™(cos(u)) du = j (E —w)(ln/ ™ (sin(E —u)) n™ (cos(z —u))du
0 0

Vs
T (2 .
= 5_[ /=™ (cos(w)) In™(sin(u)) du — 6
0
Therefore, by simplifying the following expression:

Tz
28 = —j /=™ (cos(w)) In™(sin(u)) du
2y

46 =m jflnj‘m(cos(u)) In™(sin(u)) du
0

To simplify the following expressions, we will change the parameters of the integral:

w = sin(u)

&4/ 1—w? = cos(u)

. cos(u) du = dw

dw

L du = —
iw?

We can substitute the following:

Hin/=m (V1 — w?)In™(w)
46 = rrf dw
0 Vv1-— W2
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By simplifying with more parameter simplification:

w2 =t
_tl/z
1
dw = =t~1/2
2

We can compress the expression under new parameters:

L nd—m1 =) In™ (/)1
46 = nf ( )i ( )—t‘lfz dt
o 1-—t 2
™, . 1.1
15 ln/‘m(l—t)lnm(t)(—)m—t‘l/2
45=”f (2) 2) 2 dt
o 1—t

1 . 11
48 = (E)J“th t2lnI ™ (1 — O™ ()(1 + t)" Y2 dt
0

m 1y
46 = ( )1+1 — j t 2l (1 - O)In™ () (1 + £)"Y2 dt
da™ a=0Jo
__1+1 " 1‘1—- j-mc1 — —t)"1/2
45 ( ) — 21 -t)A1 —t) 4 dt
da™ a=0Jo
By simplifying the following statement above:
1-t=s
~1l—-s=t
~dt = —ds
We can expand the integration:
am 1
o I R W OTORT
a=0
= _( )Hl i il fl(l - S)a_% sZs~2 (g
da™l,_, dzi-m| o
z=0
( )]+1 " dj_m fl(l )a—l Z_ld
=_ — —s) 257 2ds
dam o dzI™m 42020

By applying the Beta Function substitution to Zeta Function, we obtain the following:

o A 11
= - g o dm|  BEHZa%D)
a= z=0
. 1 1
5o 1)j+1 dm di-m I'(z+ E)F(a + 7)
B (2 T dam a0 dz/7™| - T(z+a+1)
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. 1 1
di-m ‘ F'z+3)@a+3)
z

a=o dz/°™| - T(z+a+1)

dm
da™

T 1 .
5=__ _\Jj+1
4(2)

By obtaining the original function, as well as its new denoted piece, we can finally expand:
j

I O Y (1) o s

k=0 m=0

-3 oy (e 50

@im| T(z+9)r(a+q)
a=0 dzf‘m‘zz z+a+1)

J . 1 1

' 1., d™m d-m| T@E+3x)Ila+s)

2 s Y (1) e e ) A7) T r
4b 4 k £a\m 2 dam™lg=o dz/7™| _ T(z+a+1)

Therefore, by expanding the integration in respect to its multiple summation and Zeta function, we obtained the general solution
for [1] Problem Set 1:

n ]

52, W X (L)oo

k=0 m=0

dji-m I'(z+ %)I‘(a + %)
a0 dzV7M| - T(z+a+1)

1. RESULT

The derived solution incorporates a series expansion and further simplifies using the relationship between trigonometric
functions, yielding a closed-form expression under the conditions b,n € Z.

[1:2] Analysis of Problem Set 1: Parameters b,n € 7Z

Letn=1and b = 1:

@ In™ (x) tan ™" (%) = In' (x) tan~* (7)
JO x% + b? (n.b)=(1,1)j0 x%+12

Let:

w=tan lx

~ X = tan(w)
dw = dx
YT
o [nl(x) tan™? (%) /2
fo —ag iz &= ; w In(tan(w)) dw
Using the identity:
tan(w) = sin(w)
cos(w)
/2 /2 /2
w In(tan(w)) dw = wlin(sin(w)) dw —f w In(cos(w)) dw
0 0 0
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Let’s denote the following:

