
Volume 9, Issue 6, June – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24JUN1535

IJISRT24JUN1535 www.ijisrt.com 2539

Design and Implementation of

Software-Defined Receiver

Vaibhav M. Nayakoji1; Dr. Hassanali G. Virani2
1ME Student, ETC Department, 2Professor & HOD, ETC Department,

Goa Engineering College, Farmagudi, Ponda-Goa, 403401, India

Abstract:- Acquisition in software-defined GPS receivers

is computationally intensive and time-consuming,

especially with the increasing demand for rapid and

accurate positioning services driven by globalization and

digitization. Software-defined receivers face challenges in

satellite signal acquisition, which becomes more

demanding with longer signals. This paper aims to

enhance the efficiency of GPS signal acquisition, a critical

step for determining the code phase of PRN codes and the

doppler shift in carrier frequency. Real-time applications

encounter issues under dynamic conditions and degraded

signals, as conventional computers lack the computational

power for the necessary correlation and FFT operations.

To address these challenges, a method using GPU

acceleration for L1 signal acquisition is proposed. This

method combines signal acquisition with GPU parallel

computing using the SIMT model. A CPU-GPU platform

via CUDA programming allows the CPU to handle data

reading and intermediate processing, while the GPU

performs the core acquisition algorithm in parallel.

Keywords:- Software-Defined Receiver, Signal Acquisition,

GPS, Compute Unified Device Architecture(CUDA), GPU

Acceleration, Parallel Computing.

I. INTRODUCTION

Global Navigation Satellite Systems (GNSS)

encompass a constellation of satellites orbiting earth,

transmitting positioning, navigation and timing (PNT) data.

Presently, GNSS comprises two fully operational global

systems: the United States’ GPS and the Russia’s GLONASS.

Additionally, ongoing developing global and regional

systems include Europe’s GALILEO, China’s Bei-Dou,

India’s IRNSS developed by the ISRO operational under the
name NavIC and Japan’s QZSS. The conventional hardware-

based implementation of GPS receiver limits flexibility as

signal processing parameters cannot be easily adjusted. In

contrast, a software-defined GPS receiver offers

reconfigurability, upgradability and flexibility, allowing for

the implementation of new algorithms for new GPS signals

without necessitating hardware modifications [1][2][3].

Moreover, software receivers provide transparency in signal

processing enabling access to core data and functions for in-

depth analysis and simulation of different scenarios. Four

modules make up a typical software-defined GPS receiver;
RF front end, acquisition, tracking and position computation.

Improving the acquisition process is crucial for faster GPS

position fixes, especially in kinematic conditions.

Acquisition in GPS is primary and important step for
determining the code phase of the Pseudo Random Noise

(PRN) code and the doppler shift in the carrier frequency of

the received GPS signal. The efficacy of a GPS receiver

system depends on swiftly and precisely measuring the code

phase and doppler shift parameters in the received signal. A

GPS receiver's average acquisition time is typically used to

evaluate its performance. This includes a two-dimensional

search over carrier frequency and code phase by correlating

with locally replicated signals [4]. The computational

capabilities of conventional computers are insufficient to

handle the heavy workload involving correlation and Fast
Fourier Transform (FFT), Inverse Fast Fourier Transform

(IFFT) operations required for real-time signal acquisition.

The signal acquisition process has a very heavy

computational burden, particularly when acquiring weak GPS

signals or operating in challenging environments like dense

foliage or indoor settings. To address these real time

challenges and enhance navigation performance in situations

when signals are weak, including tunnels, dense foliage,

heavy indoors etc. a software-defined GPS L1 receiver has

been designed and implemented. This receiver leverages

GPU to expedite real-time acquisition correlation. GPU offers
massive parallel computing capabilities with hundreds or

even thousands of stream processors, making them ideal for

accelerating signal processing tasks. By utilizing CUDA C, a

proprietary parallel computing platform specific to NVIDIA

GPUs, the software receiver can efficiently handle the

computational demands of acquisition [5].

Two essential parts of software-defined GPS receivers

are the RF front end and the signal processing software.

