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Abstract:- A puzzle is a problem or game that check an 
individual’s reasoning ability. The article explores some 

classical puzzles using mathematical concepts. The 

historical significance and the concepts of mathematics 

which have been applied to these puzzles have also been 

discussed. In this article, the famous Josephus’s problem, 

the Tower of Hanoi problem, the Cutting Pie problem and 

Travelling the World Problem, have been illustrated. The 

explanation of Josephus’s problem describes how 

elimination works in a circular sequence and how to 

maximize cuts from a circular region in the cutting-the-

pie-problem. Recurrence relation is derived and the proof 

is established using mathematical induction. It also 

focuses on finding the shortest path on a dodecahedron in 

analyzing Travelling the World Problem which uses 

graph theory to find a Hamiltonian path. The existence of 

such a path is demonstrated. This article explores the 

real-life origins of these well-known problems and 
highlights their significance in understanding 

mathematical ideas. The detailed solutions to each puzzle 

will give readers perception into recursion, optimization, 

geometric properties, and the fascinating historical 

backgrounds of these puzzles. 
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I. INTRODUCTION 

 
A puzzle is something difficult to understand or explain. 

It can be a kind of toy, game, or test that assesses one's ability 

to think or know logically. In 1762, it is believed that John 

Spilsbury, a London cartographer and engraver, produced the 

first jigsaw puzzle using a marquetry saw [1]. However, 
Archimedes, one of the finest mathematicians, is also 

attributed to the creation of early forms of puzzles [2]. 

Archimedes is known to be the father of all puzzles. He 

invented the famous dissection puzzle known as Archimedes' 

STOMACHION OSTOMACHION, or SYNTEMACHION, 

composed in a Palimpsest written by an anonymous medieval 

scribe compiling prayers [3]. The OSTOMACHION puzzle 

is an influential piece, it harbours both creative and logical 

problems. OSTOMACHION is translated as 'bone fight' as it 

was originally crafted from bone and required a mental 

wrestle to complete. The puzzle has 14 polygons, 13 of which 

are different, and 2 are the same [4]. Those 14 polygons were 

divided into 11 triangles, 1 pentagon, and 2 quadrangles, 
which can be assembled into a square. At first, it was made 

for social gatherings, but it can be solved into 56 entirely 

unique squares and 17152 rotations, which can create so 

much mental stimulation. Many people don't realize that 

mental stimulation is just as vital to overall well-being as 

physical exercise [5]. Regular mental exercises, such as 

working with the OSTOMACHION or similar puzzles, have 

been shown to enhance memory and strengthen connections 

between brain cells [6]. Puzzle-solving can also boost 

dopamine levels in the brain, leading to improvements in 

problem-solving abilities, short-term memory, and visual-

spatial processing [7]. The academic study of puzzles, known 

as Enigmatology [8], highlights the importance of puzzles 

and games in developing reasoning and logical thinking 

skills, which are crucial for mathematical proficiency [9]. 

 

His research article demonstrates the link between real-
life problems that appear to have no logical solution but can 

be explained and resolved through mathematical logic. Its 

objective is to connect people more to rational approaches to 

problems that, on the surface, seem unsolvable. The article 

provides an extensive analysis of four puzzles—Josephus 

Problem, Tower of Hanoi, Cutting the Pie Problem, and 

Traveling the World Problem. The main objective of this 

article is to shed light on the history of each puzzle, its 

mathematical solution, and its real-life applications. Drawing 

from existing knowledge, the research compiles and 

synthesizes established mathematical insights to broaden 

readers' grasp of mathematical concepts and their logical use. 

These mathematical puzzles have significant potential to help 

understand more advanced problems and prepare readers for 

them. 

 

II. LITERATURE REVIEW 
 

The Josephus Problem, a classical theoretical puzzle, 

has been a topic of interest in mathematical literature for 

many years, with numerous articles published in the 

Mathematical Gazette and other esteemed journals. W.J. 

Robinson (1960) was among the first to explore the origins of 

the Josephus Problem in this journal, providing foundational 

insights into its history [10]. More recently, in 2018, Peter 

Schumer, a Professor of Mathematics at Middlebury College, 

contributed an article titled "The Josephus Problem: Once 

More Around," in which he delved into the historical context 

and various aspects of the problem [11]. Additionally, 
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Osvaldo Marrero and Paul C. Pasles from Villanova 

University published a significant article in 2023 titled "The 

Multivariate Probabilistic Josephus Problem." This 

expository work introduced new results and potential 
observations, further expanding the understanding of the 

problem [12]. The Mathematical Gazette also featured an 

article by Derek Holton in November 2014 titled "More 

Problem Solving– The Creative Side of Mathematics," where 

the Josephus Problem was discussed alongside the Tower of 

Hanoi, highlighting creative problem-solving approaches in 

mathematics [13]. The Tower of Hanoi, another well-known 

mathematical puzzle, has also been extensively studied. In 

April 1985, K. Kotovsky, J.R. Hayes, and H.A. Simon 

published a paper analyzing the varying difficulty levels of 

different isomorphic versions of the Tower of Hanoi problem 

[14]. This work contributed to understanding why some 

versions of the problem are more challenging than others. 

