
Volume 9, Issue 3, March – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24MAR615

IJISRT24MAR615 www.ijisrt.com 1671

A Machine Learning-Based PE Header
Analysis for Malware Detection

Shruti Gujar1

Department of Computer Science and Engineering

Dr. D Y Patil College of Engineering and Technology,

Kolhapur

Saurabh Patil2

Department of Computer Science and Engineering

Walchand College of Engineering, Sangli

Abstract:- The malware is file or piece of code which is

delivered over network that infects or conducts any

behavior as attacker desired. So, it is one of the most

serious threats to modern world specially who are in

touch of computer and information technology. The older

signature-based detection is not convenient all the time.

This was not the perfect approach as it was detection

which uses unique signature or digital footprint from
software running on secured system. This method is used

in antivirus programs. These programs scan any

software program and try to identify the signatures.

These signatures are then compared to signature of

known malwares. But signatures may not be known to us

every time. This method has some lots of limitations. It is

unable to the new patterns or indicators of new threats

that are not already known. As a result, security

professionals often this method in conjunction with tools

that provide context into their network behavior. The PE

is actually file layout that is present in .exe, .dll file

formats and other machine level code and their PE

headers contains information that can help us

distinguish between malicious malware files and

legitimate files. This method is helpful to find hidden

patterns and to establish new techniques to recognize the

files. The virus share suffixed files are also the files which
performs malicious activities and malware in nature.

Even this type of files can be trained and recognized with

the help of PE headers-based method to recognize the

nature of file. Its possible to identify the malware by

looking at some key features from headers such as

checksum, section name, initialized data Size, DLL

characteristics and major image version. Looking at the

PE header is much faster than scanning the whole

information in the PE. Thus, the prediction of files are

possible even with faster rate. In this paper, we will

understand the different attributes available in PE

headers to carefully analyses the trends and to distinguish

the given executable files as malicious or legitimate on

basis of PE headers using advance machine learning

algorithms.

Keywords:- Machine Learning, PE Headers, Classifications,

Malware detection, PE Header Table.

I. INTRODUCTION

Malwares are malicious files and it can damage to our

important files in computer systems [1]. We can prevent this

threat by identifying it. These files are traditionally judged

on the basis of signatures [2]. The signature-based method is

one of the methods which helps to distinguish the difference

between malicious and legitimate files.

 Signature based Technique:

Antivirus solutions play a crucial role in protecting

computers and devices from the pervasive threat of

malicious software, commonly referred to as malware.

These security tools employ a robust defense mechanism

known as signature-based detection, a stalwart method in the

cybersecurity domain for many decades.

Signature-based detection entails a meticulous

examination of a computer or device for traces, or

footprints, of previously identified malware. These

distinctive footprints are carefully cataloged and stored in a

comprehensive database [3]. During a scan, antivirus products

diligently compare the files and processes on the system

against this extensive database. The primary objective is

straightforward: if a footprint matching that of a known
malware is detected, the antivirus software promptly flags it

as a security threat.

The effectiveness of this approach hinges on the

collaborative efforts between cybersecurity experts and the

antivirus community. In response to the emergence of new

malware types, experts thoroughly analyze their

characteristics and expeditiously add their signatures, or

footprints, to the continually expanding database [4]. This

collective endeavor ensures that all antivirus products

leveraging this shared repository can promptly recognize

and neutralize newly identified malware during routine

scans.

 PE Headers-based Technique:

PE (Portable Executable) file format is a data structure

that tells the Windows OS loader what information is

required to manage the wrapped executable code. This
includes dynamic library references for linking, API export,

import tables, resource management data, and TLS data [5].

https://doi.org/10.38124/ijisrt/IJISRT24MAR615
http://www.ijisrt.com/

Volume 9, Issue 3, March – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24MAR615

IJISRT24MAR615 www.ijisrt.com 1672

The data structures on disk are the same data structures

used in the memory, and if you know how to find something

in a PE file, you can almost certainly find the exact

information after the file is loaded into the memory. It is

important to note that PE files are not just mapped into

memory as a single memory-mapped file. Instead, the Win32

loader looks at the PE file and decides what portions of the

file to map in.

