
Volume 9, Issue 6, June – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24JUN600

IJISRT24JUN600 www.ijisrt.com 1383

Comparison of JavaScript Frontend Frameworks –

Angular, React, and Vue

1Anes Karić; 2Nermina Durmić
12Department of Information Technologies

International Burch University, Faculty of Engineering and Sciences

Sarajevo, Bosnia and Herzegovina

Abstract:- This research aims to evaluate JavaScript

frontend frameworks by their performance and

popularity to provide practitioners with guidance in

making informed decisions when choosing frontend

frameworks for their projects. For that purpose, three

applications with the same features were built using three

best-known JavaScript frontend frameworks: Angular,

React, and Vue. Comparative analysis was employed to

conduct the framework comparison using the content of

the three applications. For performance evaluation, tools

like PageSpeed Insights, WebPageTest, GTmetrix,

Pingdom, Lighthouse, and Google Performance were

used. In addition, the research also offers the overall

comparison of JavaScript frameworks including

documentation quality, ability to develop mobile

applications, learning curve, built-in features, etc. The

results indicate that while React is accepted as the most

popular frontend framework, Vue is the one that offers

the best performance. The research also compares

JavaScript frameworks by specific features they offer

such as state management and analyses the implications

of these features to the development process. According to

the results, these features have big implications on the

development process and they are very important when

we are making decisions on which framework we will

choose for some project.

Keywords:- Frontend, JavaScript, Angular, React, Vue.

I. INTRODUCTION

In the rapidly evolving landscape of web development,

JavaScript frontend frameworks have become the main

building blocks in creating interactive and responsive web
applications. These frameworks are designed to speed up and

simplify the development process. They offer a structured

approach that helps in managing the complexities of modern

web applications. Angular, React, and Vue are widely

adopted and they completely changed strategies for creating

web applications. Because of that, it became essential to

understand their underlying mechanics, capabilities, and

performance impacts.

The widespread adoption of JavaScript frontend

frameworks began in the early 2010s when AngularJS

showed up. JavaScript frontend frameworks are very popular

today. Indicator of their popularity is their community and

ecosystem. The size and activity of a framework's

community are strong indicators of its popularity. One more

indicator is the job market where we can see that many

developers with specific framework skills are in demand.

JavaScript frontend frameworks have a crucial role in

web development these days. Despite that fact, we can see a
noticeable gap in comprehensive comparative analyses of JS

frontend frameworks that compare their performances,

popularity, and suitability for small to medium-sized projects.

This gap is especially notable for discussions about state

management efficiencies, virtual DOM manipulation, and the

extension of these frameworks to mobile development.

This research aims to solve that gap by conducting an

extensive comparison of popular JavaScript frontend

frameworks. It aims to evaluate their performance, feature

offerings, and community support to determine the most

suitable frameworks for small and medium-sized
applications. By doing so, this study seeks to furnish

developers and decision-makers with insights that could

guide the selection of a framework that aligns best with their

project requirements.

This research is structured in a way that can guide the

reader easily through a logical progression of ideas and

findings. It begins with an Introduction where the context of

the research is established. The Literature review and

research question come after the introduction section. The

literature review and research question are followed by
methodology. After this, the Materials and Methods chapter

provides a detailed account of the research design,

methodologies employed, and the tools used to collect data,

ensuring replicability and transparency of the research

process. The Results and Discussion section consists of

findings and a detailed explanation of what they represent.

Finally, the Conclusion synthesizes the insights gained,

reflecting on the implications of the findings and suggesting

avenues for future research.

https://doi.org/10.38124/ijisrt/IJISRT24JUN600
http://www.ijisrt.com/

Volume 9, Issue 6, June – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24JUN600

IJISRT24JUN600 www.ijisrt.com 1384

II. LITERATURE REVIEW AND RESEARCH

QUESTION

A comparison of JS frontend frameworks (Angular, Vue,

React) has been analyzed in many books and scientific

research projects.

 Uzayr et al. [1] compare whether JS frameworks are

complete frameworks or libraries. The first step was defining

the framework and library. Both framework and library are

code that is written by someone else. That code aims to help

in solving some common problems. JavaScript libraries can

be described as parts of furniture that we use to add style and
function to the house that is already built. Frameworks can be

described as a template that we can use to construct and build

the whole house. The authors explain that JavaScript

frameworks are Angular and Vue. React, on the other hand, is

a library. If we compare React, which is a library, with Vue

and Angular, which are the frameworks, we can see the

difference when we set up projects by using these

technologies. Angular and Vue projects are bootstrapped with

almost every single thing that we will need to produce a

complete, large-scale application. Frameworks have all the

resources that large-scale applications need such as tools for

creating forms, making network requests, and running
automated tests.