Later, in 2001, J.R. Anderson and S. Douglass explored a 

version of the Tower of Hanoi that allowed for a separate 

analysis of the effects of goal retention on storage time and 

retrieval time [15]. In 1997, Sandi Klavžar and Uroš 
Milutinović examined a particular variant of the Tower of 

Hanoi problem in the Czechoslovak Mathematical Journal. 

Their study focused on graphs that are isomorphic to the 

Tower of Hanoi graphs. They proved that there are at most 

two shortest paths between any two vertices and provided a 

formula for computing the distance between two vertices in 

time. Their results also showed that the graphs are 

Hamiltonian [16]. Further, in January 2013, an online article 

titled "The Generalized Towers of Hanoi Problem" presented 

a simple recursive algorithm for solving the generalized 

version of this problem [17]. Additionally, in 1996, Colin 

Gerety and Paul Cull published a paper examining the 

relationship between the Tower of Hanoi problem and time, 

adding another dimension to the study of this classic puzzle 

[18]. The Traveling the World Problem has also garnered 

significant attention in mathematical research. In October 

2000, Luke Desforges published an article in Annals of 
Tourism Research titled "Traveling the World: Identity and 

Travel Biography," where he introduced the concepts of 

identity, subjectivity, and self in the context of tourism 

studies, relating them to the TSP (Traveling Salesman 

Problem) [19]. In January 2019, James Cooper published a 

research article explaining algorithms and providing an 

example application of the TSP algorithm to a given graph 

and its digraph variant [20]. In August 2012, Javad Salimi 

Sartakhti, Saeed Jalili, and Ali Gholami Rudi published a 

paper on a new light-based solution to the Hamiltonian Path 

Problem, a variation of the TSP. Their solution involved 

designing filters to remove invalid Hamiltonian paths [21]. 

Furthermore, the book "Traveling Salesman Problem: Theory 

and Applications," edited by Donald Davendra, discusses 

various approaches to solving the TSP across different 

chapters, providing a comprehensive overview of the 

problem's theoretical and practical aspects [22]. Fair division 

problems, particularly those involving pie cutting, have also 
been a subject of mathematical inquiry. In 2018, an article 

titled "Cutting a Pie Is Not a Piece of Cake" was published in 

the American Mathematical Monthly by Julius B. Barbanel, 

Stevens J. Brams, and Walter Stromquist. The authors 

discussed the general problem of fair division, introducing 

mathematical formalism by representing a pie as a circle and 

exploring the possibilities of dividing it equally [23]. Another 

article, "Pie Cutting," was written and published by Jonathan 

Ratner, contributing further to this field [24]. In 2017, Julius 
B. Barbanel and Stevens J. Brams published another article 

focusing on a two-person pie-cutting procedure. They 

explored whether a two-person moving-knife procedure 

could yield an envy-free, undominated, and equitable 

allocation of a pie. The authors presented two procedures: one 

that yields an envy-free, almost undominated, and nearly 

equitable allocation and another that removes the "almost" 

conditions by broadening the definition of a "procedure." 

However, they noted that this latter approach raises 

philosophical rather than mathematical issues. 

 

III. MATHEMATICAL ANALYSIS AND 

RESOLUTION 

 
A. Josephus Problem  

 

 Problem Discussion  
In the year 67 CE, the city of Jotapata in Galilee fell 

under attack by the Roman Army under the command of 

Vespasian. The Roman army sieged Jotapa brutally for 47 

days. Josephus, the Jewish general of Jotapa. While the 

Romans were bathing the inhabitants of Jotapata in blood, 

Josephus somehow hid himself in a cave with forty others 

'persons of distinction.' One of the others who were hiding in 

that cavern with Josephus was captured while he was 

wondering about it and revealed the location of Josephus to 

the Roman army. However, the Romans wanted Josephus 

alive. Josephus was ready to surrender himself to the Roman 

army. But others like him preferred mass suicide to slavery. 

They wanted to murder Josephus themselves. To satisfy this 

angry mob, Josephus orchestrated a scheme in which all the 

caverneans will kill themselves in order, with the second 

person killing the first person, similarly the third person 

killing the second person, and so on. Josephus succeeded in 
his plan to be one of the last two alive individuals. He then 

convinced the second person to surrender with him. The 

question of how Josephus did it must arise. This historical 

enigma brought about a famous mathematical puzzle for us 

to solve [26]. 

