
Volume 9, Issue 3, March – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24MAR2052

IJISRT24MAR2052 www.ijisrt.com 2998

Enhanced Profile Hidden Markov Model for

Metamorphic Malware Detection

1Ken Carlo D. Javier; 2Allyza Maureen P. Catura; 3Jonathan C. Morano; 4Mark Christopher R. Blanco

1,2,3,4Computer Science Department, Pamantasan ng Lungsod ng Maynila, Philippines

Abstract:- Metamorphic malware poses a significant

threat to conventional signature-based malware detection

since its signature is mutable. Multiple copies can be

created from metamorphic malware. As such, signature-

based malware detection is impractical and ineffective.

Thus, research in recent years has focused on applying

machine learning-based approaches to malware

detection. Profile Hidden Markov Model is a probabilistic

model that uses multiple sequence alignments and a

position-based scoring system. An enhanced Profile

Hidden Markov Model was constructed with the

following modifications: n-gram analysis to determine the

best length of n-gram for the dataset, setting frequency

threshold to determine which n-gram opcodes will be

included in the malware detection, and adding consensus

sequences to multiple sequence alignments. 1000 malware

executables files and 40 benign executable files were

utilized in the study. Results show that n-gram analysis

and adding consensus sequence help increase malware

detection accuracy. Moreover, setting the frequency

threshold based on the average TF-IDF of n-gram

opcodes gives the best accuracy in most malware families

than just by getting the top 36 most occurring n-grams, as

done in previous studies.

Keywords:- Consensus Sequence, Metamorphic Malware, N-

Gram Analysis, Profile Hidden Markov Model, TF-IDF

I. INTRODUCTION

Metamorphic malware is an emerging threat to

traditional signature-based malware detection. With its

ability to self-modify the code without changing the

semantics, it is more difficult for signature-based malware

detection to identify the malware as its signature changes as

they modify. Moreover, it is also possible for metamorphic
malware to mutate by creating multiple copies of the same

malware with different signatures. Thus, many variants

created from a single metamorphic malware make signature-

based malware detection impractical and ineffective [1]. Due

to technology continuously expanding over time, malware

evolves to have the ability to modify itself as it propagates.

Metamorphic malware rewrites its code using various

obfuscation techniques to alter the malware's code. Dead code

insertion is an obfuscation technique where block/s of code

or whitespaces are inserted without changing the code’s

functionality. Another technique is variable renaming which
refers to changing the name of a variable in the source code.

The third technique is instruction reordering, where the

declaration of variables is swapped. Function reordering has

a similar implementation to instruction reordering. However,

functions are arranged differently in various permutations and
combinations. Lastly, instruction substitution is another

simple technique where the instruction operators are changed.

These abovementioned obfuscation techniques are effective

in modifying the code but not removing the original

functionality of the malware. Furthermore, it is also possible

for metamorphic malware to create multiple variants of the

same malware using a specific obfuscation technique [2]. As

a result, machine learning-based malware detection systems

have been utilized and investigated in past years.

Machine learning-based malware analysis and detection
are being practiced by anti-malware companies. A particular

malware file can be disassembled, and relevant information

about the malware can be retrieved, such as opcode and API

call sequences. This relevant information can be used to train

a machine learning model, such as decision trees and neural

networks. After training the model with the data gathered, the

model will be applied to testing data, and the model will be

able to conclude predictions on which file is malware or

benign. Many machine-learning techniques are used in

malware analysis, like Random Forest, Support-Vector

Machine, and Neural Network [3]. Another machine learning

technique used in malware detection is the Hidden Markov
Model.

The Hidden Markov model (HMM) is a statistical model

that was first proposed by Baum L.E. and uses a Markov

process that contains hidden and unknown parameters. This

model uses the observed parameters to identify the hidden

parameters. These parameters are then used for further

analysis [4]. The model consists of an emission probability

matrix, transition probability matrix, and initial probability

distribution. The emission probability matrix shows the

probability of an observation being generated in a hidden
state. The transition probability matrix indicates the

probability of each state moving to another state.

Furthermore, the initial probability distribution indicates the

probability that the Markov chain will start in a given

observation.