Gaetano [2] is comparing whether JavaScript

frameworks use DOM or Virtual DOM. Before explaining the

differences between DOM and Virtual DOM, the author

explains that DOM stands for Document Object Model and

that DOM can be described as an abstraction of a text that is

structured. From the perspective of web developers, this

structured code is an HTML code. Web developers call DOM

simply HTML DOM. On the other hand, Virtual DOM can be

described as an abstraction of the real HTML DOM. Since the
HTML DOM is an abstraction, the Virtual DOM is an

abstraction of an abstraction. The author explains that React

and Vue use Virtual DOM, and Angular does not. Angular

uses Incremental DOM. As we can see, none of the

frameworks work with DOM directly because manipulating

DOM data directly is a very slow process. The author finds

that Virtual DOM can be updated without affecting the real

HTML DOM. Virtual DOM has all the properties like real

HTML DOM, but it cannot be manipulated with screen

changes like the real DOM. In conclusion, the Virtual author

says that the virtual DOM will create different copies of the
real DOM (the previous and the updated one) and figure out

what objects have been updated. Virtual DOM will then

update that specific object that is changed in real DOM and

then changes on real DOM will cause the changes on screen.

One of the most important parts of every JavaScript

framework is state management. Blokdyk [3] explains state

management in React. The author explains that React alone is

not enough to handle most apps. That is the reason why most

developers use other state management third-party libraries

like Redux. In React we can use React Hooks features to

handle the local state of a component. With React Hooks, we
can handle the React state in functional components. Before

the 16.8 React version release, the only options for handling

the React state were class-based components. There are ten

hooks in total, but the most important are use State and use
Effect. We can also write our custom, React Hooks. On the

other hand, Redux is used for handling the global state of an

application. Redux is an independent JS library. We can use it

with Angular and Vue but it is designed to work well with

React. The author claims that the best option for complex

React applications is combining Redux and React Hooks.

Morgan [4] compares state management in React and

Angular. The author explains that Angular is a complete

framework and that React is just a library. In complex

applications in React, we need to use external libraries such as
Redux for communication between components. Since

Angular is a complete framework, it does not need any

external libraries such as Redux to handle communication

between components. The author explains that the best option

for communication between components in Angular is a

shared service. Shared service does not need to be visible for

all components. We can make it visible only to the consuming

hierarchy of the components. Angular's Dependency Injection

gives us the option to create local services, see dependency

references, accomplish modularity, decouple, and test parts of

the application easily. Instead of shared services, we can also

use the NGRX library for state management. NGRX
represents a group of Angular libraries that enable us to have

one centralized store for state management data which is

accessible from any part of the application. NGRX library is

inspired by Redux. It was already mentioned in this section

that the author said that Angular has built-in options for state

management and that a third-party library like NGRX is not

necessary. React is not a complete framework, it is just a

library and Redux is required for it.

The author in [5] compares if JS frontend frameworks

support two-way data binding or not. Two-way data binding is
important because it guarantees that when properties in the

model get updated, so does the UI. Also, when UI elements

are updated, the model will get updated. Angular supports

two-way data binding and its syntax is a combination of

parentheses and square brackets. Angular also supports the

two-way data binding in forms with the ng-model directive.

We can use ng-model only in template-driven forms. If we

use reactive forms in Angular, the two-way data binding will

not be supported. VueJS also supports two-way binding and

we use the v-model directive which is similar to Angular's ng-

model directive. V-model is a powerful directive that can
speed up the development process significantly if used

properly. It makes it very easy to synchronize between user

input and the data model. React on the other hand does not

support the two-way data binding out of the box like Angular

and VueJS. If we want to keep in sync view elements with a

model in React, we can achieve it in multiple ways. In class-

based components, we can use the on Change event in

combination with the state. In React Hooks we can also use

the on Change event where the syntax is even simpler in

comparison with class-based components.

https://doi.org/10.38124/ijisrt/IJISRT24JUN600
http://www.ijisrt.com/

Volume 9, Issue 6, June – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24JUN600

IJISRT24JUN600 www.ijisrt.com 1385

In the study [6] various JavaScript frontend frameworks

were compared based on their performance using real-world
applications. The author utilized tools like Lighthouse to

evaluate performance metrics including First Contentful Paint,

Speed Index, Largest Contentful Paint, Time to Interactive,

Total Blocking Time, and Cumulative Layout Shift.