/2
¢ = win(sin(w)) dw

0
/2
P =f w In(cos(w)) dw
0
Therefore:
/2 /2 /2
f w In(tan(w)) dw = f wlin(sin(w)) dw —f win(cosw))dw = ¢ — ¢
0 0 0
Solving for ¢:
/2
¢ =f wlin(sin(w)) dw
0

Using Fourier Series:

In(sin(w)) = —In(2) — Z w

Substitute the following:

3
¢ =j wIn(sin(w)) dw
0

w2 w(— In(2) — Z M) dw = —1In(2) JEW dw — Z %jiw cos(2nw) dw
n=1 0

=— ln(Z) — |0 Z {— sin(2nw) + cos(ZnW)}”/2

-l

[ee]

D1 1% ( o 1
B ol NI VA )

n:

We know:
o 1
Z = {(s) = Zeta Function
n=1
P PICRE S170
n=1
m? 1, 1 _n? 7
= -5 @ -7(27°2-29){B) +7{B) = —5In@) + 7£{3)
Hence,

B 1'[21 7
§=-"I@) +-(3)
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Solving for :
/2
Y= w In(cos(w)) dw
0
Using Kings Property:
/2 /2 T T
W= f w In(cos(w)) dw = i = f G — w) In(cos (5 - w)) dw
0 0 2 2
/2 T
= f (E — w) In(sin(w)) dw
0
T /2 /2
= Ef In(sin(w)) dw —f win(sin(w)) dw
0 0
Denote:

2

T (/2 = cos(2nw) T z 13
= Efo (—In(2) - ;T) dw = E[—ln(Z) L 1dw — ;r_ljo cos(Znw) dwl

T o1 (sin(nw)\ T| - —n?
|- 1 () ] - S F] - e

/2
n= EJ In(sin(w)) dw
0

n=1

/2 /2
Y = gjo In(sin(w)) dw —JO win(sinw))dw =71 — ¢

—m? m? 7 —m? 7
Y= Tln(Z) - <—§1n(2) +R((3)> = Tln(Z) - Rf@)

Therefore, the following condition where b = 1 andn = 1:

/2 /2 /2
w In(tan(w)) dw = wlin(sin(w)) dw — wlin(cos(w))dw = ¢ — ¢
0 0 0
w2 7 —m? 7 7

[1:3] Continuation for all n and b arbitrary values, where n, b € Z
The following data was compiled through Wolfram Alpha:

® In(x) tan1(x)
Forn=1,b=1: f Z—dxz1.0518
0 x*+1

 [n(x) tan‘l(g)
Forn=1,b = 2: f dx = 0.953468

o x% 4 22

o In(x) tan" 1)
Forn=1,b=3: [ ———*

0 x2+32

dx = 0.802386...
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® In?(x) tan~1(x)
Forn=2,b=1: f xz—+12d.x:3.04403
0
@ In? (x) tan " (3)
Forn=2,b=2: f de=254744
0

The following method can be easily calculated for n, b € Z

[2:1] Problem Set 2: Analysis of Gamma Function Integrals

» Objective
To solve the integrals of the form:

f In"(x)e % dx, where a,n €Z
0

» Approach
Using substitutions and identities associated with the Gamma function, this set evaluates the integral by expressing it in terms

of poly-gamma and Zeta functions.

Consider:
j In"(x)e ™ dx
0
By doing the following:
t=e™ ¥
In(t) = —ax
x =—In(t)
—1dt
dx = ——
a t
Hence,

[oe]

fowln"(x)e‘ax dx = —fo %ln“ (;ln(t)> dt = —%fom[ln(t‘l) —In(a)]™dt

Applying the Difference Binomial Expansion:

i

=y = Y (L) mym -y
m=0

"l , (:) Ik (In(e =) Ink (@) (= 1)¥] dt

k=0

1r® 1 n _—1
=—Ef0 [In(t~1) —In(a)] dt—;fo

[oe]

i (:) (—1)k+1lnk(a)f I (In(t™"))dt

k=0 0

Qlr
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Denote:
p = li (n) (_1)k+1lnk(a)
a k
k=0
1w n o B
=22, () k@) f In"* (In(e))dt = p f " (In(t 1)) dt
ak:O k 0 0
Let:
w =In(t™1)
eV =t1
t=e™"
_e—W
dt = dw
w
e o e B L
Pf Ik (n(t~1))dt ='DJ lnn_k(ln(ew)) e dw =pj lnn—k(w) e .
’ 0 w 0 w

d ® d
Pmlzp:o OW e dW=PW|¢:0F(¢')

