
Volume 9, Issue 11, November– 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24NOV1065

IJISRT24NOV1065 www.ijisrt.com 1560

Config Client Refresh Approach on Containerized

Spring Boot Microservices: System

Scalability and Reliability

Shreeson Shrestha Er.

Infinite Computer Solutions

Abstract:- Spring boot microservices require the

application runtime to pause until the services restart for

the configuration refresh. Services linked to a centralized

config server, or preferably, a config client, need this.

Config client refresh played a critical role in maintaining

the consistency and responsiveness of distributed

microservices by dynamically updating client-side

configurations without application downtime. This

approach explored various strategies and optimizations

for config client refresh to enhance system reliability. This

Study investigated different available approaches of

config client refresh mechanisms for impact on system

behavior. This study experiment utilized the available

spring packages, bash-scripts, and docker for the

containerization of applications and collected

performance metrics for analysis. Further, this approach

identified key factors affecting refresh efficiency and

proposed optimized techniques to mitigate potential

challenges. Findings contribute a deeper understanding

of configuration client refresh and offer pragmatic

insights into designing robust and efficient scalable

systems.

Keywords:- Configuration Management, Config Refresh,

Containerization, Distributed System, Microservice

Architecture, Spring Cloud Config

I. INTRODUCTION

In the Current Spring boot Microservices, consistently

maintaining updated configurations across config-clients

ensured system reliability and adaptive dynamic system
environments. Config client refresh is the process by which

applications retrieve and apply updated configurations from

a centralized config server and is a mechanism for achieving

this objective. This paper considered various config-client

refresh mechanisms to optimize the performance and

reliability of microservices and suggested an approach for

config-client refresh dynamically.

 Background and Context

Latter-day software architectures rely on centralized

configurations to control the application process and

functionality, including environment-specific settings,
features, etc. In addition, microservices have moved from

regular deployments to a containerized approach. These

configs change concerning growing requirements, scalability

demands, operational changes, etc. So, the challenge for these

client applications was to synchronize configuration
efficiently from central sources like config servers for

consistent behavior across distributed microservices.

 Problem Statement

Challenges to this consistency among the distributed

microservices relate to the system's resilience, reliability,

scalability, and timeliness. In large-scale systems with

numerous clients, configuration inconsistency can impact

system functionality. Additionally, distributed microservices

can have unpredictable behavior dependent on these

configurations, affecting the system's reliability. Springboot
microservices, config-client requires restarting just making a

downtime for normal functioning. This study aims to solve

these challenges by instigating an optimized approach to the

config client refresh process.

 Objectives of Study

The Objectives of this study are:

 Analyze different mechanisms for config client refresh

 Factors affecting the scalability and reliability of the

system

 Propose a strategy for config client refresh in the

microservice system

 Significance of Config Refresh

The reliability of the system design relies upon the

config client refresh process. Improved config client refresh

can enhance the system reliability and streamline deployment

practices.

In further sections, this paper probes into the literature

around config client refresh mechanism outlines the

experiment for this study, presents an experiment of use
cases, and discusses implications for practice.

This section prepares for an approach emphasizing the

significance of config client refreshes, framing the research

problem, and setting out the study objectives.

II. LITERATURE REVIEW

In this section, we review the existing strategies related

to configuration management and synchronization of

configuration dynamically. This dynamic refresh of config

https://doi.org/10.38124/ijisrt/IJISRT24NOV1065
http://www.ijisrt.com/

Volume 9, Issue 11, November– 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24NOV1065

IJISRT24NOV1065 www.ijisrt.com 1561

clients was a core aspect of maintaining system integrity and

reliability in spring boot microservices.

Several approaches have already been explored where

spring boot provides config refresh from the centralized

configuration for microservices in practice. Spring

community approaches to config refresh using a centralized

config server and config clients as standalone microservices.
This config server resembles the configuration for distributed

microservices either on the file system or remote repositories,

especially git repositories, and, the microservices, a config

client should sync with the updated configurations on the

config server periodically. For Spring Boot microservices

with these latter system designs having a centralized config

server, all the config clients are responsible for consistently

updating configurations dynamically. Additionally, it

impacts deployment by making the config-client restart after

the updated configurations to the config-server.