Lighthouse generates a Final Performance Score ranging from

0 to 100, with the most crucial metrics being Largest

Contentful Paint and Total Blocking Time. Furthermore, the

author compared the frontend frameworks in terms of package

size and memory usage. Svelte consistently outperformed

other frameworks in metrics such as First Contentful Paint

Time, Speed Index, Large.st Contentful Paint, and Time to
Interactive. Vue also demonstrated strong performance across

these metrics, while Angular and React generally showed

lower scores. In summary, Svelte and Vue emerged as the top

performers in terms of performance metrics such as First

Contentful Paint, Speed Index, Largest Contentful Paint, and

Time to Interactive, as evidenced by the results presented in

the study.

The objective of this study is to distill these comparisons

into actionable insights, guiding developers and organizations

in making informed decisions when selecting a front-end

framework. By delving into performance metrics, assessing
community engagement, and evaluating the comprehensive

feature set, this research aims to outline a clear, comparative

framework that highlights each option's strengths and

weaknesses.

 Research Questions:

 Which JavaScript frontend framework shows the best

results for small and medium-sized applications in terms

of performance (speed, memory usage)?

 What is the most popular JavaScript Frontend

Framework?

 How do specific features such as state management,

virtual DOM, two-way data binding, and mobile

development capabilities compare across Angular, React,

and Vue, and what implications do these features have on

the development process?

III. METHODOLOGY

In this research, comparative analysis as a quantitative

approach was used to evaluate and compare the performance
of three popular JavaScript frontend frameworks: Angular,

React, and Vue.js. Comparative analysis falls under the

umbrella of descriptive research [7]. Comparative analysis is

widely recognized in scientific research as a method for

drawing distinctions between different entities by evaluating

their characteristics against each other [8]. This approach is

commonly seen in fields ranging from social sciences to

applied technologies, where researchers aim to understand and

articulate the differences or similarities between their subjects

of study [9]. In our research, we developed three identical

applications using three different JavaScript frontend
frameworks: Angular, React, and Vue.js. This part of the

research aimed to evaluate and compare the performance of

these frameworks in real application scenarios.

A. Choice of Performance Measurement Tools

In this study evaluating the performance of frontend
frameworks - Angular, React, and Vue.js - the selection of

tools was important. Chosen were those widely esteemed and

utilized in the industry for web application performance

assessment, ensuring the reliability and relevance of the

results. The list of tools includes PageSpeed, WebPageTest,

GTmetrix, Pingdom, Lighthouse, and Google Performance.

B. Technical implementation

 Angular: We used Angular's complex ecosystem,

including RxJS observables and services for state

management of the application. Angular, as a complete
framework, offers a rich set of state management features

without the need for additional libraries [10].

 React: For state management in the React application,

Redux was chosen. Redux provides a predictable way of

managing the application state through a centralized store,

which facilitates application development and testing [11].

 Vue.js: In the Vue.js application, Pinia was used for state

management, a modern approach to state management that

offers simple and efficient integration with the Vue.js

ecosystem, with easier syntax and a better development

experience compared to previous options like Vuex [12].

C. Challenges and Solutions

During development, several challenges were

encountered, including aligning the authentication

functionality, Stripe integration and other features among

different frameworks. These challenges were overcome

through detailed planning and the application of best practices

specific to each framework, as well as using Firebase to

homogenize backend processes. Additionally, challenges

associated with different state management approaches in

each framework were resolved through careful

implementation and configuration of Redux, RxJS, and Pinia,
ensuring that the logic and performance of the application

were not compromised.

D. Data Collection

Performance data for each of the three applications,

developed using Angular, Vue.js, and React, were collected

using a range of performance measurement tools, including

PageSpeed Insights, WebPageTest, GTmetrix, Pingdom,

Lighthouse, and Google Performance. Each tool provided

various metrics related to performance, such as First

Contentful Paint, Speed Index, Largest Contentful Paint, Total
Blocking Time, and Overall Performance, etc. The results

were then entered into tables for each application and page

(Home Page, Login Page, Shop Page, Cart and Checkout

Update), allowing for direct performance comparison between

frameworks.