Therefore, by compressing the expression into a Gamma function we obtained the general solution for [2] Problem Set 2:

5
k=0

2. () (‘1)“”""(“)% o (W)

Qlr

» Result
The results yield a general solution, expressed as a series involving I'({r) (Zeta function) and various combinations of poly-
gamma functions. This solution is adaptable for different integer values of a and n.

[2:2] Analysis of Problem Set 2: Parameters a,n € Z

Conditions for values n and a:

[oe] d o0
n"(x)e % dx = —|,_ f x¥e~ dyx
| e dtey|

Let:

w = ax
w

“x=—
a
dw

dx = —
a
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1.d P!
" adp

We will generate solutions for n, a € Z, using the following formula:

1d P!
adym hy=0 a¥

Let’s consider the following generated solutions forn = 1,2,3 anda = 1:

Considern=1,a = 1:

1d P! a=1n=1 d P!
adyr T

d W d .
apt |zp:oa—¢ = W|w=0[a Vil

=[@D) — LogM] =9(1) = —y.
Wherey is the Euler — Mascheroni constant

Considern = 2,a = 1:

1 d P! a=1n=2 d? P!
adpr UG T ey

2

= ggz v+ DI =T + DPOwW +1)? + ¥ + 1)]

2

= I‘(l)[lP(O)(1)2 + Lp(1)(1)] " 7%

Considern = 3,a = 1:

1 d P! a=1n=3 d3 P!
adyr el e

d3 P!
S

=T+ 1) [\P@)(w +1) + 390 + DYOW + 1) + (YO + 1))3]

- (1) [w<2>(1) + 3P (WO (1) + (w<0>(1))3] = 20(3) - %Zy s

[2:3] Continuation for all a and n arbitrary values, where a,n € Z
The following data was compiled through Wolfram Alpha:
Forn=1a=1: f Int(x)e"™¥ dx ~ —0.57721

0

[oe]

Forn=2,a=1: f In?(x)e ™ dx ~ 1.97811
0
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[oe]

Forn=3,a=1: f n3(x)e ¥ dx ~ —5.44487 ...
0

*© 1
Forn=1,a=2: f Int(x)e ** dx = E(—y —log(2)) ~ —0.635181
0

[oe]

1
Forn=2,a=2: f n?(x)e ?* dx = E(n2 + 6(y +10g(2))?) ~ 1.62938

0
«© 1

Forn=3,a=2: f In3(x)e ?* dx = —{(3) —Z(y +1og(2))(m? + 2(y + log(2))?) ~ —5.36162
0

The following method can be easily calculated for a,n € Z
[3:1] Problem Set 3: Integrals of Logarithmic and Sinusoidal Functions

» Objective
To determine solutions for integrals like:

f In"(ax) sin(bx) e * dx, wherea,b,c,n €7
0

» Approach
By expanding sin(bx) in terms of complex exponentials, the integral transforms into an imaginary part of a complex function.
Further simplification using Gamma function derivatives is applied:

e Consider:
jwln" (ax) sin(bx) e~* dx
0
By expanding in terms of complex exponentials:
sin(bx) = Im(e'>)
J‘°° In™(ax) sin(bx) e~ dx = Im{jmln" (ax)eP*=*dx} = Im{jmln"(ax)e"‘(c‘ib) dx}
0 0 0
Using a known property of In™ (x):

n

PP |(ax)? = In™(ax)

o ) dn o0 .
Im{f In™ (ax)e—x(c—lb) dx} = Im{ﬁ |z=0 azf xze—x(c—m)dx}
0 0

Let:
y = x(c — ib)
x = 4
c—ib
dy
.'.d =
X c—1ib

n

d z ° z ,—x(c—ib)
= Im{ﬁlz=0 a , x%e dx}
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ar oy N L, dy
=Im{ﬁ|2=° azfo (c—ib) ¢ yc—ib}