Typically, hardware like the Universal Software Radio

Peripheral (USRP) is used as the RF front end, facilitating
transmission and reception across a broad frequency

spectrum. By capturing RF-modulated signals at the L1

frequency (1575.42 MHz), downconverting them to an

Intermediate Frequency (IF), digitising the signal there, and

using software-based signal processing, the RF front end of

the software GPS receiver in this setup is able to extract

position information from the navigation message at the

software processing block [6][7]. The USRP-2932 module

serves as the RF front end, while signal processing occurs

through software on a computer, utilizing its CPU-GPU

platform. The key parameters of the resulting data collected
from the front-end design for signal processing are:

https://doi.org/10.38124/ijisrt/IJISRT24JUN1535
http://www.ijisrt.com/

Volume 9, Issue 6, June – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24JUN1535

IJISRT24JUN1535 www.ijisrt.com 2540

 Sampling frequency: 38.192MHz

 Intermediate frequency (IF): 9.548MHz.

This paper presents the design and implementation of a

software-defined GPS receiver with accelerated acquisition

correlation for L1 signals using a CUDA-enabled GPU

technology, to reduce the acquisition time of acquiring

satellites. The main aim of the acquisition module is to aid the
tracking module. That implies the performance of GPS

receiver is strongly influenced by the acquisition time. The

performance of signal acquisition in software defined GPS

receiver is effectively evaluated by measuring the acquisition

time for real-GPS L1 signal data that was captured by USRP-

2932 [8][9].

II. SOFTWARE-DEFINED GPS RECEIVER AND

SIGNAL ACQUISITION

A. Introduction to Software-Defined GPS Receiver
Global Positioning System (GPS) is operated by the

U.S. Space Force, a branch of the U.S. Armed Forces. It was

the first constellation to be established in space with its first

satellite being launched in 1978 and its first series of satellites

fully operational by 1993 [14]. Two radio frequencies in the

UHF band are used to transmit GPS signals. The frequency

range between 500MHz and 3GHz is covered by the UHF

band. These frequencies are known as L1 and L2, and are

derived from a common frequency, f0 = 10.23MHz:

 fL1 = 154 f0 = 1575.42MHz,

 fL2 = 120 f0 = 1227.60MHz [7].

GPS serves a multitude of purposes and offers two

service levels ranging from Standard Positioning Service

(SPS) for civilian users and Restricted Service (RS) for

military and strategic purposes. It facilitates location

determination, navigation, tracking, mapping and timing

across various industries. GPS receivers are integral to

automobile navigation, aviation, maritime navigation,

precision agriculture, mining, construction, surveying,

archeology, geology and mapping. Additionally, GPS

satellites disseminate critical information related to ocean
conditions and provide timely alerts, such as Potential Fishing

Zones (PFZ)/ TUNA PFZ, Ocean State Forecast (OSF), High

Wave Alerts (HWA) and Tsunami early warnings.

B. Parallelized Signal Acquisition using GPS L1 Signal

The GPS receiver executes several critical operations

with acquisition being of paramount importance, due to its

significant impact on the performance of the GPS receiver.

Acquisition is the process of identifying all the satellites that

the user can see. It requires determining the frequency and

code phase of the signal, two important properties.

The received GPS signal after digitization of IF signal

can be represented as

𝑟[𝑛] = √𝐴𝑑[𝑛]𝑐[𝑛 − 𝜏] cos[2𝜋(𝑓𝐼𝐹 + 𝑓𝑑)𝑛𝑇𝑠 − 𝜑] + (1)

Where, 𝐴 represents the carrier power, 𝑑[𝑛] denotes the

navigational data, 𝑐[𝑛] signifies the C/A code, 𝑓𝐼𝐹 , 𝑓𝑑 indicate

the intermediate frequency (IF) and doppler shift (Hz)

respectively, 𝑇𝑠 = 1/𝐹𝑠 stands for the sampling period

(seconds), 𝐹𝑠 is the sampling frequency (Hz), 𝜑 stands for the

initial carrier phase, 𝜏 represents the initial code delay

(samples), and 𝑁 accounts for additive white gaussian noise.