The dataset used for performance testing of JS frontend

frameworks in this study consists of 300 entries. We get that

number if we count the number of metrics for each

performance measurement tool and multiply by the number of

features tested by that tool and then by three (since we tested

three frameworks). Our dataset has one column for
measurement tools, one for the metrics, one for the features

tested and one for each for React, Angular and Vue scores.

https://doi.org/10.38124/ijisrt/IJISRT24JUN600
http://www.ijisrt.com/

Volume 9, Issue 6, June – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24JUN600

IJISRT24JUN600 www.ijisrt.com 1386

There was no need for a data cleaning process in this dataset

because our performance measurement tools provided clean
and structured data suitable for immediate analysis. In the

results section all these tables are represented separately by

tool and feature that is tested. According to (Creswell, 2014),

the quality of a dataset for comparative analysis depends on

its ability to represent all variables comprehensively, not its

size. Our dataset is based on different performance metrics

and tools and because of that, it is a good basis for further

analysis. In the literature review section, several research

papers have been described. Frameworks were also compared

by popularity. The dataset for this comparison is simple as it

consists of four columns: metric and one for each for React,
Angular, and Vue scores. Metrics that are used for

comparison are (GitHub stars, contributors, and number of

users). All this data was collected from the official GitHub

repositories of each framework. We have 9 entries in this

dataset. There was no need for a data cleaning process in this

dataset.

The data analysis involved several steps:

 Comparing Individual Metrics: Each metric was compared

manually between frameworks to identify specific

performance aspects where one framework stands out over
the others.

 Aggregation of Results: The overall results were

aggregated to obtain a comprehensive performance rating

for each framework. This was done by summing the scores

manually to show overall performance leadership. Each

win in a specific metric was one point for that framework.

 Visual Representations: The use of graphs and diagrams

enabled visual comparison and easier understanding of the

data. For example, bar charts are useful for displaying

comparative performance metrics by tools, while pie

charts provide insight into the overall dominance of a

particular framework across all metrics and features.

 Analysis by Feature: An analysis of performance by

individual application features (e.g., Home Page, Login

Page, etc.) was also conducted, providing insight into how

each framework performs in certain scenarios.

 Based on the collected and analyzed data, conclusions can

be drawn about the overall performance of each

framework. For example, Vue.js may stand out as the

framework with consistently high performance in most

tested metrics, while React shows the second-best results.

Angular, although somewhat slower in certain metrics,

shows robust performance when all characteristics are
considered.

IV. RESULTS AND DISCUSSION

In this section, a comparative analysis of three web

applications developed using the Angular, React, and Vue

frameworks is presented. Each application has the same

features like user authentication (with email/password and

Google sign-in options), login, a shop page, a home page,

product details, a shopping cart, a checkout process, and

Stripe integration for payments. PageSpeed Insights,
Pingdom, WebPageTest, GTmetrix, Lighthouse, and the

Google Chrome Performance Tab were used for analyzing

and comparing the performance of these applications. It also

analyzed whether the technology is a framework or a library,

its popularity, learning curve, routing solutions, etc.,
providing a comprehensive overview of each framework's

characteristics.

Fig 1:- Top Frameworks Across all Performance Tools

The figure 1 provides a comparative analysis of Angular,

Vue, and React applications across various performance

benchmarking tools such as PageSpeed, WebPageTest,

GTmetrix, Pingdom, Lighthouse, and Google Performance. It

aggregates the performance outcomes of multiple pages,

including home, shop, and login pages tested with GTmetrix

and other tools. These results are answers to research

question 1) whose focus was finding a framework that shows

the best results for small and medium-sized applications in

terms of performance. This synthesis of winners through

different performance metrics offers a clear visualization of

Vue's superior performance profile in this testing scenario. All
these performance tools focus on different metrics and give

different results. We can see that even though they measure

different metrics, results are constant. Vue is the winner in all

performance tools. Vue sometimes won convincingly,

sometimes the difference was not huge. React is in second

place in all performance tools except GTmetrix. Angular is in

third place in all performance tools except GTmetrix and

Lighthouse where it shares the second place with React. Each

tool has a different set of metrics it prioritizes, such as load

time, time to interactive, size of assets, number of requests,

etc. Vue's performance profile aligns better with these metrics
overall when compared to React and Angular. For PageSpeed

Insights and Lighthouse, the most important metrics are

metrics related to the user's perceived loading experience,

which favors Vue's fast rendering system. WebPageTest

focuses on load times and rendering and gives an advantage to

Vue because of Vue’s efficient rendering and update system.