n aZ oo
=Im{—|,00 ————— “e7¥d
m{dZn |Z—0 (C_lb)z+1L yoe y}
Therefore, by expanding the sine function in terms of complex exponentials, as well as the Zeta function, we obtained the
general solution for [3] Problem Set 3:

n

& ==

zZ

oMz + 1)1m{ﬁ}

» Results
The solutions are represented as imaginary components of Gamma functions and poly-gamma derivatives, providing insight
into the oscillatory nature of these functions when combined with logarithmic growth.

[3:2] Analysis of Problem Set 3: Parameters a, b,c,n € Z

Let’s consider the following generated solutions forn =l anda=b =c = 1:

Considern=1landa=b=c=1:

Using the general solution:

n

d
P l,=o T'(z + 1)Im{

n

d
ﬁ |Z:0 F(Z + 1)1771{

z

(c —Czb)“l}

a=b=c=n=1 dl
E |Z:0 F(Z + 1) Im

(a5

1

1
= a7 l,=o T+ 1) w, where w = Im{m}

Solving for w:

W= Im{ﬁ} = Im{(?e%i)“l}

\/E z+1 - N -
=Im {(7> [cos (Z (z+ 1)) + isin <Z (z+ 1))”

= (\/77)“1 [sin (% (z+ 1))] = 27D [Sin <% (z+ 1))]

Therefore,

1 1 —

d d 1 T
_ S+ |
e TE+ Do = o T+ 1) 27 [sm (Z(z+1)>]

z=0 mw In(2) vy

NN —_—

-1 T T -1 T -1 T
=T(z+ 1){2z @V 708 (Z (z+ 1)) - 27 @3 n(2) sin (Z (z+ 1)} +T(z+ DPO(z+1)2Z7“Vsin (Z (z+ 1))

[3:3] Continuation for all a, b, ¢, and n arbitrary values, where a, b,c,n € Z
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» The Following Data was Compiled through Wolfram Alpha:

@ T In(2) vy
Letn=a=b=c= 1:[ In'(x)sin(x)e™* dx == ————= = —0.0691955
0

Letn=2,a=b=c= 1:[ In?(x) sin(x) e ™* dx ~ 0.215193
0

Letn=3,a=b=c= 1:[ In3(x) sin(x) e ™ dx ~ —0.319803
0

Letn=2a=b=c= 2:] In?(2x) sin(2x) e2* dx = 0.207596
0

Letn=3,a=b=c= 2:] In3(2x) sin(2x) e 2* dx ~ —0.159901
0

Letn=3,a=b=c= 3:] In3(3x) sin(3x) e 3* dx ~ —0.106601
0

Letn=3,a=b=c= 4:] In3(4x) sin(4x) e=** dx = — 0.0799506
0

The following method can be easily calculated for n,a, b, c € Z

[4:1] Problem Set 4: Logarithmic Fractional Integrals

» Objective
To analyze the integrals of the form:

x
1In™( )

j #dx, wheren € Z
o 1+x

» Approach

Using fractional transformation y = é, the integral is reformatted, allowing for simplification with logarithmic identities
and the Liouville operator:

» Consider:
X
fl lnn(l — x) dx
o 1+x
Using the fractional transformation:
R
Y= 1—x
-
1+y
dy
sdx =———
SECEEE

Applying transformation:

Un" (12=) Umny)  dy L)
fo — X dx =f =f0 dy

1+x Y (y+1)2 2y + 1D)(y +1
o1+y+1(y ) Cy+Diy+1D
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o y+DO+D YT

Let:

(oo}
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o mhy) °

J+ In™(y)
o Qy+ Dy +1)

In™(y) y-1/y ™ (->
1 Gy+DH+1D o (1 +y)(1+2y)
In"(y) Y+ * In"(y) dy

NCEDCED)

Qy+Dy+1)

In™ (%)

N Y, !
‘fo (2y+1)(y+1)d”f0 aG+ya+rzn®
LR LN

NG EED)

Denote the following:

Solving for 6:

ot ") _
o 2y+ Dy +D T

Denote the following:

Solving for 8,,:

0, =

By changing the parameters:

IJISRT24NOV1295

o +D+2)

[t ")
=) &+no+D?