The acquisition process begins by removing the carrier

from the signal by mixing it with a replica carrier. The

nominal carrier frequency, 𝑓𝐼𝐹 corresponds to the IF

frequency of the GPS signal, while the doppler shift, 𝑓𝑑 varies

with satellite movement. Typically, the doppler shift ranges
from ±6 KHz for static or low dynamics users to ±10 KHz for

high dynamic users, setting the search range for the doppler

frequency of the IF signal [7][10]. This range defines the

doppler frequency search space of the IF signal. Following

carrier frequency removal, the signal is correlated with a

replica of the satellite's C/A code. Since the initial delay 𝜏 in

the C/A code is unknown, correlation is performed across all

possible shifts in the replica C/A code. Thus, the acquisition

process operates in a two-dimensional space encompassing

code delay and doppler shift to the IF frequency, as shown in

Fig.1.

Fig 1: Two-Dimensional Signal Acquisition Search Matrix

Signal Acquisition is the first module in the receiver

chain following the RF front end, with its primary objective

being to facilitate subsequent tracking operations. When

acquisition decision statistics are higher than the acquisition

threshold, the acquisition is considered successful. One of the

most important criteria for acquisition validation is the

acquisition threshold, which is the ratio of the highest and

second highest correlation results in the carrier frequency and

code phase search space.

For this purpose, a recent method in GPS signal

acquisition takes advantage of parallelizing the code phase
search, known as parallel code phase search acquisition. For

acquisition in a GPS receiver, the PCPS algorithm has the

lowest computational complexity and is faster. There are

mainly three signal acquisition methods:

https://doi.org/10.38124/ijisrt/IJISRT24JUN1535
http://www.ijisrt.com/

Volume 9, Issue 6, June – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24JUN1535

IJISRT24JUN1535 www.ijisrt.com 2541

 The serial search algorithm

 Parallel frequency space search acquisition algorithm

 Parallel code phase search acquisition algorithm [7].

III. PRINCIPLE OF THE FFT-BASED PCPS

ACQUISITION ALGORITHM

Correlating the incoming signal with a PRN code is the
aim of the acquisition process. A more effective method is

used, as opposed to the serial search acquisition method,

which multiplies the input signal with a PRN code with 1023

distinct code phases. Circular cross-correlation between the

input and the PRN code is used in this PCPS method without

shifted code phase. Circular correlation is used through

fourier transforms. The inverse fourier transform can be used

to get the time-domain representation of the cross correlation

once the frequency domain representation has been achieved

[7].

A block diagram illustrating the parallel code phase

search (PCPS) algorithm is depicted in Fig.2. The I signal is
produced by combining the incoming signal with a locally

generated carrier signal and a locally created carrier signal,

which results in the I signal and with a 90° phase-shifted

version of the signal, which results in the Q signal. The DFT

function receives the complex input signal, x(n) = I(n) +

jQ(n), which is created by combining the I and Q signals.

Fig 2: Block Diagram of PCPS Acquisition Algorithm

After being converted to the frequency domain, the

generated PRN code is complex conjugated. The PRN code's
fourier transform is multiplied by the input's fourier

transform. An inverse fourier transform is used to transform

this product back to the time domain. The correlation between

the input and the PRN code is represented by the absolute

value of the output of the inverse fourier transform. The PRN

code phase of the incoming GPS signal is indicated by the

presence of a peak in the correlation.

Unlike other acquisition methods, the PCPS acquisition

method significantly reduces the search space to 41 distinct

carrier frequencies. The generated PRN code needs to

perform fourier transform only once per acquisition. One
fourier transform and one inverse fourier transform is

performed for each of the 41 frequencies, making the

computational efficiency reliant on how these functions are

implemented. The frequency estimation accuracy is

comparable to that of the serial search approach; however, it

provides a correlation value for each sampled code phase,

allowing for a more precise determination of the PRN code

phase. This method only requires the generation of one PRN

code per acquisition, avoiding the need to consider 1023

different phases.