 

 Mathematical Elucidation of the Problem 

We consider, a group of 𝑚 individuals numbered from 

1 − 10 standing around a circle. The technique begins from 

murdering the second of every two remaining individuals 

until one of the two individuals remains. We consider, the 

value of the number 𝑚  has been determined for example, 

when m= 20, Then the first person to get killed will be on 

position 2. The elimination will continue in following order 

If there are 20 persons standing in a circle, then we can take 

𝑚 = 20. Then the first person to get killed will be on position 

2. The elimination will continue in following order, 
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Table 1: Sequence of Eliminations for m=20 on the First 

Round in the Josephus Problem 

𝐏𝐞𝐫𝐬𝐨𝐧 𝐭𝐡𝐚𝐭 𝐤𝐢𝐥𝐥𝐬 𝐏𝐞𝐫𝐬𝐨𝐧 𝐭𝐡𝐚𝐭 𝐠𝐞𝐭𝐬 𝐤𝐢𝐥𝐥𝐞𝐝 

1 2 

3 4 

5 6 

7 8 

9 10 

11 12 

13 14 

15 16 

17 18 

19 20 

 
The remaining persons will be 1,3,5,7,9,11,13,15,17,19. 

So another elimination round will start. 

 

Table 2: Sequence of Eliminations for m=20 on the second 

round in the Josephus Problem 

𝐏𝐞𝐫𝐬𝐨𝐧 𝐭𝐡𝐚𝐭 𝐤𝐢𝐥𝐥𝐬 𝐏𝐞𝐫𝐬𝐨𝐧 𝐭𝐡𝐚𝐭 𝐠𝐞𝐭𝐬 𝐤𝐢𝐥𝐥𝐞𝐝 

1 3 

5 7 

9 11 

13 15 

17 19 

 
The remaining persons will be 1,5,9,13,17. Again 1 will 

eliminate 3 and the process will continue as 

 

Table 3: Sequence of Eliminations for m=20 on the third 

round in the Josephus Problem 

𝐏𝐞𝐫𝐬𝐨𝐧 𝐭𝐡𝐚𝐭 𝐤𝐢𝐥𝐥𝐬 𝐏𝐞𝐫𝐬𝐨𝐧 𝐭𝐡𝐚𝐭 𝐠𝐞𝐭𝐬 𝐤𝐢𝐥𝐥𝐞𝐝 

1 3 

5 7 

9 11 

13 15 

17 19 

 

 

 

 

 

 

 

 

Table 4: Sequence of Eliminations for m=20 on the Fourth 

Round in the Josephus Problem 

𝐏𝐞𝐫𝐬𝐨𝐧 𝐭𝐡𝐚𝐭 𝐤𝐢𝐥𝐥𝐬 𝐏𝐞𝐫𝐬𝐨𝐧 𝐭𝐡𝐚𝐭 𝐠𝐞𝐭𝐬 𝐤𝐢𝐥𝐥𝐞𝐝 

1 5 

9 13 

17 1 

9 17 

 

Lastly 9 remains. So, for 𝑚 = 20 the survivor will be 

the person standing on position 9. 

 

 Analysis 

Let us consider that, 𝑚 =total number of individuals 

standing in the primary circle 𝑝 =each step counts; i.e., 𝑝 −
1 =number of individuals being skipped and 𝑝𝑡ℎ  term is 

executed. Individuals in the circle are numbered from 1 to 𝑚. 

The problem has an explicit solution when every second 

individual will be murdered, i. e .   𝑝 =  2( A conceptual 

solution is given below when 𝑝 ≠ 2.) Expressing the solution 

recursively. We consider that, 𝑓(𝑚) designate the position of 

the survivor when there are primarily 𝑚 individuals and (𝑝 =
2). On the first pass around the circle, all the even-numbered 

individuals are eliminated [28]. During the second pass 

around the circle, the new second person is eliminated, 

followed by the new fourth person, as if the first round never 

occurred. When the beginning number of individuals is even, 

the individual in position 𝑞 during the second time around the 

circle was originally in position 2𝑞 —  1 (for every choice of 

𝑞). Let m=  2𝑗. The person 𝑎𝑡  𝑓(𝑗)  who will now survive 

was originally in position  2𝑓(𝑗) —  1 . Thus, we get the 

following recurrence relation:  

 

𝑓(2𝑗) = 2𝑓(𝑗) − 1 (3.1) 

 
If the starting number of people was odd, Person 1 

would be regarded as having died at the conclusion of the first 

pass around the circle. Once again, during the second pass 

around the circle, the new second person is eliminated, 

followed by the new fourth person, and so on.  In this case, 

the person in position 𝑞 was originally in position 2𝑞 +  1. 

This gives us the recurrence. 