A module in memory represents all the code, data, and

resources from an executable file needed by the process.
Other parts of a PE file may be read but not mapped in (for

instance, relocations). Some parts may not be mapped in at

all, for example, when debug information is placed at the

end of the file.

A field in the PE header tells the system how much

memory needs to be set aside for mapping the executable into

memory. Data that won’t be mapped in is placed at the end

of the file, past any parts that will be mapped in. These files

can be studied to identify trends and finally we can get the

nature of files and their behavior.

II. LITERATURE SURVEY

In the dynamic realm of cybersecurity, our exploration

of innovative avenues finds inspiration in a compelling body

of research focused on malware detection. Several
noteworthy studies have captivated our attention and ignited

collective curiosity within our team.

One such impactful study [1] stands out for its

ingenious use of information theory in classifying packed

and encoded files. The application of theoretical frameworks

to enhance our understanding and detection capabilities in

the face of sophisticated file manipulations has sparked our

interest and set the stage for further exploration.

Another significant contribution [2] offers a

comprehensive overview of signature-based techniques in

antivirus products. This review prompts us to critically

reassess and refine our approach to signature-based

detection, aiming to elevate our current practices and

contribute to more effective antivirus solutions.

The exploration of the pipeline process in both

signature- based and behavior-based malware detection, as

outlined in [3] provides a valuable roadmap for our team.

The systematic breakdown of stages and processes offers a

blueprint to enhance our operational frameworks and

potentially uncover synergies between these detection

approaches.

Additionally, [4] introduces the integration of machine

learning into malware detection. This study fuels our

enthusiasm for incorporating intelligent systems into our

cybersecurity efforts, envisioning the application of diverse

machine learning algorithms to fortify our classification

capabilities.

As we absorb the insights from these impactful studies,

a collective sense of purpose emerges, propelling us to

contribute to the evolving landscape of cybersecurity. The

intricate dance between theoretical foundations, signature-

based methodologies, and the potential unleashed by

machine learning beckons us to chart our own course in

advancing the realm of malware detection.

III. METHODOLOGY

Fig 1 DOB Stub Program

Fig 2 PE File Header

Fig 3 Image Header

 Structure of PE:

The above figures state the MS-DOS Stub Program

which serves as an initial code segment that runs

automatically when a Win32-based program encounters an

incompatible environment. Its primary purpose is to display

the message "This program cannot be run in DOS mode,"

offering an informative prompt in cases where the program

is not compatible with the DOS operating system. This stub

program is executed by MS-DOS and provides an indication

that the executable is designed for the Windows

environment.

https://doi.org/10.38124/ijisrt/IJISRT24MAR615
http://www.ijisrt.com/

Volume 9, Issue 3, March – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24MAR615

IJISRT24MAR615 www.ijisrt.com 1673

Moving into the PE (Portable Executable) file

structure, the PE File Header is located using the e_lfanew

field of the MS-DOS Header. Comprising the

SIGNATURE, IMAGE_FILE_HEADER, and

IMAGE_OPTIONAL_HEADER, the PE Header offers

crucial insights into the layout and characteristics of the

executable file. It stands as a key reference point for

understanding the underlying architecture and operational

parameters of the program.

The IMAGE_OPTIONAL_HEADER, several pivotal
fields dictate the behavior of the executable. The Magic field

distinguishes between 32-bit (IMAGE_NT_OPTIONAL_

HDR32_MAGIC), 64- bit (IMAGE_NT_OPTIONAL_

HDR64_ MAGIC) applications. AddressOfEntryPoint

designates the starting address for Windows loader

execution, while ImageBase determines the memory-

mapped address for the executable. Other fields, such as

SectionAlignment, FileAlignment, SizeOfImage, and

Subsystem, contribute to shaping the file's memory layout

and operational characteristics.

The IMAGE_DATA_DIRECTORY array holds

pointers to critical components within the executable, with

entries like Export Directory, Import Directory, Resource

Directory, and others. These directories play a pivotal role in

establishing connections with external resources and

functionalities, delineating the executable's dependencies

and interactions. imported functions, respectively. These

sections contribute to the overall functionality of the

executable by defining its interactions with external

components. The .edata and .idata sections are linked to

export and import directory entries in the DataDirectory
array, forming integral components of the executable's

structure.