To create the I and Q signal components, the incoming

signal is first multiplied by a locally generated cosine and sine

carrier wave, respectively. A complex input for fourier

transform is created by combining these elements. The output

from the block diagram's lower branch in Fig.2 is then

multiplied by the result of the fourier transform. This signal

is generated as follows: The PRN generator produces a PRN

code without a code phase, which then undergoes a fourier

transform and later subjected to complex conjugation. The

resulting product from the multiplication operation is fed into

an inverse fourier transform, executed using the built-in
CUDA function. Since the outputs of FFT and IFFT are

complex, absolute values are computed for all output

components.

https://doi.org/10.38124/ijisrt/IJISRT24JUN1535
http://www.ijisrt.com/

Volume 9, Issue 6, June – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24JUN1535

IJISRT24JUN1535 www.ijisrt.com 2542

IV. IMPLEMENTATION OF CUDA

PROGRAMMING MODEL

For GPU programming in C/C++/Fortran, NVIDIA

developed the freeware general-purpose parallel computing

platform and programming model known as CUDA. Utilizing

CUDA C, this paper implements a GPU-based correlation.

Due to CUDAs performance advantages and user-friendly
environment, CUDA is selected for the GPU implementation.

With the help of CUDA, developers can use C/C++ as a high-

level programming language in a software environment.

Leveraging the parallel compute engine in NVIDIA GPU,

CUDA offers more efficient solutions for complex

computational problems compared to traditional CPU-based

approaches. The NVIDIA CUDA C compiler, NVCC is used

to compile CUDA (.cu) files. Notably, CUDA incorporates

optimized libraries such as cuFFT for efficient FFT

implementations [5][11]. Given the substantial FFT

operations required during signal acquisition, the CUFFT

library within CUDA based on MIT’s FFTW software

package is employed. This library offers flexible

configuration options and can execute up to three-

dimensional FFT operations on any number of points using

GPU execution units [5][11][12].

Three fundamental abstractions at the centre of CUDA

are shared memories, a hierarchy of thread groups and barrier
synchronisation. Programmers can access these abstractions

as minimum modifications to the language, which allows for

the nested fine-grained parallelism of data and threads within

the coarse-grained parallelism of data and tasks. With this

method, programmers can break down larger problems into

smaller, more manageable subproblems that can be processed

independently in parallel by internal threads. All of the

threads in a block can work together to solve the finer parts

of the problems in parallel. By permitting thread

collaboration, this decomposition maintains language

expressivity and scalability, as illustrated in Fig. 3.

Fig 3: CUDA’s Automatic Expandability

A kernel in CUDA is made up of several blocks

arranged into a grid, each of which contains threads. For GPU

execution, the scalable Streaming Processor Array (SPA),

Streaming Multiprocessor (SM) and Streaming Processor

(SP) receive the grid, block and thread, respectively. Within

kernels, parallelism is divided into two levels: parallelism

between blocks in a grid and parallelism between threads

within a block, where communication is enabled by shared

memory. Blocks, which are further subdivided into even

smaller warps, are used by kernels to execute them, and each

thread is uniquely recognised by its thread ID and block ID to

differentiate it from other threads. 32 threads make up a warp,
and eight SPs in the SM carry out each instruction to produce

four warp instructions.

The CPU serves as the host and the GPU operates as a

coprocessor or device, in the CUDA programming model. A

complete CUDA program involves serial processing on the

host and parallel processing of kernels on the device. The host

handles GPU device initialization, memory allocation, data

initialization, data copying between host and device memory

via the PCI-E (Peripheral Component Interconnect Express)

bus and result retrieval. The device accesses multiple memory

spaces, including global memory, constant memory, texture

memory, shared memory and registers, for parallel

computation and stores the output results in the video

memory. Upon completion, the host finishes the CUDA
application by retrieving the results from the video memory

back into computer memory, running algorithms and freeing

up internal storage and video memory.

https://doi.org/10.38124/ijisrt/IJISRT24JUN1535
http://www.ijisrt.com/

Volume 9, Issue 6, June – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24JUN1535

IJISRT24JUN1535 www.ijisrt.com 2543

To optimize speed, CUDA provides different types of

GPU memory. In the GPU-based correlator architecture

design, registers, shared memory, local memory and global

memory are used. These memory types are allocated for the

thread, block and grid levels. The thread and memory

hierarchy are shown in detail in Fig.4. Different types of GPU

memory have varying bandwidths. Registers, with a

bandwidth of almost 8 TB/s, offer the quickest memory
transfer. Following registers in terms of memory transfer

speed are shared memory and global memory. An abstract

memory type, local memory is used to store spilled registers.