 

𝑓(2𝑗 + 1) = 2𝑓(𝑗)  + 1 (3.2) 

 

When the values are being in tabular form 𝑜𝑓 𝑚 and 𝑓(𝑚) it 

is shown that there is a pattern: 

 

Table 5:  Position of the Survivor 𝑓(𝑚) for Various Values of 𝑚 in the Josephus Problem with 𝑝 = 2𝑝 

𝑚  2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

𝑓(𝒎) 1 1 3 1 3 5 7 1 3 5 7 9 11 13 15 1 

 

This suggests that 𝑓(𝑚) is an increasing odd sequence 

that restarts with 𝑓(𝑚) = 1 whenever the index 𝑚 is a power 

of 2. Therefore, if choosing 𝑏  and l such that 𝑚 =  2𝑏  +
 𝑙 𝑎𝑛𝑑  0 < 𝑙 <  2𝑏, then  𝑓(𝑚)  =  2𝑙 + 1. Clearly, values 

in the table satisfy this equation. Or it could be assumed that 

after 𝑙 people are dead there are only 2𝑏 people and we go to 

𝑡ℎ𝑒 2𝑙 +  1 .  He must be the survivor. Below a proof by 

induction is given [29]. 

 Theorem 3.1  If m = 2𝑏 + 𝑙   and  0 < 𝑙 <
2𝑏, 𝑡ℎ𝑒𝑛 𝑓(𝑚) = 2𝑙 + 1 

 

 Proof: Using strong induction on 𝑚. The base case 𝑚 =
 1 is true. Considering the cases separately when 𝑚  is 

even and  𝑚 is odd. If 𝑚 is even, then let us choose 𝑙1 and 

𝑏₁, such that m/2 = 2𝑏1 + 𝑙1
  and 0 < 1 < 2𝑏1 . Noting 

that 𝑙1 = 𝑙/2 . Let us have 𝑓(𝑚) = 2𝑓(𝑚/2) − 1 =
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2((2𝑙1) + 1) − 1 = 2𝑙 + 1,  where the second equality 

follows from the induction hypothesis. If 𝑚 is odd, then 

let us choose 𝑙1 , and b1 such that: 
𝑚 — 1

2
=  2𝑏₁ + 𝑙₁,

𝑎𝑛𝑑  0 < 𝑙 <  2𝑏1    Noting that  𝑙₁ = (𝑙 − 1)/2 . Now 

for this case again let us have  𝑓(𝑚)  =  2𝑓((𝑚 —  1)/
2) + 1 =  2((2𝑙₁) + 1) + 1 = 2𝑙 + 1,  where the 

second equality follows from the induction hypothesis. 

This completes the proof [30]. 

 

B. Tower of Hanoi 

 

 Problem Discussion 

As claimed in the legends of the tower of Hanoi, its 

origin is the tower of Brahma, which is a temple in the Indian 
city of Banaras.  The temple priests had to move a tower 

consisting of 64 damaged gold disks from one part of the 

temple to another and one disk at a time. In that Hindu temple, 

the puzzle was apparently used to raise the mental discipline 

of young priests [31].   

 

 Mathematical Elucidation of the Problem 

The Tower of Hanoi problem can be solved in some 

number of moves using the recursion relation. There is a 

sequence of moves that transfers the entire stack of disks from 

one pole to another, following the three essential rules of the 

puzzle [32]. They are given below: 

 

 The disks must be moved one at a time. 

 No disks can ever be in the air or on the ground while 

another one is being moved. 

 There can never be a larger disk on top of a smaller disk. 
 

 Analysis 

The most straightforward way to solve this problem is 

to use a recursive algorithm. Recursive relation. To move n 

disks first, there has to move first (𝑛 − 1) disks out of the 

way. Later, we move the bottom disk. And again, it needed to 

move (𝑛 − 1) disks, this time on to the final pole. It is better 

to make a claim about the number of moves that this 

algorithm requires given a problem of n disks, and the motive 

is to prove that the claim is correct. It can be done by making 

a chart for each disk to move [33]. That is given below: 

 

Table 6: Number of Moves Required for the Tower of Hanoi 

Problem with 𝑛 Disks 

Number 𝐨𝐟 𝐝𝐢𝐬𝐤𝐬 (𝐧) 𝐍𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐦𝐨𝐯𝐞𝐬 

𝟏 1 

𝟐 1 + 1 + 1 = 3 

𝟑 3 + 1 + 3 = 7 

𝟒 7 + 1 + 7 = 15 

… … … … … … … … … 

𝒏 − 𝟏 𝑀(𝑛 − 1) + 1 + 𝑀(𝑛 − 1) 

𝑛 2𝑛 − 1 

 
Looking at the table it can be shown that to move one 

disk it requires one move. To move two disks first it was 

needed to move smaller disk and then it was needed to move 

bigger one and again needed to move the smaller one. So, it 

requires total three moves. To move three disks first it is 

needed to move two disks which requires three moves and 

then is needed to move the bigger disk which requires one 

move and then again moving two disks requires three moves 

so total seven moves are required. Now suppose it is needed 
to move n disks total number of moves required to move 

(𝑛 − 1)  disks are 𝑀. Then we can describe the number of 

moves for 𝑛 disks in terms of number  𝑀. This can be denoted 

by 𝑀(𝑛). 
 