The PE file structure, encompassing the MS-DOS Stub

Program, PE File Header, IMAGE_OPTIONAL_HEADER,

and IMAGE_DATA_DIRECTORY, Section Header Table,

and various sections, provides a comprehensive framework

for understanding the architecture, dependencies, and

behavior of Windows executable files [5]. See the given fig.4

PE file format and fig.5 structure of file for more

information.

Fig 4 PE File Format

The Section Header Table, an array of

IMAGE_SECTION_HEADER structures, provides a

detailed account of the various sections within the

executable. Fields like SizeOfRawData, VirtualSize,

PointerToRawData, VirtualAddress, and Characteristics

contribute to understanding the size, location, and properties

of each section. These sections include .text for executable

code, .data for initialized data, and others such as .rdata,

.idata, .reloc, .rsrc, and .debug.

https://doi.org/10.38124/ijisrt/IJISRT24MAR615
http://www.ijisrt.com/

Volume 9, Issue 3, March – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24MAR615

IJISRT24MAR615 www.ijisrt.com 1674

 Execution:

Fig 5 Structure of PE File

Two specific sections, .edata and .idata, merit attention

for their role in listing exported and In conducting this

research, the initial step involves the collection of a diverse

dataset encompassing information related to files, with a

particular emphasis on attributes indicative of their

legitimacy and potential malware status. Following the data

acquisition, the pandas library is employed to facilitate the

importation of the dataset, reading it from a CSV file and

specifying the appropriate separator. The subsequent data

preprocessing stage involves a detailed exploratory analysis

to comprehend the structure and characteristics of the

dataset. Any instances of missing or irrelevant data are

addressed meticulously to ensure the dataset is prepared for

rigorous analysis.

The data exploration techniques are employed,

leveraging descriptive statistics and visualizations to derive

valuable insights. The presentation of the initial and final

five records of the dataset, scrutiny of column names, and

the provision of summary statistics contribute to a

comprehensive understanding of the dataset. Visual

representations, such as pie charts, are utilized to illustrate

the distribution of legitimate and malware files within the

dataset.

Feature selection is a critical aspect of the research

methodology, employing machine learning techniques to

identify key variables essential for effective classification.

The Extra Trees Classifier is utilized to assess feature

importance, facilitating the selection of pertinent features.

Irrelevant columns, including 'Name,' 'md5,' and 'legitimate,'

are excluded to construct the feature matrix (X) and target

variable (y).

Data splitting is conducted to partition the dataset

into training and testing sets, typically allocating 70% for

training and 30% for testing. Stratification techniques are

applied to maintain a balanced distribution of legitimate

and malware samples in both sets.

The subsequent phase involves the evaluation of

various classifiers, such as Decision Tree, Random Forest,

and Gradient Boosting, assessing the accuracy of each

model on the testing set. The classifier demonstrating the

highest accuracy is chosen as the final model mainly

Random Forest.

IV. RESULTS AND DISCUSSIONS

 Accuracy of Classifiers for this Model:

Table 1 Accuracy of Classifiers for this Model

Sr No. Classifier Accuracy

1 Decision Tree 99%

2 Random Forest 99.38%

3 Gradient Boosting 98.99%

The dataset has been structured to encompass a broad

array of attributes related to files, offering an extensive

basis for analysis and classification. Each column holds

specific information, contributing to a nuanced understanding

of the dataset. Here is a breakdown of the key features

without the use of double inverted commas:

The Name column serves as a unique identifier for

files in the dataset. Meanwhile, md5 contains MD5 hash

values, crucial for integrity verification. The Machine
column specifies the file's targeted architecture, indicating

the intended platform [6].

Size Of Optional Header denotes the size of the

optional header in bytes, a vital aspect of the Portable

Executable (PE) file format. Characteristics includes flags

conveying various file attributes, such as executability or

DLL status.