Profile Hidden Markov Model (PHMM) is another

variant of the standard HMM. PHMM is a probabilistic model

that captures the diversity of biological sequences. HMMs

and PHMMs differ significantly because the latter explicitly

utilize the positional information in the observation
sequences, while standard HMMs cannot do so. In contrast to

conventional HMMs, PHMMs accommodate null transitions,

which are essential to align sequences with insertions and

https://doi.org/10.38124/ijisrt/IJISRT24MAR2052
http://www.ijisrt.com/

Volume 9, Issue 3, March – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24MAR2052

IJISRT24MAR2052 www.ijisrt.com 2999

deletions. These differences are evident in DNA. PHMM can

be applied to metamorphic malware because they are similar

to DNA. [5]. Multiple sequence alignments are utilized to

create the PHMM, and the position-based scoring system

helps detect if a specific sequence is similar to the model [6].

To better understand how PHMM is built with MSA, an

example of MSA from sequences using the four bases of

DNA is in Fig. 1.

Fig 1: Sample MSA of DNA Sequences

In the initial stages of constructing a PHMM,

identifying match and insert states in the MSA is being done.

It is a general rule of thumb to use those columns with at least

50% of the characters are symbols, and this column is called

match states. On the other hand, those with no symbols or

with gaps are called insert states. The match states in Fig. 1

are columns 1, 2, and 6.

The emission probability for column 1 is then calculated

in (1).

𝑒𝑀1(𝐴) = 4/4(𝐴)

𝑒𝑀1(𝐶) = 0/4(𝐶)

𝑒𝑀1(𝐺) = 0/4(𝐺)

𝑒𝑀1(𝑇) = 0/4(𝑇)

Most of the emission probabilities are zero, which

should be changed because the model should be adaptable.
The "Add-one rule" is a straightforward formula that requires

us to add 1 to the numerator and the total number of

alphabetic symbols to the denominator.

The results of the emission probabilities with the add-

one rule applied are in Table I. The general formula that can

be used to calculate the emission probabilities is in (2).

𝑒𝑁(𝑘) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑂𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒𝑠 𝑜𝑓 𝑘 𝑖𝑛 𝑆𝑡𝑎𝑡𝑒 𝑁

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑦𝑚𝑏𝑜𝑙𝑠 𝑖𝑛 𝑆𝑡𝑎𝑡𝑒 𝑁
 (2)

Since a symbol can be emitted in more than one way,

match or insert, the Emission Probabilities matrix (E) of
PHMM differs slightly from the Symbol Transition

Probability matrix (B) in HMM.

The transition probabilities are then calculated, and the

general equation used to do so is in (3).

𝑎𝑚𝑛 =
𝑁𝑜. 𝑜𝑓 𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 𝑓𝑟𝑜𝑚 𝑚 𝑡𝑜 𝑛

𝑇𝑜𝑡𝑎𝑙 𝑁𝑜. 𝑜𝑓 𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 𝑓𝑟𝑜𝑚 𝑚 𝑡𝑜 𝐴𝑛𝑦 𝑆𝑡𝑎𝑡𝑒
 (3)