GTmetrix combines results from PageSpeed and YSlow and

focuses on frontend structure and performance. Vue has small

bundle sizes and this fact gives a big advantage to Vue for the

PageSpeed performance tool. Pingdom’s focus is on the user

centric performance and Vue shows the best results here. Each

performance tool focuses on different metrics, and that is the
reason why so many different tools were used.

https://doi.org/10.38124/ijisrt/IJISRT24JUN600
http://www.ijisrt.com/

Volume 9, Issue 6, June – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24JUN600

IJISRT24JUN600 www.ijisrt.com 1387

Fig 2:- Top Frameworks Across all Tools and Features

This pie chart provides a percentage-based overview of

the performance of Angular, Vue, and React across all metrics

in various performance testing tools. Vue leads with a

significant margin at 59%, indicating its overall superiority in

performance across tools like PageSpeed, WebPageTest,

GTmetrix, Pingdom, Lighthouse, and Google Performance.

React follows with 24%, while Angular accounts for 17% of

the performance share. For performance, a very important

factor is file size. Vue offers the possibility to compress code

so that it takes less space than the same code written in

React.js. Vue applications can have the same features like
React applications but at the same time be 30% less in size.

This also means that it is possible to create applications in

Vue faster because they require less code.

More JavaScript code means that our application will be

slower. Vue and React both use Virtual Dom which is great

for performance, but React is just a library and we need a lot

of additional libraries to complete some basic features.

Additional libraries slow down application performance

because they require more code to download. Vue has a Vue

Router which is the official router for Vue.js and well well-

optimized and integrated into the Vue ecosystem. React does
not have an official library for routing. Typically a React

router is used but it is not well optimized for React like Vue

Router for Vue.

Another important feature that Vue offers is state

management. Vue has an official state management library

which is well optimized only for that framework - Pinia. In

React, we typically use Redux but it is not well optimized for

React like Pinia for Vue. We also do not need an additional

library to handle forms in Vue because Vue offers a V-model

for two-way data binding on form inputs.

In React we need additional libraries like Formik.

Important features that Vue offers are built-in directives like

v-if, v-for, v-bind, v-on, and v-show because they speed the

development process and require less code to implement some

features. The difference in performance between React and

Vue is not very huge but it exists and Vue is the winner in that

segment. Angular does not use the Virtual Dom concept, it

uses the Incremental Dom concept which is much slower.

Also, Angular is a complete framework. It has a lot of built-in

features and it is overkill for small applications. This is why it
showed the worst results in most Performance tools.

Fig 3:- Top Frameworks Across all Performance Tools per

Feature

The bar graph 3 offers a detailed comparison of Angular,

Vue, and React's performance across specific features like

Home Page, Login Page, Shop Page, and Cart and Checkout

Update. Using a range of performance tools, it aggregates

metrics to demonstrate each framework's efficiency in real-

world applications. As we can see Vue won in all features. In
the previous section, it is described in detail why Vue

outperforms other frameworks. Vue uses Virtual Dom and is

highly optimized out of the box. The overall result in the

previous table shows that React is faster than Angular. If we

look at the results per feature, we can see that Angular showed

better performance results on the Shop Page page than React.

It is an unexpected result because React uses the Virtual Dom

concept and it is supposed to be faster than Angular. The

difference is not huge but Angular showed better performance

results in this feature than React. The reason for that can be

page content because it has a lot of images loaded.

In the literature review, there were several works where

the speed performance of JavaScript frontend frameworks was

compared. One of them is [5], where the author compares the

performance of React, Vue, Angular, and Svelte with

Lighthouse based on their performance using real-world

applications. The author utilized tools like Lighthouse to

evaluate performance metrics including First Contentful Paint,

Speed Index, Largest Contentful Paint, Time to Interactive,

Total Blocking Time, and Cumulative Layout Shift.

Lighthouse generates a Final Performance Score ranging from

0 to 100, with the most crucial metrics being Largest
Contentful Paint and Total Blocking Time.