It must be proved that  𝑀(𝑛) = 2𝑛 − 1 

 

Proving our claim: 

 

 𝑀(𝑛) = 𝑀(𝑛 − 1) + 1 + 𝑀(𝑛 − 1) = 2𝑀(𝑛 − 1) + 1 
 

𝑀(1) = 1 

 

𝑀𝑛 = 2𝑀𝑛−1 + 0 
 

𝑀𝑛 − 2𝑀𝑛−1 = 0 
 

𝑀𝑛 = 𝑟𝑛𝐶1 
 

𝑟 − 2 = 0 
 

ℎ𝑟 = 2 
 

𝑀𝑛 = 2𝑛 + 𝐶 
 

Since 𝐶 is an arbitrary constant so let the value of 𝐶 = −1 

 

Then for any 𝑛 number of people the solution must have 

the form, 

 

𝑀𝑛 = 2𝑛 − 1 
 

For basic case: 𝑛 = 1: 𝑀(𝑛) = 21 − 1 = 1 

 

It must be proved by us that if the number of moves 

required to move n disks is 2𝑛 − 1 then the number of moves 

required to move (𝑛 + 1)  disks is 2𝑛+1 − 1. 
 

From the above solution,  𝑀(𝑛) = 2𝑛 − 1 

 
𝑀(𝑛 + 1) = 2𝑀(𝑛) + 1 = 2(2𝑛 − 1) + 1 = 2.2𝑛 − 2 + 1 = 2𝑛+1 − 1 

 

Since the assumption for 𝑛 + 1 disk is satisfied by the 

above recursive relation so it can be said that the assumption 

is generally true for n number of disks. Hence the assumption 

is correct. 

 
C. Traveling the world Problem  

 

 Problem Discussion 

In 1859, Sir William Rowan Hamilton, an Irish 

mathematician, demonstrated a mathematical game known as 

the icosian game [34]. The game took place on the surface of 

a wooden dodecahedron, a shape made up of 20 vertices 

(corners). Each corner of the dodecahedron was assigned the 

name of a city. The goal of the game was to trace a route that 

visits every vertex exactly once and returns to the starting 
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point. The solution to this challenge was demonstrated using 

a Hamiltonian path [35]. The idea of traveling the world 

hinges on two key factors. Firstly, the traveler must visit each 

vertex exactly once and must take the shortest possible route 
without revisiting any vertex.  This problem should be framed 

as finding a Hamiltonian path. If a Hamiltonian path can be 

demonstrated for these vertices, the shortest route for the 

traveller can be determined. This chapter explores 

Hamiltonian paths and addresses whether a dodecahedron 

possesses such a path. 

 Hamiltonian Path  

Here, it can be shown in figure 1 that a path is given by  

ABCFED, which has 6 vertices and 9 edges. It is needed to 

find out whether this path is a hamilton path or not. Now, if it 
starts from point A  and goes to point  E, then at point D and 

passes through as shown in figure  2, from this figure, it is 

seen that it could draw a path through each vertex, and it 

touches each vertex only once. Hence, the given figure has a 

Hamiltonian path [36].  

 

 
Fig 1: Hamiltonian Path 

 
 Mathematical Elucidation of the Problem 

At first glance, it might appear that there should be a 

straightforward method to determine whether a graph 

contains a Hamiltonian path. There are no known 

straightforward criteria that are both necessary and sufficient 

to determine the existence of Hamiltonian circuits. 

Nevertheless, several theorems provide sufficient conditions 

for the existence of Hamiltonian circuits. Additionally, 

certain properties can be employed to demonstrate that a 

graph lacks a Hamiltonian circuit. For example, a graph with 

a vertex of degree one cannot contain a Hamiltonian circuit, 

as such a circuit requires each vertex to be connected by 

exactly two edges within the circuit. Additionally, if a vertex 

in the graph has a degree of two, both edges incident to this 

vertex must be included in any Hamiltonian path. 

Additionally, it is important to note that once a Hamiltonian 

circuit has passed through a vertex, any remaining edges 
incident to that vertex, excluding the two used in the circuit, 

can be disregarded. Moreover, a Hamiltonian circuit cannot 

include any smaller circuits within it. These two conditions 

are among the most crucial for determining the existence of a 

Hamiltonian circuit [37]. They were established by Gabriel 

A. Dirac in 1952 and by Ore in 1960. 

 

 Theorem (Ore’s Theorem) If G is a simple graph with  𝑛 

vertices (𝑛 > 2) such that  𝑑𝑒𝑔(𝑢) + 𝑑𝑒𝑔(𝑣) ≥
𝑛

2
  for 

each nonadjacent pair of vertices  𝑢 𝑎𝑛𝑑  𝑣 ,then  𝐺  has a 

Hamilton path. 

 Proof: This theorem will be proved by contradiction. Let 

G satisfies the above condition but is not have a 

Hamiltonian path. First, let us form G* from G by adding 
edges until we get a non-Hamiltonian maximal graph. 