L))

¢=CU" ) G Do +2

dy

L n™(y)
o O+ 1)

L in"(y)

—_— ——dy =6,
0(2y+1)y Y

()
O Zf @ +D?

[t ")
b 0 (y+1) Y

1 lnn(y) 3 © B 1 N .
2 | de‘Z;( 2)kfoln O)y*dy

—u = In(y)
et=y

~dy =—e "du

=2 i(—Z)" f 1ln"(y)y"dy
k=0 0

WWW.ijisrt.com
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=2 ) (-2)¢ Oo(e‘“)k(—u)”(e‘“du) =2 ) (-2)*(-1" OOe‘”(k“)(u)"du
2] 2o,

By changing parameters:

uk+1)=w
_ w
Y
du = dw
YE T
N ” —u(k+1 n — N n ° -w w nodw
2;(_2)k (-1) fo e~ulk+D) (1)) du—ZkZ;(—Z)k (-1) fo e (k+1) e
O (—2)k (=D [ o (—2)k(—1)"
=2y | eW)dw=2 ) ———=T(n+1)
L (k+1) jo L (k+1)
e R N (R O (=2
= Zkzo—(k+1)n+1‘l“(n+ 1) =2(-1D"n! k:(,—(k"' D = (=D)™*n! 2, (o

Note the following for simplification:

(o) xk '
Z 2 = Li, (x)
k=1

2 k
= (—1)"*n! ((k)n)+1 = (=D™n! Li, 1, (—2)
k=1
Hence:
0o = (=1)"*'n! Liy,q(=2)
Solving 6,:
Tt N ' N -D"n!
6, = dzz—lkfln" ka =Z—1k—
b o (y+ 1) y k=0( ) o ()’)y y k=0( ) (k+ 1)n+1
(—1)* - (-D* .
= (-1)"71! W = (—1)n+11’l! (k)n+1 = (—1)"+1n! Lln+1(—1)
k=0 k=1
Hence:
0, = (=1)"*'n!Liy,q(=1)
Therefore:

6=0,-6,
= (D"l Lin,(=2) — ((_1)n+1n! Lin+1(_1))

= (=D"™'n! [Lip,(=2) — Ly, (=1)]
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Solving for ¢:
(p:
[t ")
D o Do+
PR 6D ln"(y) 3 al, 1 N sk
- |[ B[22 ] -1 [eb 7, fm )y*dy
[ (—1)™n! 1
=(=D"|0 (—)k LTSl
b 244 |(k + 1) |
. 1| (_71)"
:(—1) gb_ 2 Z (k+1)n+1
k=0 | |
[ w [ (__1)k+1 11
—_ (— n —_ —(— n 2 —
= (1" |6~ (~(-1) n!kZO ey
' = Ghr
— (—_1\n — (-1 n+1 2_
= (1" [0, — {(-D) n!kZl e
1
= 010, ~ {0t L (5]
1
= OO Ly (1) = {0 L (5]
1
= (DDl (Liygyq (1) — Liyy, (— E))
Therefore:
1
o= (D" (Linyq (1) = Lipgyq (- E))
Since:

1In™( )
f — X —h+4
o 1+x

1
= (=D""'n! [Liny1(=2) = Liny1 (D] + (D" (D™l (Lin4s (—1) = Linys (= )

Therefore, by applying the fractional transformation to the following integral, we obtained a general solution of combinations
of special Liouville functions in [4] Problem Set 4:

n (D™ (Ling1 (—2) = Linga (1)) + (—Lings (1) + Linys (—1/2)]

» Results
The final solution is given in terms of special Liouville Functions (Li,, (x)), which describe the properties of the integral with

respect to complex series expansions.

