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Abstract:- This study examines the implementation and 

comparative analysis of sigmoid, approximation sigmoid, 

and hard sigmoid activation functions on FPGA using 

Verilog HDL and Xilinx ISE simulator and investigates 

key performance parameters including device usage, 

clock load, and time characteristics among. The findings 

suggest that sigmoid functions provide greater accuracy 

at the expense of larger processors. An approximate 

sigmoid roughly strikes a balance between accuracy and 

efficiency, whereas a hard sigmoid is more efficient but 

imprecise. Comparison of MATLAB results showed the 

effect of non-stationary computation and lower number, 

where lower quantization level resulted in improved 

accuracy.  This study highlights the trade-off involved in 

FPGA-based neural network implementations and fixed-

point emphasis. It also suggests future research on 

reducing the representation and developing effective 

activation algorithms. 
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I. INTRODUCTION 

 

Implementation of activation functions in field 

programmable gate arrays (FPGAs) is essential to improve 

neural network performance and performance. Among many 

activation functions, sigmoid functions and their derivatives 

(approximately sigmoid and hard sigmoid) are of particular 
utility in various neural network applications Each of these 

functions has specific trade-offs between computational 

complexity and accuracy, and making their application in 

hardware an area of great interest. 

 

Processing functions must be implemented in hardware 

to implement hardware-based machine learning or AI 

algorithms for edge computing, edge device, or IoT 

applications These processing functions are important 

components of machine learning or deep learning each way, 

which provides the nonlinearity necessary for neural 
networks to learn Similarly, activation functions representing 

complex patterns in data are important in machine learning 

because they enable networks to make complex and binding 

decisions subtle interactions in the data. 

 

The study of activation functions is important for 

hardware applications because improving these functions can 

significantly improve system performance and performance. 

Hardware efficiency used in activation functions can reduce 

computing load, power consumption, and processing speed, 

all important considerations for edge devices with limited 
resources .Furthermore, understanding and developing these 

functions to include smart sensors, autonomous systems and 

real-time data analysis. Extensive research and development 

in this area is crucial to enhance edge computing technology 

capabilities though has contributed to the development of 

effective and responsive AI models capable of delivering 

timely insights and actions across a variety of applications. 

 

In order to bring neural networks to life in hardware, it 

is necessary to implement activation functions in FPGAs. 

Activation functions are important nonlinear features that add 

complexity and learnability to artificial neural networks.  
FPGA implementation is important from its ability to bridge 

the gap between software simulation and real-time 

application. While software can easily train and simulate 

neural networks, FPGAs provide the hardware basis for 

implementing these networks in real-world situations. 

Engineers can create neural network accelerators that process 

information faster than a conventional CPU or GPU by 

adding activation functions to the fabric of the FPGA .This 

hardware acceleration is important for applications that 

require real-time feedback, such as graphics recognition, 

language processing, and autonomous systems. 
 

The approximate sigmoid function is a feasible method 

that uses simple mathematical approximations to reduce the 

processing load. This approximation can significantly reduce 

the resources used on FPGAs and has acceptable accuracy for 

most real applications. Similarly, the complexity of the 

sigmoid function, characteristic of its piecewise linear design, 

provides additional reduction in complexity, allowing faster 

and less wasteful implementation This study investigates 

implementation strategies for such implementation these 

three on FPGAs. It examines design issues, resource 
allocations, and performance outcomes for each project. By 

distinguishing between classic sigmoid and approximations 

and tight variations, this research seeks to highlight the trade-

offs and potential benefits in terms of speed, resources, and 

overall network performance. 
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II. PRELIMINARIES OF ACTIVATION FUNCTION 

 

Diagrams showing key components and connections can be used to visualize the structure of artificial tissues. The typical 

structure of the artificial neuron diagram is illustrated below and categorized: 

 

 
Fig 1 Artificial Neuron Diagram 

 

The artificial neuron received several inputs (X1, X2, 

X3, ….Xn), each representing an attribute or property of the 

processed data, weights are assigned, which are shown as 

W1j, W2j, W3j,…Wnj, indicating the relative importance of 
the resulting neurons. The weights are learned in the training 

phase of the neural network function, often abbreviated ∑. 