Major Linker Version and Minor Linker Version

represent the major and minor version numbers of the linker

used during compilation. Size-related information is

provided by columns like Size Of Code, Size Of Initialized

Data, and Size Of Uninitialized Data.

Address Of Entry Point designates the starting point

for execution, while Base Of Code and Base Of Data
indicate base addresses. Image Base specifies the preferred

base address when loaded into memory.

Alignment details are captured by Section Alignment

and File Alignment. Operating system requirements are

outlined through Major Operating System Version and Minor

Operating System Version. File versioning details are

included in Major Image Version and Minor Image Version.

Size Of Image and Size Of Headers quantify the size of

the image and combined header size. Check Sum ensures

file integrity, and Subsystem specifies the required

subsystem. Dll Characteristics focuses on characteristics

specific to DLL files.

https://doi.org/10.38124/ijisrt/IJISRT24MAR615
http://www.ijisrt.com/

Volume 9, Issue 3, March – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24MAR615

IJISRT24MAR615 www.ijisrt.com 1675

Memory-related details are covered by columns like

Size Of Stack Reserve, Size Of Stack Commit, Size Of Heap

Reserve, and Size Of Heap Commit. Loader Flags include

flags indicating properties of the image loader.

Number Of Rva And Sizes represents the number of

data-directory entries, and Sections Nb specifies the number

of sections in the PE file. Entropy details for sections are

conveyed by columns like Sections Mean Entropy, Sections

Min Entropy, and Sections Max Entropy Raw and virtual

sizes of sections are captured by columns like Sections
Mean Raw size, Sections Min Raw size, Section Max Raw

size, Sections Mean Virtual size, Sections Min Virtual size,

and Section Max Virtual size.

Import-related insights are provided by Imports Nb

DLL, Imports Nb, and Imports Nb Ordinal. Export Nb

signifies the number of exported functions, and Resources

Nb denotes the number of resources. Entropy statistics

related to resources are presented in columns like Resources

Mean Entropy, Resources Min Entropy, and Resources Max

Entropy. Resource sizes are captured by Resources Mean

Size, Resources Min Size, and Resources Max Size.

 The Important Columns Selection using Extra – Tree

Classifier Fitting:

Table 2 The Important Columns Selection using

Extra – Tree Classifier Fitting

Sr No Features Importance
level

1 Dll Characteristics (0.154796)

2 Characteristics (0.117378)

3 Machine (0.098500)

4 Subsystem (0.064115)

5 Version Information Size (0.060187)

6 Sections Max Entropy (0.058773)

7 Major Sub System Version (0.053747)

8 Size Of Optional Header (0.046769)

9 Image Base (0.044347)

10 Resources Min Entropy (0.038087)

11 Resources Max Entropy (0.033732)

12 Major Operating System
Version

(0.022470)

13 Size Of Stack Reserve (0.019694

 The Nature of Files Tested again Model.

Table 3 The Nature of Files Tested again Model

Sr No File Name Nature

1 msinfo.exe legitimate

2 link.exe malicious

The msinfo.exe is file present in C drive and it was

legitimate according to model whereas the link.exe is

malicious application file which was taken from internet to

test and detected malicious [9].

V. CONCLUSIONS AND FUTURE WORK

This includes the selection of only important features

to reduce the problem of latency. But if the compatibility and

computing power is quite high, the power of system can make

it possible to train even with all features of dataset. The

successful integration of both signatures and PE headers

within a unified system has demonstrated its effectiveness in

detecting malware, showcasing a comprehensive approach

that enhances accuracy in the detection process. This dual

methodology effectively combines the strengths of
signatures, which identify known malware patterns, with PE

headers, providing crucial insights into the structural aspects

of executable files [7].

Furthermore, this project establishes a robust

foundation for potential extensions, particularly in the

specialized domain of ransomware analysis and detection.

By expanding upon the existing framework, future endeavors

can concentrate on a thorough exploration of new patterns

within headers associated with ransomware strains. This

extension holds significant promise in tackling the dynamic

challenges posed by ransomware within the cybersecurity

landscape.