[4:2] Analysis of Problem Set 3: Parameters n € Z
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Conditions for values n:

Letn =1:
G . . . . T
fo 1—+xdx =1 [(—=1)%(Liy(=2) — Li,(—1)) + (=Li,(—1) + Li,(—1/2)] = Li,(-2) + 3 + Li,(— E)

Letn = 2:

1[n? X
f %dx =2'[(—=1)3(Liz(—=2) — Liz(—1)) + (=Liz(—1) + Liz(—1/2)] = —2Liz(—2) + 2Li5(— %)
0

Letn =3:

Lind (=) 1
f ﬁdx =31[(~1)*(Liy(=2) = Lig(=1)) + (~Liy(=1) + Liy(=1/2)] = 6Liy(=2) = 12Liy(—1) + 6Liy(—3)
0
The following method can be easily calculated for n € Z

[S:1] Problem Set 5: Logarithmic Integrals with Polynomial Growth

» Objective
To derive solutions for:

dx, wheren k,w €Z

j Lx®In™(x)
0o XW+1
» Approach

Using substitution and series expansion techniques, particularly focusing on the binomial expansion for logarithmic terms, the

integral is expressed in terms of hypergeometric series:

o Consider the Following:

jlxkln"(x)
0o XW+1

jl x*In™(x)
0

© 1
— —_1\J KA Wj a1
S ]ZO( 1) joxx In (x) dx

Let:

In(x) = -y
wx=eY

~dx = —eVdy
0 [ i dx = Y (<) [ @) e (=) (—e ) dy

[oe]

=) [ ety = Y D [ yney i gy
=0 0 Jj=0 0
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Let:
yk+wj+1) =m

. _ m
Y kw1
dm

Y w1

— Z(_l)j(_l)nf yne—y(k+wj+1) dy
j=0 0

= ;(—”’(—1)” fow (ﬁ)n e (%)

) (=" m -1/
= k+W]+1)”+1f mre™" dm = Z(k+w1+1)"+1r(n+1)

[oe]

_ (=1D/ (D" n
T Lkt wj+ D

o (-1 N (-1)) (-Dralx (-1
= Y o (e = >
k 1)n+1 n+1
= ( +wj+ ) = [W (] 4 (k ‘-Al; 1)>] w = <] 4 (kv_{; 1))

We know:

C D" [ ED™ |y o (At
n=0 n+a)™ B [Zmr‘(m)] [LP( ? (g) o <a 2 )]
Where:

m=n+1

_k+1

_ ot (D)

n+1 n+1
TR )

- o (v () - v ()

Therefore, the general expression involves hypergeometric functions combined with polynomial and logarithmic growth for

[5] Problem Set 5:
-1 ] e (k + 1) ym (k +w+ 1) i 7
2wy > o forn,k,weZ.
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» Result
The resulting expression involves hypergeometric functions that account for the combined polynomial and logarithmic growth,
providing a generalized form that adapts to various values n, k, and w.
[5:2] Analysis of Problem Set 5: Parameters n, k,w € Z

Conditions for values n, k, w:

Letn=1k=w=1:

[ ) 0 )0 @) - ) 000 3)

Letn=2k=w=1:

[ ) ) ) ) - )

Letn=3,k=w=1:

[ [t -0 ) - (o0 -2 0]

The following method can be easily calculated for n, k, w € Z
[6:1] Problem Set 6: Integrals Involving Hyperbolic Inverses

» Objective
To compute integrals of the form:

J arcsinh(csch(mx)) dx, wherem € Z
0

» Approach
By expressing the inverse hyperbolic sine in logarithmic form and using substitutions involving exponential functions, the
integral is simplified:

o Consider:
f arcsinh(csch(mx)) dx
0

By expressing the sine function in logarithmic form:

arcsin(x) = log(x + 1 + x2)
2

csch(mx) = m

Hence:

2

2 2
log(emx — e—mx + \/1 + (emx — e—mx) ) dx

[ee]

fooarcsinh(csch(mx)) dx = f

0

@ 2 4
= L log(emx — e—mx + \]1 + eme — 2 + e—me) dx
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@ 2 eXmx 4 g=2mx 4 2
= J(; log(emx — e~mx + eme + e—me — 2) dx