Furthermore, the author compared the frontend

frameworks in terms of package size and memory usage.

Svelte consistently outperformed other frameworks in metrics

such as First Contentful Paint Time, Speed Index, Large.st

Contentful Paint, and Time to Interactive. Vue also

demonstrated strong performance across these metrics, while

Angular and React generally showed lower scores. According

https://doi.org/10.38124/ijisrt/IJISRT24JUN600
http://www.ijisrt.com/

Volume 9, Issue 6, June – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24JUN600

IJISRT24JUN600 www.ijisrt.com 1388

to the author, Svelte and Vue emerged as the top performers

in terms of performance metrics such as First Contentful
Paint, Speed Index, Largest Contentful Paint, and Time to

Interactive, as evidenced by the results presented in the study.

Fig 4:- Graph is Showing Which Framework has the Lowest

Memory Usage

The bar graph provides a consolidated view of memory

usage across all features for Angular, Vue, and React. Vue
emerges as the most efficient, with the lowest aggregate

memory usage. In contrast, Angular and React show higher

total memory consumption, with Angular being the highest.

Angular is a complete framework which has a lot of built in
features which lead to higher memory usage. Also Angular’s

default change detection strategy is more memory-intensive

when compared to Vue and React. Angular also uses powerful

services and dependency injection which also consume more

memory. These are the reasons why Angular consumes more

memory than Vue and React.

Vue’s reactivity system is fine-grained and precise,

which reduces unnecessary work and thus memory

consumption. Vue uses a lightweight virtual DOM

implementation, which is optimized for memory efficiency.
Vue is not a complete framework like Angular, it also requires

installing additional libraries but those libraries are mentioned

in official Vue documentation and are highly optimized for

Vue. React is not a complete framework. It requires installing

additional libraries but those libraries are not highly optimized

for React like Vue’s libraries. Also to write some feature in

Vue that is equal to the feature in React, we need less

JavaScript code. More JavaScript code means more memory

usage. The difference between React and Vue is not high but

it exists and Vue is the winner in this comparison. We can

conclude that Vue has the lowest memory usage when

compared to React and Angular.

Table 1:- Overall Comparison of Frameworks

Feature Angular Vue React

Type Framework Progressive Framework Library

DOM type Incremental DOM Virtual DOM Virtual DOM

State management RxJS, NgRx Vuex/Pinia Redux, Context API

Release year 2010 (2+ /2016) 2014 2013

Popularity and community Large and mature Growing rapidly Very large and mature

Third party libraries

ecosystem
Rich but not so needed Rich and needed Very rich and very needed

Data Binding Two-way Two-way and One-way One-way

Folders and Files

organization Rules
Very strict

Complete Freedom but

with recommendations
Complete Freedom

Mobile Solutions Ionic Vue Native, Weex React Native

Using classes Mandatory Optional Only in legacy code

Language TypeScript TypeScript/JavaScript TypeScript/JavaScript

Component Architecture Components and services Single File Components Components

Table 1. provides a comparative overview of three major

front-end technologies: Angular, Vue, and React. Results in

this table are derived from a mix of practical applications

development, official documentation reviews, and internet

research. Results such as type, DOM type, state management,

release year, data binding, mobile solutions and its versions

migrating easily are derived from official documentation from

frameworks. The results displayed in the table regarding the
ecosystem of third-party libraries, organization of folders and

files, usage of classes, language, component architecture,

learning curve, documentation quality and routing were

derived from the practical experience of developing identical

applications across Angular, Vue, and React frameworks. The

ecosystem of third-party libraries for Angular is extensive, yet

the comprehensive built-in features often negate the necessity

for additional libraries.

Vue's ecosystem, while also rich, leans more on

community contributions for advanced capabilities, thus

necessitating their usage. React's ecosystem is not just

abundant but essential, as it relies heavily on third-party

packages for state management and routing, exemplified by

Redux and React Router. Folder and file organization in

Angular is prescriptive, enforcing a structured approach,

while Vue and React offer more freedom, though Vue
provides recommendations. Angular mandates TypeScript,

enhancing type safety. React and Vue are more flexible,

supporting both JavaScript and TypeScript. Component

architecture in Angular is service-centric. Vue uses single-file

components.

https://doi.org/10.38124/ijisrt/IJISRT24JUN600
http://www.ijisrt.com/

Volume 9, Issue 6, June – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24JUN600