This means that adding one edge should make it 

Hamiltonian. Then a Hamiltonian path exists. Let us 

consider that the Hamiltonian path exists like this u is the 

starting vertex, then let us have intermediate vertices such 

that 𝑥1, 𝑥2, … … . 𝑥𝑛−3, 𝑥𝑛−2 , … and v be the final vertex. 

Now by adding the vertex, say u v, make it Hamiltonian 

so this means this path exists due to v through 𝑥₁. If  𝑥 𝑖  is 

adjacent to 𝑢  𝑡ℎ𝑒𝑛  𝑥 𝑖  cannot be adjacent to u. Now 

𝑥1 , 𝑥2, … … . 𝑥𝑛−3 , 𝑥𝑛−2, 𝑥𝑖−1 … 𝑥𝑖   this makes a 

Hamiltonian path, now by getting 
 

𝐷𝑒𝑔(𝑣) ≤  (𝑛 − 1) − deg(𝑢) 

 

𝐷𝑒𝑔(𝑣) + deg(𝑢) ≤ (𝑛 − 1) 
 

But this is a contradiction hence Ore’s theorem is 

proved [38]. 

 

 
Fig 2: Hamiltonian Path Satisfying the Ore’s Theorem 

 
Here number of vertices 4 and the only pair of 

nonadjacent vertices are 1 and 3. Then the degree of 

nonadjacent vertices are given below, 

 

𝐷𝑒𝑔(𝐴) + 𝐷𝑒𝑔(𝐸) = 4 ≥ 4 
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Since every pair of nonadjacent vertices satisfies the 

Ore’s theorem. Hence the path given in figure 2 has a 

Hamiltonian path. Any path which satisfies Ore’s theorem 

has a Hamiltonian path but the converse is not always true. It 
can be shown by given examples. In figure 3, 

 

 
Fig 3: A Hamiltonian Path that does not Satisfy Ore’s 

Theorem 

 

Here, the number of vertices is 5, and the nonadjacent 

vertices are AE, AB, DE, DC, CB, and CD. Then the degree 

of nonadjacent vertices is given below, 

 

𝐷𝑒𝑔(𝐴) + 𝐷𝑒𝑔(𝐸) = 4 < 5 

 

𝐷𝑒𝑔(𝐴) + 𝐷𝑒𝑔(𝐵) = 4 < 5 

 

𝐷𝑒𝑔(𝐷) + 𝐷𝑒𝑔(𝐸) = 4 < 5 

 

𝐷𝑒𝑔(𝐷) + 𝐷𝑒𝑔(𝐶) = 4 < 5 

 

𝐷𝑒𝑔(𝐶) + 𝐷𝑒𝑔(𝐵) = 4 < 5 

 

𝐷𝑒𝑔(𝐶) + 𝐷𝑒𝑔(𝐷) = 4 < 5 

 

Ore’s theorem is not satisfied for this path, but there are 

several Hamiltonian paths in that figure. It can be shown as 

ADBEC or ECADB etc. Despite not satisfying Ore’s 

theorem, Hamiltonian paths are found in figure 3. Hence, 

Ore’s theorem provides sufficient conditions for an existing 

Hamiltonian path, but it does not provide a necessary 

condition for an existing Hamiltonian path.  

 

 Finding a Hamiltonian Path in Dodecahedron 

 

 
Fig 4: Dodecahedron 

To find a Hamiltonian path in a dodecahedron, shown 

in figure 4, a 3-dimensional form of a dodecahedron is given 

below, 

 

 
Fig 5: 3D form of a dodecahedron 

 
A regular dodecahedron or pentagonal dodecahedron is a 

regular dodecahedron composed of twelve regular pentagonal 

faces, three meeting at each vertex. It is one of the five 

Platonic solids. It has 12 faces, 20 vertices, 30 edges, and 160 

diagonals. Here in Figure 6, let us consider any pair of 

nonadjacent vertices 9 and 11, then 

 

𝐷𝑒𝑔(9) + 𝐷𝑒𝑔(11) = 2 + 2 = 4 < 20 

 

Hence Ore’s theorem is not satisfied. But it is shown in figure 

5.5 that there exists a Hamiltonian path in dodecahedron. 

Since it is proved that Ore’s theorem does not provide 

necessary condition for finding Hamiltonian path hence 

without satisfying the theorem Hamiltonian path could be 

found. In figure 6 one Hamiltonian path has been found. From 

1 to vertex 20 it is shown in the figure.  

 

 
Fig 6: Hamiltonian Path 

 

Using this concept, anyone can travel through the 

vertices of the world, touching it only once, and could travel 

the world by covering the shortest distance in the shortest 

time [39].                                
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D. Cutting the Pie Problem 

  
 Problem Discussion 

In 1993, David Gale inquired whether it is always 
possible to divide a pie among n claimants in a manner that is 

both envy-free and undominated. This question addresses 

whether such a division can always be achieved. The pie is 

divided by n radii, with each claimant's preferences 

represented by individual measures. The measures assign 

positive values to pieces with positive areas. For n=3n, the 

answer to Gale’s question is negative, demonstrated by 

presenting three measures where pie division cannot be both 

envy-free and undominated. The measures are absolutely 

continuous, with respect to each other and with respect to the 

area [40]. 