*© 2 (emx 4 g—mx)2 *© 2 em* 4 gmmx
= J;) log(emx — e mx + (emx — e—mx)z) dx = fO log (emx — e~mx + emx — e—mx) dx

*© 2+4+e™ 4™
=f0 log(—emx e ) dx

« 2+e™ +e™ « e (24 e™ 4 o7 ™)
f log <—> dx = f log dx
0 0

emx — p—mx e—mx(emx — e—mx)

® 2T 414 eT2mx
=f log( ) dx
0

1 —_ e—2mx
Let:
u=em™
s~ mx = In(uw)
du
dx = —
mu
J‘*’l 27X 4 ] + g2 b — 11 | 2u+1+u? J
o o8 1— e 2mx X o Mmu B\ 1w “

_jl 1 | (1+w) J
B 0 mu 8 (1-uw) v
11 11
=JO ﬁlog(l +u)du—j0 ﬂlog(l—u)du

Consider the following identities:

X 1Vkak
log(1+u)=—z%

k=1

log(1—u) = —i

k=1

k

=| &

Hence:
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Therefore, through algebraic identities from hyperbolic functions to exponential functions, the following can be expressed in
terms of i for [6] Problem Set 6:

2

*© T
f arcsinh(csch(mx)) dx = —
o 4m

» Results
The general solution is to be found to be ﬁ, reflecting the oscillatory behavior of the hyperbolic and inverse functions for

arbitrary integer values of m.
[6:2] Continuation for all m arbitrary values, where m € Z

» The Following Data was Compiled Through Wolfram Alpha:

f arcsinh(csch(x)) dx = T
0

@ T
j arcsinh(csch(2x)) dx = —
0

@ T
j arcsinh(csch(3x)) dx = —
0

j arcsinh(csch(4x)) dx = T
0

2

4

...The following method can be easily calculated for m € Z

Letm=1:
Letm = 2:
Letm = 3:
Let m = 4:
IVv. DISCUSSION AND CONCLUSION

This work addresses complex integrals of functions that
combine logarithmic, trigonometric, exponential, and
hyperbolic elements, each parameterized by arbitrary integer
values. The derived solutions leverage advanced
mathematical tools, including transformations and identities
associated with Beta, Gamma, poly-gamma, and Zeta
functions. The successful application of these tools in solving
integrals across different problem sets illustrates their
versatility and highlights the structural relationships among
special functions.

A. Discussion
The problem sets demonstrate specific techniques for
handling integrals with unique structural forms:

» Transformations and Substitutions

Several problem sets employ variable substitutions to
reframe integrals in terms of simpler, more manageable
forms. For example, Problem Set 1 uses a trigonometric
substitution to express the integral in terms of Beta and
Gamma functions, illustrating how transformations simplify
otherwise intricate expressions.

» Special Functions and Identities

The analysis applies identities from poly-gamma and
Zeta functions in solving logarithmic and exponential
integrals, as shown in Problem Set 2. This approach
emphasizes the power of special functions in capturing the
behavior of complex integrals across various domains.

IJISRT24NOV1295

» Series Expansions and Approximations

In certain cases, series expansions such as the binomial
and Fourier series were used to approximate or simplify the
expressions. Problem Set 5, which involves polynomial
growth and logarithmic terms, shows how expansions can
represent complex growth behaviors in compact forms.

These methods not only simplify the evaluation of
challenging integrals but also provide insights into the
broader mathematical relations among special functions,
contributing to a deeper understanding of their computational
and analytical properties.

B. Conclusion

The results obtained in this analysis illustrate how
combining various mathematical techniques can yield closed-
form or approximate solutions for integrals involving
logarithmic, trigonometric, and hyperbolic terms. These
solutions offer a framework for analyzing integrals with
similar functional structures and could serve as a foundational
tool in fields requiring precise integration of complex
functions, such as theoretical physics, engineering, and
computational mathematics. By providing general solutions
for a wide range of integer values, this work contributes to the
growing catalog of special function solutions and underscores
the importance of symbolic computation and functional
analysis in addressing advanced mathematical challenges.
Future research could further explore the application of these
techniques to other classes of integrals or examine the
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numerical stability of these solutions when applied in
computational contexts.
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