When a block uses more registers on an SM than are

available, this is known as register spilling. With a bandwidth

of roughly 8 GB/s, the memory transfer between the host and

device memory is the slowest. Between the GPU and CPU

memory, there is a PCI-E connector that limits this bandwidth

value [13].

Fig 4: Memory Hierarchy in a GPU with Bandwidth of Various GPU Memory

V. ACCELERATION OF SIGNAL ACQUISITION

USING GPU

A. A Process of Signal Acquisition in CPU and GPU

The main objective is to reduce the acquisition time of

software-defined GPS L1 receiver without compromising the

effectiveness to acquire the satellites. This involves

developing an algorithm that can accelerate the process of

acquiring satellites which will reduce the signal acquisition

duration, as the most time-consuming part of signal

processing is the signal acquisition in GNSS receivers.

Obtaining the doppler frequency, code phase and visible

satellites is the aim of the signal acquisition process. This is
achieved through PCPS method employing FFT. The GPU is

widely recognised for its parallel computing architecture,

which allows multiple cores to perform computations

simultaneously [5][12]. In this paper, we are implementing

signal acquisition module based on GPU. The majority of

GPU computing platforms have a CPU setup.

In this design, the CPU serves as the host processor,

guiding memory transfer and parallel computation to the
GPU. The signal acquisition process is implemented on the

CPU-GPU platform, where PRN code sequences are

generated. Code sequences and parameters (intermediate

frequency, sampling rate etc.) are moved from the CPU's

memory to the GPU's memory. Parallel operations on the

GPU include FFT, carrier signal creation, product of signal &

carrier, and inverse FFT. The CPU receives the correlation

values that are obtained along with the code phase and

doppler bin. These values identify the peak position,

indicating the satellite's doppler frequency and code phase. A

threshold must be exceeded for the satellite to be considered
effectively acquired.

https://doi.org/10.38124/ijisrt/IJISRT24JUN1535
http://www.ijisrt.com/

Volume 9, Issue 6, June – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24JUN1535

IJISRT24JUN1535 www.ijisrt.com 2544

B. Signal Acquisition Algorithm based on PCPS Method

Fig 5: Flow Diagram of the PCPS Acquisition Algorithm

The acquisition function employs the PCPS acquisition

algorithm [7]. The goal is to determine the signal parameters

for all available satellites within a long data record of a few

milliseconds. This implementation follows the block diagram
of PCPS. Fig.5 displays the code's flow diagram.

The acquisition function searches in 0.5 kHz frequency

steps for a GPS signal. There is a parallel code search

performed for every frequency step. After saving the

correlation results, the function moves on to the next

frequency step. As a result, the function steps through the

user-defined doppler space. Subsequently, the function

searches for the highest correlation value or peak, among all

frequency bins. After the peak is detected, the function

searches the same frequency bin for the second highest

correlation peak. The signal detection rule then makes use of

the ratio between the two peaks. The receiver's preset

acquisition threshold value is compared to the ratio.

Important operations such as FFT and its inverse (IFFT),

complex conjugation, element-wise complex multiplication,

element-wise complex summation and the peak detection of

a signal are implemented using CUDA C programming and

its associated libraries, enabling efficient execution on GPU

hardware. SIMT (Single Instruction, Multiple Threads),

parallel programming model is followed here by GPU. In the

SIMT execution model, the SIMD (Single Instruction,

Multiple Data) model is combined with multi-threading. In a

https://doi.org/10.38124/ijisrt/IJISRT24JUN1535
http://www.ijisrt.com/

Volume 9, Issue 6, June – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24JUN1535

IJISRT24JUN1535 www.ijisrt.com 2545

SIMT machine, there is a set of processors. Each of them

enabled to execute N parallel threads, all executing the same

instruction simultaneously. What sets SIMT apart from SIMD

is its capability to integrate a single instruction with multiple

registers, multiple addresses and multiple flow paths. This

feature enables the parallel processing of large vectors of

data. This execution model establishes a hierarchy of

execution units, such as blocks (set of threads) and grids (set
of blocks). For practical implementations, NVIDIA GPU

computing platform and the CUDA programming model are

opted.