Industries use various approaches like webhooks,

packages, tools, and technologies to sync these configurations

between the config server and client. Config-clients

synchronize these configurations either polling with the

centralized config server or needing a restart of the service

itself which caused a downtime for the application

functionality. Additionally, Spring Cloud provides packages:

Spring Cloud Config, Spring Actuator, Spring Monitor, and

Spring Cloud Bus for efficient configuration distribution and

simultaneity between the configurations. These specific

packages maintain a role for each step involved in the

synchronization process. Here, spring Cloud config provides
an approach for centralizing the config server, spring actuator

enables restful service /actuator/refresh API for config

client to sync configuration for specific single microservice,

Spring Cloud bus integrates with the Message brokers like

RabbitMQ or Kafka for configuration synchronization. This

Cloud Bus, allows services to broadcast events like

management instructions and state change of configuration to

entire config client services and also a powerful approach for

synchronization of Configuration without restarting of

service. Again, webhooks are utilized in use cases such as

cloud repository applications that maintain configurations in
git repositories. These applications set up webhooks on the

config server, which leads to an event of configuration

updates and refreshes all of the services linked to Spring

Cloud Bus. In this case, the /monitor API that Spring Monitor

exposes was set up to be triggered by SCM (Source Control

Management) webhooks, activating the bus refresh endpoint

that Spring Cloud Bus Integrations provides.

Furthermore, while existing works of literature and

organizational practices provide various valuable approaches

to enable client microservices to refresh configurations with

likely zero downtime, ensuring operating with consistent
configurations and reducing discrepancies, there are still gaps

and limited approaches were researched and fallbacks for use

cases where numerous containerized services interacting with

the shared configurations configured not to use message

brokers which too restricts the use of Spring Cloud Bus and

Monitor approach.

This literature review provides a base for understanding

current scenarios over an approach to config-client refresh

and highlights the gap for further areas and use cases. The

following Sections on the methodology used in the study

address these gaps.

III. METHODOLOGY

Tools and techniques used for optimizing the config-

client refresh process in distributed spring-boot microservices

applications are explained in this section. The principal focus

was to suggest an approach to refresh configuration in a

containerized spring-boot microservices environment using

docker and bash scripts to automate refresh operations.

This paper followed an experimental approach,

polishing a practical implementation of a configuration client

refresh process in a dockerized Spring Boot application. The

configuration refresh process was automated using a Bash
script inside a Dockerfile, which triggered configuration

updates and monitored their effect on system performance

and responsiveness. The configuration update process uses

the REST API provided by the spring-boot-starter-actuator

package (i.e. /actuator/refresh).

 Tools and Techniques used

To carry out this experimental approach, the following

tools were utilized.

 Docker: Docker was used to containerize the Spring Boot

application. This containerization of the application
ensured that all required dependencies for an application

were packaged along with the docker image creating an

isolated environment with easier deployment and test

configuration updates across different environments.

 Spring Boot: The application was built using Spring

Boot, a popular Java framework for building

microservices and standalone applications. Spring Boot

provided a range of non-functional features for large-scale

applications like externalized and centralized config-

server inclusive of libraries for dynamically updating their
configurations during runtime without requiring restarts.

 Spring Cloud Config: The application used Spring Cloud

config to support externalized configuration for

microservices. These provided support for a centralized

config server for an application and client-side support for

microservices for dynamic configurations.

 Spring Boot Actuator: The REST API

(/actuator/refresh) was made available to us by the

application's use of the spring-boot-starter-actuator
package. A health check and refresh are a part of the extra

services and features offered in this sub-package.

 Bash Script: A Bash script was created to automate the

configuration refresh procedure. For the Config client

Spring Boot application, the script initiated a procedure to

update its configuration from the centralized

https://doi.org/10.38124/ijisrt/IJISRT24NOV1065
http://www.ijisrt.com/

Volume 9, Issue 11, November– 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24NOV1065

IJISRT24NOV1065 www.ijisrt.com 1562

configuration server. This made it possible for us to

synchronize configuration updates effectively through

automation.

 Config-Client Configuration Refresh Process

To conduct this experiment, the following procedures

were followed.

 Initial Setup: A microservices architecture-based spring

boot application was created. This application used

spring cloud config for the centralized config server and

numerous config-client setups and actuator packages for

providing API for config-client refresh for configurations.

 Containerize Application: This application was

containerized using docker. The Dockerfile contains the

bash scripts for refreshing configurations for the config

clients. Each config client had a separate Dockerfile

which made a separate container replicating a distributed
system with numerous config client applications.