Table 1: Emission Probabilities of MSA with the Add-One Rule Applied

Matches Inserts

𝑒𝑀1(A) = 4+1 / 4+4 = 5/8

𝑒𝑀1(C) = 4+1 / 4+4 = 1/8

𝑒𝑀1(G) = 4+1 / 4+4 = 1/8

𝑒𝑀1(T) = 4+1 / 4+4 = 1/8

𝑒𝐼1(A) = 0+1 / 0+4 = 1/4

𝑒𝐼1(C) = 0+1 / 0+4 = 1/4

𝑒𝐼1(G) = 0+1 / 0+4 = 1/4

𝑒𝐼1(T) = 0+1 / 0+4 = 1/4

𝑒𝑀2(A) = 0+1 / 5+4 = 1/9

𝑒𝑀2(C) = 3+1 / 5+4 = 4/9

𝑒𝑀2(G) = 2+1 / 5+4 = 3/9

𝑒𝑀2(T) = 0+1 / 5+4 = 1/9

𝑒𝐼2(A) = 2+1 / 5+4 = 3/9

𝑒𝐼2(C) = 0+1 / 5+4 = 1/9

𝑒𝐼2(G) = 1+1 / 5+4 = 2/9

𝑒𝐼2(T) = 2+1 / 5+4 = 3/9

𝑒𝑀3(A) = 0+1 / 4+4 = 1/8

𝑒𝑀3(C) = 0+1 / 4+4 = 1/8

𝑒𝑀3(G) = 4+1 / 4+4 = 5/8

𝑒𝑀3(T) = 0+1 / 4+4 = 1/8

𝑒𝐼3(A) = 0+1 / 0+4 = 1/4

𝑒𝐼3(C) = 0+1 / 0+4 = 1/4

𝑒𝐼3(G) = 0+1 / 0+4 = 1/4

𝑒𝐼3(T) = 0+1 / 0+4 = 1/4

(1)

https://doi.org/10.38124/ijisrt/IJISRT24MAR2052
http://www.ijisrt.com/

Volume 9, Issue 3, March – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24MAR2052

IJISRT24MAR2052 www.ijisrt.com 3000

Table 2: Transition Probabilities of MSA with the Add-One Rule Applied

Beginning/

Matches

Inserts Deletes

𝑎𝐵𝑀1 = 5/8

𝑎𝐵𝐼1 = 1/8

𝑎𝐵𝐷1 = 2/8

𝑎𝐼0𝑀1 = 1/3

𝑎𝐼0𝐼0 = 1/3

𝑎𝐼0𝐷1 = 1/3

𝑎𝑀1𝑀2 = 5/7
𝑎𝑀1𝐼1 = 1/7
𝑎𝑀1𝐷2 = 1/7

𝑎𝐼1𝑀2 = 1/3
𝑎𝐼1𝐼2 = 1/3
𝑎𝐼1𝐷2 = 1/3

𝑎𝐷1𝑀2 = 2/4
𝑎𝐷1𝐼1 = 1/4
𝑎𝐷1𝐷2 = 1/4

𝑎𝑀2𝑀3 = 2/8
𝑎𝑀2𝐼2 = 4/8
𝑎𝑀2𝐷3 = 2/8

𝑎𝐼2𝑀3 = 4/8

𝑎𝐼2𝐼2 = 3/8

𝑎𝐼2𝐷3 = 1/8

𝑎𝐷2𝑀3 = 2/8

𝑎𝐷2𝐼2 = 2/8

𝑎𝐷2𝐷3 = 2/8

𝑎𝑀3𝐸 = 5/6

𝑎𝑀3𝐼3 = 1/6

𝑎𝐼3𝐸 = 1/2

𝑎𝐼3𝐼3 = 1/2

𝑎𝐷3𝐸 = 2/3

𝑎𝐷3𝐼3 = 1/3

II. METHODS

A. Dataset

The dataset consists of 800 malware files and 200

benign files. The malware files are from different malware

families: Locker, Mediyes, Winwebsec, Zbot, and

Zeroaccess. These malware files are extracted from

VirusTotal, VirusShare, and Malicia Project. On the other

hand, the benign files are legitimate software applications.

These are collected from download.cnet.com. These files are

divided into training and testing datasets. Specifically, 80%

are for training, while the remaining 20% are for testing. For

training datasets, 160 malware files per family are utilized.
Consequently, 40 malware files per family and 40 benign

files are used in testing.

B. Pre-Processing

The malware files were disassembled using Ida Pro. Ida

Pro is a well-known disassembler and debugger software

used in reverse engineering. The proponents wrote a Python

script to disassemble the files in batches rather than doing it

per file. Malware and benign executable files were fed into

the application, and the outputs were the executable files'

assembly code in .ASM file format.