 

 Mathematical Elucidation of the Problem 

 

 
Fig 7: Mathematical Elucidation of the Problem 

 

To address this problem, the approach began with small 

circles. The experiments were carried out with one, two, and 

three cuts. After several unsuccessful attempts with four cuts, 

it was realized that enlarging the circles was crucial for 
determining the remaining solutions. At this stage, a pattern 

was observed in the maximum number of pieces: the number 

of pieces increased with each additional cut, building upon 

the previous total [41]. The table below reflects this pattern 

to the current findings: 

 

Table 7: Number of Regions Created by Cuts in a Circle 

𝑁𝑢𝑚𝑏𝑒𝑟 𝒐𝒇 𝒄𝒖𝒕𝒔 𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇  𝑷𝒊𝒆𝒄𝒆𝒔 

𝟏 2 

𝟐 4(2 + 2) 

𝟑 7(4 + 3) 
𝟒 11(7 + 4) 

 

 

This was how the answers for future circles had been 
double-checked, like the one with 5 cuts. Originally, the 

number of pieces was 15, but the pattern suggested 16 (11 

+5). It had been tried a little more and then 16 pieces were 

obtained. The same process happened with the rest of the 

circles as well. During this process, something had been 

learned about how the intersection of lines worked and that 

every line had to cross every other line in a unique place. So, 

no crossing through existing intersections. That was how it 

ended up maximizing the total piece. Because of this, it had 

also begun to count the intersections.  In the end, circles were 

drawn for one through six cuts and the pattern was used for 

the rest. Here is the table that ended up, including 

intersections, and the pattern which had been found for 

intersections. 

 

 

 

Table 8: Number of Regions and Intersections Created by Cuts in a Circle 

Number 𝐨𝐟 𝐜𝐮𝐭𝐬 𝐍𝐮𝐦𝐛𝐞𝐫 𝐨𝐟  𝐩𝐢𝐞𝐜𝐞𝐬 𝐍𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐢𝐧𝐭𝐞𝐫𝐬𝐞𝐜𝐭𝐢𝐨𝐧𝐬 

𝟏 2(1 + 1) 0(0 + 0) 

𝟐 4(2 + 2) 1(0 + 1) 

𝟑 7(4 + 3) 3(1 + 2) 

𝟒 11(7 + 4) 6(3 + 3) 

𝟓 16(11 + 5) 10(6 + 4) 

𝟔 22(16 + 6) 15(10 + 5) 
𝟕 29(22 + 7) 21(15 + 6) 
𝟖 37(29 + 8) 28(21 + 7) 

𝟗 46(37 + 9) 36(28 + 8) 
𝟏𝟎 56(46 + 10) 45(36 + 9) 

 

 

Having this table, one also searches for an equation. The 

focus was on the total of the pieces, but it also looked at the 

intersection totals. The equations have been found through 
trial and error and by experimenting with numbers. The 

variables used here are  𝑐 , which is the number of cuts, 𝑝, 

which was the number of pieces, and 𝑖, which was the number 

of intersections. Here is the equation for the total number of 
pieces: 

 

𝑝 = (∑ s)

𝑐

𝑠=0

+ 1 
(3.3) 

 

And it can also be shown from the above table that an 

equation can be generated for the number of intersections. 
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𝑖 = (∑ s)

𝑐

𝑠=0

− 𝑐 
(3.4) 

 

Hence, this is the general formula for a circular pie to be 

cut into the maximum number of pieces with a fair division. 

But this solution is not general for any plane. 

 

 

 

 

 

 Analysis  

It is shown in this solution that how to get the maximum 

cut with fair division in any plane. This problem was first 

solved by the Swiss mathematician Jacob Steiner in 1826. To 
solve this problem, it has to start by looking at small cases. 

Remembering to begin with the smallest of all. The plane 

with no lines has one region with one line it has two regions. 

And with two lines it has four regions. Now it can be easily 

imagined that the solution must be 𝐿(𝑛) = 2𝑛 where 𝑛,is the 

number of cuts. But this is not the solution for cutting a plane 

into maximum pieces. Again, a table is generated by the trial-

and-error method and the table is given below: 

 

Table 9: Maximum Number of Regions and Intersections Created by Cuts in a Plane 

𝐍𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐜𝐮𝐭𝐬 𝐍𝐮𝐦𝐛𝐞𝐫 𝐨𝐟  𝐩𝐢𝐞𝐜𝐞𝐬 𝐍𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐢𝐧𝐭𝐞𝐫𝐬𝐞𝐜𝐭𝐢𝐨𝐧𝐬 

𝟏 2 0 

𝟐 4 1 

𝟑 7 3 

𝟒 11 6 

𝟓 16 10 

𝟔 22 15 

𝟕 29 21 

𝟖 37 28 

𝟗 46 36 

𝟏𝟎 56 45 

 