 

S=∑ (𝑊𝑖𝑗. 𝑋𝑖)𝑛
𝑖=1                                                                     (1) 

 

Where S represents the combination of outcomes, Wij is the 

weight and Xi is the input.  

 

The term ‘bias’ is added to the weighted sum, allowing 
the neuron to adjust its output independently of the inputs and 

can help in shifting the activation function. 

 

Z= S + bias = ∑ (𝑊𝑖𝑗. 𝑋𝑖)𝑛
𝑖=1  + bias                                      (2) 

 

The weighted total plus bias is then transmitted through 

the activation function denoted by f. Activation functions add 

nonlinearity to the output of neurons, allowing them to detect 

complex structures in the input and make nonlinear decisions. 
 

Y=f(Z)                                                                                   (3) 

 

Where Y denotes the final output of the root. The output 

of the activation function represents the final output of the 

artificial neuron, which can be propagated to other neurons in 

the network. 

 

This neural network approach was implemented using 

FPGAs. The FPGA-based neuron part is shown in the figure 

below.  

 

 
Fig 2 Neuron Component Built in FPGA 

 

The input signals are X[7:0], XX[7:0], and XXX[7:0], 

while the weights of neurons are W[7:0], WW[7:0], and 

WWW [ . 7:0 ], each of 8 bits. BIAS[15:0] is the 16-bit bias 

of the neuron, C is the input clock of the system, CE is the 

chip enabler of the system and M[7:0] is the 8-bit output of 

the neuron. 
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This section contains three basic functions: the sigmoid 

function, the approximate sigmoid function, and the hard 

sigmoid function. 

 

 Sigmoid Function 

Sigmoid activation functions are commonly utilized in 

neurons, particularly for binary classification issues. It maps 

any real-valued number to a location (0,1). It is defined as- 
 

F1(x) = 
1

1+𝑒−𝑥                                                                         (4) 

 

The sigmoid function is defined as a unique S-shaped 

curve.  

 

 

 Approximate Sigmoid 

An approximate sigmoid function attempts to reduce 

computational complexity while maintaining a close 

approximation to the normal sigmoid function. 

 

F2(x)  =  
1

2 
[

𝑥

1+|𝑥|
+ 1]                                                             (5) 

 

 Hard Sigmoid Function 

The hard sigmoid function is computationally efficient 

with binary-like results. It can be defined as a piecewise linear 

function:  

 

F3(x) = {
0                   𝑖𝑓 𝑥 ≤  −2.5
1                       𝑖𝑓 𝑥 ≥ 2.5

0.2𝑥 + 0.5          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}                                     (6) 

 

 
Fig 3 Comparison of Sigmoid, Approximate Sigmoid and Hard Sigmoid Functions 

 

III. SIMULATION AND RESULTS 

 

All of the Artificial Neuron blocks, including the Sigmoid Function, Approximate Sigmoid, and Hard Sigmoid, are designed 
in Verilog HDL and simulated with the Xilinx ISE simulator version 14.5. Figures 4, 5, and 6 demonstrate the device use for the 

sigmoid function, approximate sigmoid, and hard sigmoid, respectively. 

 

 
Fig 4 Device Utilization for Sigmoid in FPGA 
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Fig 5 Device Utilization for Approximate Sigmoid in FPGA 

 

 
Fig 6 Device Utilization for Hard Sigmoid in FPGA 

 

Figures 7, 8, and 9 illustrate simulation waveforms. Figure 7 depicts the simulated waveform of the Sigmoid function, which 

is the original sigmoid function. Input X[7:0] is defined as 01100110, input XX[7:0] is specified as 00011001, and input XXX[7:0] 

is defined as 01001100, with the observed output being M[7:0] = 01011000. 

 

 
Fig 7 Simulation Waveform for Sigmoid Function in FPGA 

 

Figure 8 depicts the simulation waveform for an 

approximate sigmoid function. The output M[7:0] is shown 

as 01011111, which looks to be significantly greater than the 

initial sigmoid result. While both outputs follow similar 
trends and respond to the same inputs, the approximate 

sigmoid output produces slightly greater activation levels. 