IJISRT24JUN600 www.ijisrt.com 1389

React opts for a compositional model. Learning curves

mirror these complexities, with Angular being steeper.
Documentation quality varies from Angular's robust but

complex to Vue's approachable, and React's practical and

community-enriched resources. Routing is built-in for

Angular and Vue, while React typically incorporates third-

party solutions like React Router. These conclusions are

corroborated by practical application development, where

these traits directly impact development workflow and

efficiency. This hands-on development provided insights into

the nuances of each technology, highlighting the differences

and similarities that emerge when implementing the same

project parameters within each distinct framework
environment. Results in table such as popularity and

community [13] is derived from internet research. This is also

answer on research question 2) about finding the most popular

JS frontend framework. Through table 1., we can clearly see

differences between JavaScript frontend frameworks in terms

of state management, virtual DOM, two way data binding,

mobile development capabilities, routing, documentation

quality etc.

These results are answers on research question 3) whose

focus was on analyzing specific features that JS frontend

frameworks offer and defining impacts that they have on
development process. These features have big implications on

the development process and they are very important when we

are making decisions on which framework we will choose for

some project.

 Angular is a complete framework and if we are

working on some enterprise application where extreme

performance speed is not required, then Angular is probably

the best option. Angular is not using the Virtual Dom concept

and that is one reason why React and Vue show better

performance in terms of speed. Angular is very strict in terms
of folders and files organization and that is good for large

enterprise applications because they will have unified

architecture across all features.

If we are working on an application that will also have a

mobile version that shares the same features as the web

version, then React is a great option. React has React Native

and they are very similar and a lot of code and logic from the

web version can be shared with the mobile version. React is

also a very popular framework with a rich library ecosystem

and good performance. It also has a better learning curve than
Angular. The only problem with React is that it is not a

complete framework like Angular and it offers a lot of

freedom and flexibility which can cause problems on projects

if it is not properly used. This can happen especially if a lot

of juniors work on some project without a proper leader.

Vue is not as popular as Angular and React because it is

not backed by some large companies like Google or

Facebook. Vue uses Virtual Dom like React and shows even

better results in terms of performance than React. Vue is a

progressive framework and it has more built-in features than

React but less than Angular. Vue is probably the best option
for small or medium-sized projects that have only web

versions and where performance is very important. Vue has

Vue Native which is a similar concept to React Native but is

not as popular and powerful as React Native. Vue is also very
beginner-friendly and a good option if we have a lot of

juniors on some projects because it offers a lot of stuff out of

the box such as performance optimization. While it's not

possible to definitively declare one framework as the best for

all situations, we certainly identified scenarios where a

particular framework may be the most advantageous choice.

V. CONCLUSION

The goal of this research was threefold: (1) To find the

framework that shows the best results for small and medium-
sized applications in terms of performance; (2) To find the

most popular JavaScript framework; (3) To define how

specific features such as state management, virtual DOM,

two-way data binding, and mobile development capabilities

compare across Angular, React, and Vue, and what

implications these features have on the development process.

The results indicate that Vue shows the best results in

terms of performance, while React is found to be the most

popular framework. Conclusion for the goal number three is

that the outlined features have big implications on the

development process and they are very important when we are
making decisions on which framework we will choose for

some project. Angular is a complete framework and if we are

working on some enterprise application where extreme

performance speed is not required, then Angular is probably

the best option. If we are working on an application that will

also have a mobile version that shares the same features as the

web version, then React is a great option. React has React

Native and they are very similar and a lot of code and logic

from the web version can be shared with the mobile version.

Vue is not as popular as Angular and React because it is not

backed by some large companies like Google or Facebook.
Vue is probably the best option for small or medium-sized

projects that have only web versions and where performance

is very important. Vue is also very beginner-friendly and a

good option if we have a lot of juniors on some projects

because it offers a lot of stuff out of the box such as

performance optimization. While it's not possible to

definitively declare one framework as the best for all

situations, we certainly identified scenarios where a particular

framework may be the most advantageous choice.