The proponents utilized Visual Studio Code in writing

the code for the study. Visual Studio Code is an open-source

code editor developed by Microsoft, and it supports a wide

range of features such as syntax highlighting, Git integration,

IntelliSense, and code refactoring [7]. Opcodes are extracted

from the assembly files and created n-grams from these

opcodes. In natural language processing, an n-gram refers to

a consecutive sequence of n elements extracted from a

sequence. The elements are typically words, but they can also

be phonemes, characters, or other linguistic units [8]. The n-

gram length ranging from one to three are utilized in the
study, called unigram, bigram, and trigram. TF-IDF is

computed for each n-gram in each file. TF-IDF means

frequency-inverse document frequency, and it is a metric

employed in information retrieval (IR) and machine learning

to assess the relevance of textual representations, such as

characters, words, phrases, and lemmas, in a corpus of

documents [9]. After collecting all the TF-IDF scores, these

n-gram opcodes are sorted by their scores. Different TF-IDF

thresholds were implemented in the study, such as the

average TF-IDF, 5%, and 10%. These thresholds were the

basis on which n-gram opcodes were included in the training
of the model. The proponents also filtered out the 36 most

occurring n-gram opcodes, as done in previous studies [2],

[10], [11]. The n-gram opcodes with TF-IDF greater than or

equal to the threshold were converted to alphanumeric and

special characters and saved into a JSON file. These

characters are going to be utilized to create multiple sequence

alignments. Multiple Sequence Alignment (MSA) is the

alignment of multiple sequences with similar lengths. By

analyzing the resulting alignment, one can deduce homology

and explore the evolutionary relationships among the

sequences. [12].

C. Training a Profile Hidden Markov Model

The proponents utilized a C++ library, namely SPOA,

through its Python binding named pyspoa, where multiple

sequence alignments are generated using a partial order

alignment algorithm [13]. The package can generate only one

consensus sequence. For this reason, the proponents wrote a

Python implementation that generates multiple consensus

sequences depending on the MSA. Malware behaves the

same way as biological viruses. For that reason, methods

utilized to eradicate biological viruses are also being used in

malware [14]. An example of this is the consensus sequences.
A consensus sequence is a sequence that represents a group

of sequences shared by two biological entities that can be

extracted from multiple sequence alignments. Many

scientific studies have already utilized consensus sequences.

They said that in bioinformatics, the consensus sequences

determine variants of sequences in a group [15]. This is

important because it overcomes the diversity of sequences

and will most likely represent the valuable sequences [16].

Generating multiple consensus sequences is important

because two or more characters may have the same quantity

in a column of MSA. Therefore, two or more sequences could
represent the structure of the MSA. The MSA is saved as an

array, and the residue list in a JSON file. A residue list is a

list or array of all the characters used to convert n-gram

opcode sequences to alphanumeric and special characters.

The generated MSA will be the input of the Profile

HMM builder, together with the residue list. The proponents

created the Profile HMM builder with the help of an open-

sourced GitHub repository named Bioinformatics by

https://doi.org/10.38124/ijisrt/IJISRT24MAR2052
http://www.ijisrt.com/

Volume 9, Issue 3, March – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24MAR2052

IJISRT24MAR2052 www.ijisrt.com 3001

Armaghan Sarvar. The PHMM is trained using the Baum-

Welch learning algorithm and saved as a JSON file. The

JSON file contains the transition probability matrix and

emission probability matrix.

D. Testing

Forward Algorithm is a dynamic programming

algorithm used to score a sequence against the Profile Hidden
Markov Model and to determine how well the sequence

matches the model. It calculates the degree of similarity

between the sequence and the model, a higher score indicates

a greater likelihood of the sequence belonging to the malware

family. This algorithm solves the first problem in HMM,

which is determining the likelihood of a sequence that

matches the model [17].

The log-likelihood value for each sequence from the

testing dataset is compared to the threshold value, the

minimum log-likelihood of the training dataset, obtained
during the training phase. The benign software is also tested,

and their log-likelihood against the PHMM of malware

families is collected.

E. Performance Metrics

The performance metrics utilized in the study are

accuracy and the false positive rate. The formula for accuracy

is in (4).

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (4)

where TP or True Positives refers to the instances the

model predicts the sample as malware when it is a malware;

TN or True Negatives is when the sample is found to be not

malware, and it is not a malware; FP or False Positives is
when the model predicts that a sample is a malware when it

is not, and FN or False Negatives is when the model

determines a sample is not a malware when it is a malware.

On the other hand, the formula for the false positive rate

is in (5).

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 (5)

where FP is False Positives and TN is True Negatives.

This rate is when benign samples are incorrectly predicted as

malware.