From the above table a pattern is seen. Where 𝐿(𝑛) is 

the maximum number of pieces. And 𝐿(𝑛 − 1) is the number 

of maximum pieces of previous number of cuts and 𝑛 is the 

total number of cuts. The recurrence is therefore, 

 

𝑛 = 0, 𝐿(𝑛) = 1; 
 

𝑛 > 0, 𝐿(𝑛) = 𝐿(𝑛 − 1) + 𝑛 

 

A recurrence can often understood by unfolding it all the 

way to the end as follows, 

 

 𝐿(𝑛) = 𝐿(𝑛 − 1) + 𝑛 

 

= 𝐿(𝑛 − 2) + (𝑛 − 1) + 𝑛 
 

= 𝐿(𝑛 − 3) + (𝑛 − 2) + (𝑛 − 1) + 𝑛….…… 

 

= 𝐿(0) + 1 + 2 + 3 … . +(𝑛 − 2) + (𝑛 − 1) + 𝑛 
 

= 1 + 𝑆(𝑛) 

 

Where 𝑆(𝑛)  = 1 + 2 + 3 + 4 + 5 + ⋯ . . +(𝑛 − 1) + 𝑛 

 

In other words, 𝐿(𝑛) is one more than the sum 𝑆(𝑛) of 

the first n positive integers. To evaluate 𝑆(𝑛), a trick can be 

used that Gauss reportedly used in 1786, 

 

𝑆(𝑛) = 1 + 2 + 3 + 4 … … … . . +(𝑛 − 1) + 𝑛   (3.5) 

 
𝑆(𝑛) = 𝑛 + (𝑛 − 1) + (𝑛 − 2) + (𝑛 − 3) + ⋯ 2 + 1      (3.6) 

 

 

 

Adding these two equations actually adding 𝑆(𝑛) to its 

reversal, 

 
2𝑆(𝑛) = (𝑛 + 1) + (𝑛 + 1) + (𝑛 + 1) + ⋯ + (𝑛 + 1) + (𝑛 + 1) 

 

𝑆(𝑛) =
𝑛(𝑛 + 1)

2
, 

 

𝑓𝑜𝑟 𝑛 ≥ 0 
 

Now the actual solution can be generated since 

evaluating 𝑆(𝑛) has been done.  

 

𝐿(𝑛) =
𝑛(𝑛 + 1)

2
+ 1, 𝑓𝑜𝑟 𝑛 ≥ 0 

 

Now it is good to construct a rigorous proof by 

induction. The key induction step is  

 

𝐿(𝑛) = 𝐿(𝑛 − 1) + 𝑛 
 

=
(𝑛 − 1)(𝑛 + 1)

2
+ 𝑛 

 

=
𝑛(𝑛 + 1)

2
+ 1 

 
Hence the formula generated for maximum pieces from 

cutting a plane is generalized and the general solution is given 

by, [41]. 
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IV. CONCLUSION 
 

Puzzles seem just for recreation, but solving puzzles has 

a deeper meaning than we can imagine. Mathematical 
concepts are everywhere, and puzzles are one of the most 

significant proofs. Josephus didn’t want to die, so he 

subconsciously managed to survive his death by using a 

mathematical concept. Josephus's problem is a well-known 

puzzle that is observed regularly in popular mathematics. In 

this problem, ‘One soldier survived by using the induction 

method.’ In the Josephus problem, recursion and how 

positional patterns emerge in elimination sequences are 

demonstrated, getting insights into algorithmic problem-

solving.  In the Tower of Hanoi problem, to move 64 disks 

from the first peg to the third, the monks would need over 590 

billion years, assuming they can move one disk per second. 

The function 2𝑛  –  1 was found by recognizing the geometric 

progressions in the recursive formula and using it in an 

explicit pattern. This function can be used to find the most 

optimal number of moves it would take to move any number 

of disks to the third peg. Another problem that has been 

studied, the problem of traveling the world using a 

dodecahedron, is the concept of finding a Hamiltonian path. 

In the last problem, the word ‘pie’ represented the circular 

region and how to find out a generalized formula for any 

number of cuts to get the divided maximum number of pieces. 

Further, the formula has been established for any plane by 

using the trial-and-error method—a generalized formula for 

any number of cuts to get the divided maximum number of 

pieces. These problems demonstrate how mathematical 

analysis can uncover patterns, establish algorithms, and 

contribute to optimization, decision-making, and 
computational efficiency. Future work on these problems 

could include investigating more complex variations, such as 

introducing probabilistic elements in the Josephus problem, 

optimizing moves for multi-peg versions of the Tower of 

Hanoi, exploring non-Euclidean Hamiltonian paths in higher-

dimensional spaces, or examining envy-free divisions for 

irregularly shaped pies in the Cutting Pie problem. These 

extensions could lead to discoveries and practical 

applications in computer science, economics, and logistics, 

further highlighting the broad impact and relevance of this 

research. 
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