The proposed enhancement entails the development of

advanced algorithms and methodologies capable of

identifying novel patterns and distinctive characteristics
linked to ransomware within PE headers. By proactively

adapting to emerging threats, the system can evolve as a

resilient defense mechanism against the ever-changing

nature of ransomware attacks.

In essence, the incorporation of signatures and PE

headers not only enhances accuracy in malware detection

but also lays the groundwork for proactive measures against

ransomware. This extension represents a forward-thinking

approach to cybersecurity, emphasizing adaptability and

pattern recognition to effectively counteract evolving threats

in the digital landscape [8].

The findings of this classification study hold

considerable potential for enhancing the effectiveness of

anti-virus programs, thereby contributing to an improvement

in the detection rates of malware [10]. This research lays a
solid foundation for future endeavors, where the

amalgamation of diverse dynamic features within the

contextual framework can be explored. Such a

comprehensive approach is envisioned to further elevate the

accuracy of malware detection systems, addressing the

evolving landscape of cyber threats and establishing a more

resilient defense against malicious activities.

https://doi.org/10.38124/ijisrt/IJISRT24MAR615
http://www.ijisrt.com/

Volume 9, Issue 3, March – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24MAR615

IJISRT24MAR615 www.ijisrt.com 1676

REFERENCES

[1]. J. Raphel and P. Vinod, "Information theoretic

method for classification of packed and encoded

files", Procedings of the 8th International Conference

on Security of Information and Networks - SIN ‟15,

2015.

[2]. M. Al-Asli and T. A. Ghaleb, "Review of Signature-

based Techniques in Antivirus Products," 2019

International Conference on Computer and

Information Sciences (ICCIS), Sakaka, Saudi Arabia,
2019.

[3]. M. Goyal and R. Kumar, "The Pipeline Process of

Signature-based and Behavior-based Malware

Detection," 2020 IEEE 5th International Conference

on Computing Communication and Automation

(ICCCA), Greater Noida, India, 2020.

[4]. S. Choudhary and A. Sharma, "Malware Detection &

Classification using Machine Learning," 2020

International Conference on Emerging Trends in

Communication, Control and Computing (ICONC3),

Lakshmangarh, India, 2020.

[5]. M. Goyal and R. Kumar, "The Pipeline Process of

Signature-based and Behavior-based Malware

Detection," 2020 IEEE 5th International Conference

on Computing Communication and Automation

(ICCCA), Greater Noida, India, 2020.

[6]. A. M. Radwan, "Machine Learning Techniques to
Detect Maliciousness of Portable Executable Files,"

2019 International Conference on Promising

Electronic Technologies (ICPET), Gaza, Palestine,

2019.

[7]. Z. Khorsand and A. Hamzeh, "A novel compression-

based approach for malware detection using PE

header," The 5th Conference on Information and

Knowledge Technology, Shiraz, Iran, 2013.

[8]. L. El Neel, A. Copiaco, W. Obaid and H. Mukhtar,

"Comparison of Feature Extraction and Classification

Techniques of PE Malware," 2022 5th International

Conference on Signal Processing and Information

Security (ICSPIS), Dubai, United Arab Emirates,

2022.

[9]. Al-Khshali, Hasan H., Muhammad Ilyas and Osman

Nuri Ucan. “Effect of PE File Header Features on

Accuracy.” 2020
[10]. KOLTER, J. Z. and M. A. MALOOF. Learning to

detect malicious executables in the wild. In:

Proceedings of the 2004 ACM SIGKDD

international conference on Knowledge discovery

and data mining. New York: ACM Press, 2004.

https://doi.org/10.38124/ijisrt/IJISRT24MAR615
http://www.ijisrt.com/

	Shruti Gujar1
	Saurabh Patil2
	Keywords:- Machine Learning, PE Headers, Classifications, Malware detection, PE Header Table.
	 Signature based Technique:
	 PE Headers-based Technique:

	II. LITERATURE SURVEY
	 Structure of PE:
	 Execution:

	IV. RESULTS AND DISCUSSIONS
	 Accuracy of Classifiers for this Model:
	 The Important Columns Selection using Extra – Tree Classifier Fitting:

	V. CONCLUSIONS AND FUTURE WORK
	REFERENCES