III. RESULTS AND DISCUSSION

This chapter discusses the results obtained from the

methods and experiments conducted within the paper. The

evaluation metrics used to show the effectiveness of the

model are accuracy and false positive rate.

Table III shows the model's effectiveness in classifying
Zbot malware files. These results show that increasing the n-

gram length improves the accuracy of malware detection and

lowers the false-positive rate. Results also show that

increasing the number of n-gram opcodes improves malware

detection accuracy. Adding of consensus sequence improves

the accuracy of malware detection. However, this is only

evident in the approach where the top 5% is used as a

threshold.

The proponents also used the Zeroaccess malware

family to train and test the enhanced model. The results can
be found in Table IV. The n-gram length of 1 and 2 have

given an accuracy of 100% and a false positive rate of 0%.

Additionally, when more filtered n-gram opcodes are utilized

when creating MSA, it has been shown to have an accuracy

of 100% and a false positive rate of 0%.

Moreover, Table V shows the effectiveness of the

improved model in detecting Winwebsec malware files. The

results also show that increasing the length of n-gram

improves malware detection accuracy and lowers the false-

positive rate. In addition, results show that involving more

filtered n-gram opcodes in constructing MSA improves
malware detection accuracy. Nevertheless, adding consensus

sequences when creating MSA does not affect the accuracy

and false positive rate. Only the approach when the average

is utilized as a threshold has shown that adding consensus

sequences slightly improves the model's accuracy.

Another malware family has been used in the training

and testing of the dataset: the Locker malware family. The

results of the proposed model where Locker malware files are

utilized can be found in Table VI. In this malware family, it

is not observed that the increasing length of n-grams affects
the model’s performance. Instead, using only an n-gram

length of 1 has provided significant accuracy and a false

positive rate of 0. Nonetheless, when the accuracy fell to

74.58% and with a 15% false positive rate, because of the

addition of the consensus sequences, this low accuracy was

increased to 80% and lowered the false positive rate to 4.17%.

Lastly, Table VII shows the results of the improved

approach in detecting Mediyes malware files. The proponents

obtained a higher accuracy and low false positive rate when

more filtered n-gram opcodes were utilized when creating

MSA.

https://doi.org/10.38124/ijisrt/IJISRT24MAR2052
http://www.ijisrt.com/

Volume 9, Issue 3, March – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24MAR2052

IJISRT24MAR2052 www.ijisrt.com 3002

Table 3: Test Results of the Proposed Approach for Classifying Zbot

N-gram Type Threshold Filtered N-grams Consensus Sequences Accuracy FPR

Unigram Top 36 36 - 97.08% 3.33%

Bigram Top 36 36 - 99.58% 0

Trigram Top 36 36 - 100% 0

Unigram Top 36 36 Added 97.08% 3.33%

Bigram Top 36 36 Added 99.58% 0

Trigram Top 36 36 Added 100% 0

Unigram >= Average 12 - 99.17% 0

Bigram >= Average 76, 72, and 73 - 100% 0

Unigram >= Average 12 Added 99.17% 0

Bigram >= Average 76, 72, and 73 Added 100% 0

Unigram Top 5% 5 - 88.33% 19.17%

Bigram Top 5% 57 - 99.17% 0

Unigram Top 5% 5 Added 89.17% 17.5%

Bigram Top 5% 57 Added 99.17% 0

Unigram Top 10% 10 - 96.67% 0

Bigram Top 10% 92 - 100% 0

Unigram Top 10% 10 Added 96.67% 0

Table 4: Test Results of the Proposed Approach for Classifying Zeroaccess.