VI. ACQUISITION RESULTS AND DISCUSSION

A. Requirement Specifications

The hardware environment consists of an Intel(R)

Core(TM) i7-14700HX CPU with a base frequency of 2.10

GHz and 16 GB of computer memory. The GPU is an

NVIDIA RTX 4060, featuring 8 GB of video memory and a
core frequency of 1830 MHz. The software environment

includes a 64-bit Windows 11 operating system. The software

development environment utilizes Microsoft's VS2022 and

NVIDIA's CUDA 12.4.

B. Results and Discussion

We successfully implemented acquisition using PCPS

algorithm and SIMT execution model via the CUDA

programming on NVIDIA GPU computing platform, to

reduce the acquisition time of acquiring satellites. Software-

defined receiver efficiently executed the important operations

for GPS L1 such as a lot of FFT and its inverse (IFFT),
complex conjugation, element-wise complex multiplication,

element-wise complex summation and the peak detection of

a signal, which are needed during the signal acquisition

process on CUDA-enabled GPU through GPU computing

and multi-thread processing. This designed software-defined

GPS receiver significantly accelerated the acquisition

correlation process and successfully acquired the visible

satellites.

The software-defined GPS L1 receiver using PCPS

algorithm acquired satellites present in the IF data with the
corresponding code phase and doppler frequency. The

improvement in acquisition time efficiency was achieved

through GPU-based parallel correlation and parallelization of

essential operations for GPS L1. With this implementation,

the fast data processing in the GPU enables real-time

processing at an accelerated pace. The performance of signal

acquisition in software-defined GPS receiver is effectively

evaluated by measuring the acquisition time for real-GPS L1

signal data that was captured by USRP-2932. The results

show that the GPU's acquisition speed is many times faster

than the CPU's, ensuring the real-time processing of GPS L1

signals. By employing the methods presented in this paper,
software-defined receivers achieve near optimal performance

for GPS signal acquisition and achieves almost a 60%

reduction in operating time when acquiring signals using

GPU as compared to CPU. Simulated data produced by a

GNSS simulator is used to validate the software receiver's

signal acquisition capability. With GPU processing the

advantage is clear. Here, acquisition time required to acquire

satellite is about 0.66 to 32.25ms. Fig.6 represents a PCPS

acquisition plot for L1 signal. PCPS acquisition successfully

detected PRN 22; On the other hand, if any PRN was not

found, it would be indicated by the lack of a noticeable

correlation peak.

Fig 6: Acquisition Plot for PRN 22.

The acquisition plot indicates the presence of signals

from PRN 22, as evident from the significant peak. This peak

corresponds to the C/A code phase and the frequency of the

signal. Fig.6 illustrates a typical acquisition plot for a visible

satellite, showing a notable peak that signifies high

correlation. In contrast, an acquisition plot for a satellite not

currently visible to the GPS receiver will show nearly

identical values, indicating low correlation and the absence of

a distinct peak. This lack of a peak signifies that signals from

such a PRN satellite are not present in the received signal.

The correct visible satellites are identified by the

proposed algorithm. By comparing the highest peak in the

Doppler frequency and code phase search with the second

highest peak, the presence of any satellite is determined. Fig.6

displays the distinct peak of PRN 22.

VII. CONCLUSION AND FUTURE WORK

In this paper, GPS software receiving platform is

designed and implemented successfully using GPU and GPS

software reception platform development is demonstrated

using CUDA. The developed GPS software receiving
platform calculates the acquisition time required to acquire

the satellites using PCPS algorithm in parallel computing.