The limitation of this research is that its results are
mostly based on three smaller applications that were made in

Angular, React, and Vue. If those applications were richer

with features there is a possibility that performance results

could be different. As a future direction, the suggestion is to

conduct the same test on more complex applications and draw

a conclusion to which extent the complexity and size of

applications impact performance-related framework

comparison results.

https://doi.org/10.38124/ijisrt/IJISRT24JUN600
http://www.ijisrt.com/

Volume 9, Issue 6, June – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24JUN600

IJISRT24JUN600 www.ijisrt.com 1390

REFERENCES

[1]. Uzayr, S. B., Cloud, N., and Ambler, T.,“JavaScript

Frameworks for Modern Web Development.“ Apress,

2019.

[2]. Gaetano, C. “How to Choose the Best JavaScript

Framework for Your Team“, Mescius, 2019

[3]. Blokdyk, G, “Comparison Of JavaSscript Frameworks“,

5STARCooks, 2021

[4]. Morgan, J., “How To Code In React JS“, Digital Ocean,

2021

[5]. Wenqing Xu, “Benchmark Comparison of JavaScript

Frameworks React, Vue, Angular and Svelte “,
University of Dublin, 2021

[6]. Booth, J. D. “Angular“, Syncfusion, 2019

[7]. Chanchai Aggarwal, “Descriptive vs Analytical

Research“, Shiksha, 2024

[8]. Jean Kaluza, “What is Comparative analysis“, Dovetail,

2023

[9]. Appinio research, “What is Comparative analysis and

how to conduct it?“, Appinio, 2023

[10]. G. Geetha, Monisha Mittal “Interpretation and Analysis

of Angular Framework“, IEEE, 2022

[11]. Rohit Jain “React Redux Framework“, Medium, 2022

[12]. “Vuex official documentation“, https://vuex.vuejs.org/,
2024

[13]. Francesco Borzi “Most Actively Developed frontend

framework“, Medium, 2024

https://doi.org/10.38124/ijisrt/IJISRT24JUN600
http://www.ijisrt.com/

	I. INTRODUCTION
	II. LITERATURE REVIEW AND RESEARCH QUESTION
	 Which JavaScript frontend framework shows the best results for small and medium-sized applications in terms of performance (speed, memory usage)?
	 What is the most popular JavaScript Frontend Framework?
	 How do specific features such as state management, virtual DOM, two-way data binding, and mobile development capabilities compare across Angular, React, and Vue, and what implications do these features have on the development process?

	III. METHODOLOGY
	A. Choice of Performance Measurement Tools
	B. Technical implementation
	C. Challenges and Solutions
	D. Data Collection

	IV. RESULTS AND DISCUSSION
	The figure 1 provides a comparative analysis of Angular, Vue, and React applications across various performance benchmarking tools such as PageSpeed, WebPageTest, GTmetrix, Pingdom, Lighthouse, and Google Performance. It aggregates the performance out...
	This pie chart provides a percentage-based overview of the performance of Angular, Vue, and React across all metrics in various performance testing tools. Vue leads with a significant margin at 59%, indicating its overall superiority in performance ac...
	More JavaScript code means that our application will be slower. Vue and React both use Virtual Dom which is great for performance, but React is just a library and we need a lot of additional libraries to complete some basic features. Additional librar...
	Another important feature that Vue offers is state management. Vue has an official state management library which is well optimized only for that framework - Pinia. In React, we typically use Redux but it is not well optimized for React like Pinia for...
	In React we need additional libraries like Formik. Important features that Vue offers are built-in directives like v-if, v-for, v-bind, v-on, and v-show because they speed the development process and require less code to implement some features. The d...
	Table 1:- Overall Comparison of Frameworks
	Table 1. provides a comparative overview of three major front-end technologies: Angular, Vue, and React. Results in this table are derived from a mix of practical applications development, official documentation reviews, and internet research. Results...
	Vue's ecosystem, while also rich, leans more on community contributions for advanced capabilities, thus necessitating their usage. React's ecosystem is not just abundant but essential, as it relies heavily on third-party packages for state management ...
	React opts for a compositional model. Learning curves mirror these complexities, with Angular being steeper. Documentation quality varies from Angular's robust but complex to Vue's approachable, and React's practical and community-enriched resources. ...
	These results are answers on research question 3) whose focus was on analyzing specific features that JS frontend frameworks offer and defining impacts that they have on development process. These features have big implications on the development proc...
	Angular is a complete framework and if we are working on some enterprise application where extreme performance speed is not required, then Angular is probably the best option. Angular is not using the Virtual Dom concept and that is one reason why...

	V. CONCLUSION
	REFERENCES