N-gram Type Threshold Filtered N-grams Consensus Sequences Accuracy FPR

Unigram Top 36 36 - 97.92% 0

Bigram Top 36 36 - 99.17% 0

Trigram Top 36 36 - 91.67% 15.83%

Unigram Top 36 36 Added 97.92% 0

Bigram Top 36 36 Added 99.17% 0

Trigram Top 36 36 Added 91.67% 15.83%

Unigram >= Average 16 - 99.17% 0

Bigram >= Average 92 - 100% 0

Table 5: Test Results of the Proposed Approach for Classifying Winwebsec

N-gram Type Threshold Filtered N-grams Consensus Sequences Accuracy FPR

Unigram Top 36 36 - 99.58% 0

Bigram Top 36 36 - 100% 0

Trigram Top 36 36 - 100% 0

Unigram Top 36 36 Added 99.58% 0

Bigram Top 36 36 Added 100% 0

Trigram Top 36 36 Added 100% 0

Unigram >= Average 17 - 97.08% 0

Bigram >= Average 92 - 100% 0

Unigram >= Average 17 Added 97.5% 0

Bigram >= Average 92 Added 100% 0

Unigram Top 10% 11 - 97.5% 1.67%

Unigram Top 10% 11 Added 97.5% 1.67%

Table 6: Test Results of the Proposed Approach for Classifying Locker

N-gram Type Threshold Filtered N-grams Consensus Sequences Accuracy FPR

Unigram Top 36 36 - 99.58% 0

Bigram Top 36 36 - 98.33% 0

Trigram Top 36 36 - 74.58% 15%

Unigram Top 36 36 Added 99.58% 0

Bigram Top 36 36 Added 98.75% 0

Trigram Top 36 36 Added 80% 4.17%

Unigram >= Average 18 - 97.08% 0

Bigram >= Average 92 - 95% 0

Unigram >= Average 18 Added 97.92% 0

Bigram >= Average 92 Added 95% 0

https://doi.org/10.38124/ijisrt/IJISRT24MAR2052
http://www.ijisrt.com/

Volume 9, Issue 3, March – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24MAR2052

IJISRT24MAR2052 www.ijisrt.com 3003

Trigram >= Average 92 - 97.5% 0

Trigram >= Average 92 Added 97.5% 0

Table 7: Test Results of the Proposed Approach for Classifying Mediyes

N-gram Type Threshold Filtered N-grams Consensus Sequences Accuracy FPR

Unigram Top 36 36 - 97.92% 0

Bigram Top 36 36 - 99.17% 0

Trigram Top 36 36 - 91.67% 15.83%

Unigram Top 36 36 Added 97.92% 0

Bigram Top 36 36 Added 99.17% 0

Trigram Top 36 36 Added 91.67% 15.83%

Unigram >= Average 16 - 99.17% 0

Bigram >= Average 92 - 100% 0

Unigram >= Average 16 Added 99.17% 0

Bigram >= Average 92 Added 99.17% 0

Trigram >= Average 92 - 100% 0

Trigram >= Average 92 Added 99.17% 0

IV. CONCLUSION

This paper proposed an enhanced Profile Hidden

Markov Model (PHMM) was constructed with the following

modifications: n-gram analysis to determine the best length

of n-gram for the dataset, setting frequency threshold to
determine which n-gram opcodes are going to be included in

the malware detection, and adding consensus sequences to

multiple sequence alignments of each malware family. The

experiment showed that n-gram analysis and adding

consensus sequences help increase malware detection

accuracy. Additionally, setting the frequency threshold that

will involve more n-gram opcodes to take part in malware

detection gives better accuracy in most of the malware

families than just getting only the top 36 most occurring n-

gram opcodes, which has been done in previous studies.

For future work, the authors suggest creating an
enhanced Profile Hidden Markov Model (PHMM) for other

malware families. Next, comparing PHMM from an MSA

made by partial-order alignment to the one made by

progressive alignment may also help. Then, finding or

constructing an MSA builder that allows extended characters

can be good. For this research, a C++ library named SPOA

has been used, which only allows up to 92 characters

(uppercase letters, lowercase letters, and special characters).

Finally, setting different gap thresholds when constructing

PHMM in a given MSA may be experimented with to

determine what will perform best. In this research, the
standard gap threshold, which is 50% of the column in MSA

has been used, but there are some cases in which increasing

it up to 60% to 80% is needed, or else the PHMM cannot be

built.

REFERENCES

[1]. Campion, M., Dalla Preda, M., & Giacobazzi, R.