The software module for software-defined receivers is

designed with each acquisition function built separately to

facilitate easy modification and adaptability. The result

highlights that the longer acquisition time in real-time

problems and in kinematic conditions or high dynamic

environment and in signal degraded environments such as

indoors, tunnels, dense canopy, vegetation etc. is efficiently

solved by using GPU based software-defined receiver with

sample GPS L1 signal data, demonstrating their effectiveness
in meeting the objectives.

https://doi.org/10.38124/ijisrt/IJISRT24JUN1535
http://www.ijisrt.com/

Volume 9, Issue 6, June – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24JUN1535

IJISRT24JUN1535 www.ijisrt.com 2546

In future, the acquisition algorithm used for GPS L1

C/A signals can be adopted in NavIC, where the rough

estimates of code phase and carrier is calculated using PCPS

acquisition. After the experience with GPS, implemention of

this with NavIC satellites is possible. The tracking module

can also be designed and implemented based on GPU. The

GPS software receiver implemented in this paper can be

applied to further research on GPU-based multi-frequency
and multi-constellation related algorithms. Based on GPS

experience, new CUDA features can be studied to enhance

the future GNSS's performance.

REFERENCES

[1]. Ghangho Kim, Hyoungmin So, Sanghoon Jeon,

Changdon Kee, Youngsu Cho and Wansik Choi, ”The

Development of Modularized Post Processing GPS

Software Receiving Platform”, International

Conference on Control, Automa tion and Systems
2008 Oct. 14-17, 2008 in COEX, Seoul, Korea.

[2]. Antoine Grenier, Elena Simona Lohan, Aleksandr

Ometov, Jari Nurmi, ”An Open-Source Software-

Defined Receiver for GNSS Algorithms Benchmark

ing”, Electrical Engineering Unit, Tampere

University, Tampere, Finland, 2022 14th International

Congress on Ultra Modern Telecommunications and

Control Systems and Workshops (ICUMT).

[3]. Global Navigation Satellite Systems (GNSS).

Website: www.unoosa.org. Accessed: May, 2024.

[4]. Yeqing Zhang, Meiling Wang, Yafeng Li,”

LowComputational Signal Acquisition for GNSS
Receivers Using a Resampling Strategy and Variable

Circular Correlation Time”, School of Automation,

Beijing Institute of Technology, Beijing 100081,

China.

[5]. NVIDIA CUDA C/C++ Programming Guide 12.4,

NVIDIA Press, 2024.

[6]. M. Venu Gopala Rao, D. Venkata Ratnam, “Faster

Acquisition Technique for Software-defined GPS

Receivers”. K.L. University, Guntur-522 502, In dia,

Defence Science Journal, Vol. 65, No. 1, January

2015, pp. 5-11, DOI: 10.14429/dsj.65.5579 2015,
DESIDOC.

[7]. K. Borre, D. M. Akos, N. Bertelsen, P. Rinder, and S.

H. Jensen, “A software defined GPS and Galileo

receiver: A single-frequency approach”, Springer

Science & Business Media, 2007.

[8]. M. Ettus, ”GETTING STARTED GUIDE- NI USRP-

29xx”, National Instruments, December, 2012.

[9]. M. Ettus, ”USRP users and developers guide”, Ettus

research LLC, 2005.

[10]. Shaik Fayaz Ahamed, G Sasibhushana Rao, L Ganesh,

“Fast Acquisition of GPSSignal using FFT

Decomposition”, Department of Electronics and Com
munications Engineering, V R Siddhartha

Engineering College, Vijayawada, India, Department

of Electronics and Communications Engineering,

Andhra University, Visakhapatnam, India,

Department of Electronics and Communi cations

Engineering ANITS, Visakhapatnam, India.

[11]. NVIDIA cuFFT Library User’s guide 11.7, NVIDIA

Press, 2022.

[12]. David B. Kirk and Wen-mei W. Hwu, “Programming

Massively Parallel Processors-A Hands-on

Approach”, Elsevier Inc., 2013.

[13]. Rob Farber, “CUDA application design and

development”, Elsevier, Amsterdam, 2011.

[14]. GPS, Website: www. novatel.com. Accessed: May,
2024.

https://doi.org/10.38124/ijisrt/IJISRT24JUN1535
http://www.ijisrt.com/