 Automated configuration refresh: The bash script for

refreshing configuration for config client from centralized

config server which was placed inside a docker container

itself. This bash script periodically triggers a REST API

an actuator provides (i.e. /actuator/refresh).

 Monitoring of Performance: This dockerized

application was monitored for performance metrics such

as refresh time and resource utilization. These collected
metrics helped system reliability measures for handling

refresh operations without downtime.

 Data Collection and Analysis

Data related to performance metrics were collected

throughout the process. The analysis focused on the

following.

 Refresh time: The response time for the refresh trigger

was captured

 Resource Utilization: CPU and memory utilization was

monitored in the process of frequent refresh operations.
These metrics were collected with the hosting

environment with this containerized Application. We

used the Openshift cluster.

 Reliability of system: Errors, Exceptions, and downtime

as a result of periodic refresh configurations were

observed to ensure system reliability

IV. RESULTS AND DISCUSSION

From the above experimental approach on config

refresh on containerized config clients of spring boot-
microservices, we have the following findings. Also, this

focused on analyzing the performance metrics after the

implementation of the approach.

A. Results and Findings

This approach for dynamic configuration refresh on

containerized spring boot microservices, also, focused on the

performance metrics for scalability and reliability of the

system and the impact of periodic refresh. The following

findings are presented.

 Resource Utilization:

The container's resource utilization was observed

closely during the configuration refresh process. Resource

consumption was seen as in patterns as it was a periodic
trigger for refresh. The experiments revealed that:

 CPU and Memory Utilization: Utilization in this aspect

appeared to be on pattern. This periodic refresh affected

only acceptable limits and did not significantly notice a

choke over the container’s limit.

 Network Overhead: As the bash script was used to

trigger refresh API using the curl POST method, overhead

on a network was expected due to periodic refresh. Only

a minimal increase in network traffic was observed due to

this operation.

This periodic refresh approach was observed within the

acceptable limits, this experiment suggested refresh operation

using a script was CPU and Memory-efficient but further

optimizations on scripts and resources could lead to more

efficient results for resource utilization.

 Refresh Time:

This was one of the major key performance metrics for

the refresh operations. In general, refresh time was good but

some latency was observed for some services.

 Normal refresh rate: Most of the responses on services

for curl POST for refresh were under 1 minute and 30

seconds. This ensured the spring boot application

dynamic update of configurations to the config-clients

very efficiently.

 Abnormal refresh rate: Some abnormal response times

on the services were recorded. The latency time captured

was even more than 20 minutes for some services.

However, this latency was seen on random services and

not on a specific service every time. This might be due to

some network glitches but abnormality was not observed
for every trigger.

This occasional latency observed for some random

services emphasized the importance of stable network

connections while especially relying on API calls. However,

some retry mechanisms and limits to response time could

mitigate refresh time issues due to network delays or glitches.

 Reliability of System

The application demonstrated a high level of system

reliability despite latency on refresh time and periodic refresh
operation.

 Error and Exception: No exceptions and errors

regarding the configuration refresh were detected on the

container logs of containerized Spring Boot applications.

This indicates periodic configuration refresh operated

smoothly.

https://doi.org/10.38124/ijisrt/IJISRT24NOV1065
http://www.ijisrt.com/

Volume 9, Issue 11, November– 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24NOV1065

IJISRT24NOV1065 www.ijisrt.com 1563

 Application Downtime: No application downtime was

observed during the refresh configuration process.

Further, this approach removed the config clients restart

(i.e. downtime) for refreshing configurations dynamically

which had impacted the system reliability.

Handling configuration refresh in containerized Spring

Boot application without errors, exceptions, and downtime
proves the effectiveness of the current approach for the

reliability of the system.

V. LIMITATIONS AND FUTURE

CONSIDERATIONS

This approach of using a bash-script on containerized

spring-boot microservices provided an efficient way for

dynamic refresh of configuration without restarting config-

clients in microservices. However, future research and

considerations can be made as follows:

 Network Stability

This approach of configuration refresh was completely

dependent on the API calls provided by the spring boot

actuator. API request was handled using the CURL bash

script. Therefore, implementation of retry mechanisms and

response time out could improve the network resilience and

consider the stable network for efficiency for refresh

operations.