(2021). Learning metamorphic malware signatures

from samples. Journal of Computer Virology and

Hacking Techniques, 17(3), 167-183.
[2]. Wadhwani, A. (2019). JavaScript Metamorphic

Malware Detection Using Machine Learning

Techniques. https://doi.org/10.31979/etd.8rtn-buzk

[3]. Andreopoulos, W. B. (2021). Malware Detection with

Sequence-Based Machine Learning and Deep

Learning. In Springer eBooks (pp. 53–70).

https://doi.org/10.1007/978-3-030-62582-5_2

[4]. Lan, Y., Zhou, D., Zhang, H., & Lai, S. (2017).

Development of early warning models. In Early

warning for infectious disease outbreak (pp. 35-7.

Academic Press.

[5]. Attaluri, S. (2007). Detecting Metamorphic Virusis
with Metamorphic Viruses. Department of Computer

Science, San Jose State University,

http://www.cs.sjsu.edu/faculty/stamp/students/Srilath

a_cs298Report.pdf

[6]. Oliveira, L. G., & Gruber, A. (2021). Rational Design

of Profile Hidden Markov Models for Viral

Classification and Discovery. In Exon Publications

eBooks (pp. 151–170).

https://doi.org/10.36255/exonpublications.bioinforma

tics.2021.ch9

[7]. Heller, M. (2022, July 8). What is Visual Studio Code?
Microsoft’s extensible code editor. InfoWorld.

https://www.infoworld.com/article/3666488/what-is-

visual-studio-code-microsofts-extensible-code-

editor.html

[8]. Aghammadzada, E. (n.d.). N-Grams NLP | Data

Science and Machine Learning. Kaggle.

https://www.kaggle.com/discussions/getting-

started/186392

[9]. Anirudha Simha, Principle Associate Software

Engineer, Kai Chatbot Team. (2021). Understanding

TF-IDF for Machine Learning. Capital One.
https://www.capitalone.com/tech/machine-

learning/understanding-tf-idf/

https://doi.org/10.38124/ijisrt/IJISRT24MAR2052
http://www.ijisrt.com/
https://doi.org/10.31979/etd.8rtn-buzk

Volume 9, Issue 3, March – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24MAR2052

IJISRT24MAR2052 www.ijisrt.com 3004

[10]. Ali, M., Hamid, M., Jasser, J., Lerman, J., Shetty, S.,

& Di Troia, F. (2022). Profile Hidden Markov Model

Malware Detection and API Call Obfuscation.

https://doi.org/10.5220/0011005800003120

[11]. Alipour, A., & Ansari, E. (2020a). An advanced

profile hidden Markov model for malware detection.

Intelligent Data Analysis, 24(4), 759–778.

https://doi.org/10.3233/ida-194639
[12]. Embl-Ebi. (n.d.). Bioinformatics Tools for Multiple

Sequence Alignment < EMBL-EBI.

https://www.ebi.ac.uk/Tools/msa/

[13]. Vaser, R., Sović, I., Nagarajan, N., & Šikić, M. (2017).

Fast and accurate de novo genome assembly from long

uncorrected reads. Genome Research, 27(5), 737–746.

https://doi.org/10.1101/gr.214270.116

[14]. Kostadimas, D., Kastampolidou, K., and Andronikos,

T. (2021). Correlation of biological and computer

viruses through evolutionary game theory. arXiv

(Cornell University).
https://doi.org/10.48550/arxiv.2108.00508

[15]. Vaschetto, L. (2022, December 20). The Significance

of Consensus Sequences in Bioinformatics. News-

Medical.net.

https://www.azolifesciences.com/article/The-

Significance-of-Consensus-Sequences-in-

Bioinformatics.aspx#

[16]. Mohabati, R., Rezaei, R., Mohajel, N., Mm, R.,

Azadmanesh, K., and Roohvand, F. (2020).

Optimizing Consensus Generation Algorithms for

Highly Variable Amino Acid Sequence Clusters.

bioRxiv (Cold Spring Harbor Laboratory).
https://doi.org/10.1101/2020.11.08.373092

[17]. Jurafsky, D. & Martin, J. (2023). Hidden Markov

Models [PDF file]. Stanford University Speech and

Language Processing:

https://web.stanford.edu/~jurafsky/slp3/

https://doi.org/10.38124/ijisrt/IJISRT24MAR2052
http://www.ijisrt.com/
https://web.stanford.edu/~jurafsky/slp3/