 Frequency of Refresh

The approach suggested a periodic refresh with a certain
interval for dynamically refreshing the configurations. This

periodic refresh approach could be altered or reduced with the

necessity of refresh and if configuration change was

infrequent.

VI. CONCLUSION

This paper examined the different approaches available

for dynamic configuration refresh for spring boot

microservices and focused on the analysis of performance

metrics that could impact system reliability and scalability.
Furthermore, an approach to a config refresh mainly with

containerized environments for spring boot microservices

was also suggested by this paper. Also, performance metrics

like CPU and Memory utilization, and impact to the system

using the periodic configuration refresh and refresh time were

analyzed for its efficacy on the system with the suggested

approach.

This experiment used docker for containerization of

spring boot applications and triggered an API using CURL

script for refreshing the configuration on config clients of

microservices architecture using a centralized config server.
API was configured and provided by the spring actuator

package (i.e. /actuator/refresh) which syncs the configuration

from the central config server.

Again, the CPU and memory utilization with the

periodic trigger of refresh had a minimal effect within the

considerable limits. However, the response time was

observed abnormal for some of the services. This abnormality

was seen most specifically due to the network instability, This

instability could be optimized using failure resilience

approaches such as response timeout and retry mechanism for

trigger operations. Also, the interval period can be minimized

if the frequency of config refresh on the centralized config

server is less providing reliable configuration

synchronization to the config clients.

REFERENCES

[1]. Pivotal Software, Inc. (n.d.). Spring Boot 3.3.x

reference guide. Spring.io. Retrieved October 12,

2024, from https://docs.spring.io/spring-

boot/docs/3.3.x/reference

[2]. Spring Cloud. (n.d.). Spring Cloud Config:

Centralized External Configuration Management.

Spring.io. Retrieved October 15, 2024, from

https://spring.io/projects/spring-cloud-config
[3]. Docker, Inc. (n.d.). Docker Overview. Docker

Documentation. Retrieved October 15, 2024, from

https://docs.docker.com/get-started/overview/

[4]. Spring.io. (n.d.). Spring Cloud Bus 4.1.x reference

guide. Retrieved October 18, 2024, from

https://docs.spring.io/spring-cloud-

bus/docs/4.1.x/reference/html/

[5]. Spring.io. (n.d.). Building a RESTful web service with

Spring Boot Actuator. Retrieved October 18, 2024,

from https://spring.io/guides/gs/actuator-service

[6]. Spring.io. (n.d.). Push notifications and Spring Cloud

Bus in Spring Cloud Config. Retrieved October 19,
2024, from https://cloud.spring.io/spring-cloud-

config/multi/multi__push_notifications_and_spring_

cloud_bus.html

https://doi.org/10.38124/ijisrt/IJISRT24NOV1065
http://www.ijisrt.com/
https://docs.spring.io/spring-boot/docs/3.3.x/reference
https://docs.spring.io/spring-boot/docs/3.3.x/reference
https://spring.io/projects/spring-cloud-config
https://docs.docker.com/get-started/overview/
https://docs.spring.io/spring-cloud-bus/docs/4.1.x/reference/html/
https://docs.spring.io/spring-cloud-bus/docs/4.1.x/reference/html/
https://spring.io/guides/gs/actuator-service
https://cloud.spring.io/spring-cloud-config/multi/multi__push_notifications_and_spring_cloud_bus.html
https://cloud.spring.io/spring-cloud-config/multi/multi__push_notifications_and_spring_cloud_bus.html
https://cloud.spring.io/spring-cloud-config/multi/multi__push_notifications_and_spring_cloud_bus.html

	Abstract:- Spring boot microservices require the application runtime to pause until the services restart for the configuration refresh. Services linked to a centralized config server, or preferably, a config client, need this. Config client refresh pl...
	Keywords:- Configuration Management, Config Refresh, Containerization, Distributed System, Microservice Architecture, Spring Cloud Config
	I. INTRODUCTION
	 Background and Context
	 Problem Statement
	 Objectives of Study
	 Significance of Config Refresh

	II. LITERATURE REVIEW
	III. METHODOLOGY
	 Tools and Techniques used
	 Config-Client Configuration Refresh Process
	 Data Collection and Analysis

	IV. RESULTS AND DISCUSSION
	A. Results and Findings
	V. LIMITATIONS AND FUTURE CONSIDERATIONS