This disparity could be explained by the approximation 

utilized to calculate the sigmoid function in the approximate 

sigmoid implementation. 
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Fig 8 Simulation Waveform for Approximate Sigmoid Function in FPGA 

 

Figure 9 depicts the simulated waveform of a hard sigmoid function, with the output as result[7:0] = 00000000. The hard 

sigmoid function is a computationally efficient approximation of the sigmoid function that trades off accuracy for speed. It produces 

binary outputs (0 and 1) which can be useful for applications where a clear decision boundary is required. 

 

 
Fig 9 Simulation Waveform for Hard Sigmoid in FPGA 

 

The following table shows the neurons' output using the sigmoid, approximation sigmoid, and hard sigmoid functions achieved 

with the FPGA technique. 

 

Table 1 Results of Sigmoid, Approximation Sigmoid and Hard Sigmoid 

X1 X2 X3 Sigmoid Approximate Sigmoid Hard Sigmoid 

0.8 0.2 0.6 0.3 0.4 0 

0.3 -0.7 -0.2 0.6 0.7 1 

0.4 0.9 0.1 0.6 0.7 0.7 

1.6 1.9 0.1 0.8 0.8 1 

0.6 0.9 0.4 0.4 0.3 0.2 
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All of the blocks are implemented on FPGA in 

accordance with their respective requirements. 

 

Family –   Spartan3E 

 

Device –XC3ES500E 

 

Package – PQ208  
 

Speed –   -5 

 

IV. PERFORMANCE AND TIMING ANALYSIS OF 

SIGMOID FUNCTION IMPLEMENTATIONS 

 

This section compares the performance and timing 

properties of the sigmoid, approximation sigmoid, and hard 

sigmoid function implementations. The following aspects are 

analyzed. 

 

 Clock Load Comparison:  

This comparison compares the number of clock loads 

required by each function, illustrating variances in resource 

use. 

 

 Maximum Frequency Comparison:  

This analysis compares the maximum operating 

frequency achieved by each function, providing information 
on the speed and efficiency of the implementations. 

 

 Timing Summary Comparison:  

This comparison contains three key timing metrics:  

 

 Minimum period required for each function. 

 Minimum input arrival time before clock. 

 Maximum output time after clock. 

 

 The Graphs below Show these Comparisons: 

 
Fig 10 Clock Load Comparison 

 

The BUFGP buffer is used to load the sigmoid function at a clock rate of 24. The hard sigmoid function uses the BUFGP 
buffer, which has a higher clock load of 61. The approximation sigmoid function uses the BUFGP buffer with a clock load of 21. 

This means that the hard sigmoid function consumes the most clock resources, while the approximate sigmoid uses the fewest. 

 

 
Fig 11 Maximum Frequency Comparison 
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The minimum period for both the sigmoid and 

approximation sigmoid functions is 3.492ns, which 

corresponds to a maximum frequency of 286.369MHz. 

 

The hard sigmoid function has a slightly longer 

minimum period of 9.952ns, resulting in a maximum 

frequency of 100.478MHz.  

 

This indicates that the hard sigmoid function runs at a 

slower rate than the sigmoid and approximate sigmoid 

functions.  

 

 

 

 

 
Fig 12 Timing Summary Comparison 

 

The sigmoid function has a minimum input arrival time 
of 12.000ns before the clock and a maximum output time of 

4.040ns after the clock. 

 

The lowest input arrival time for the hard sigmoid 

function is 2.840ns, and the maximum output necessary time 

after the clock is also 4.040ns. 

 

The approximate sigmoid function has a minimum input 

arrival time of 13.281ns before the clock and a maximum 

output time of 4.040ns after the clock. 

 
The hard sigmoid function has a faster input arrival time, 

which means it can process inputs faster than the other two 

functions. 

V. COMPARATIVE ANALYSIS OF SIGMOID 

FUNCTION IMPLEMENTATION IN MATLAB 

AND FPGA 

 

Experiments were carried out utilizing the sigmoid 

functions on input data sets in both MATLAB and Xylinx 

platforms. The MATLAB implementation relied on built-in 

functions, whereas the Xylinx implementation used fixed-

point arithmetic with quantization levels of Q8, Q14, and 

Q16. 

  

The following table compares the output of neurons 
calculated using the MATLAB program to those generated 

using the FPGA technique.  

 

Table 2 Results of MATLAB and FPGA with Different Quantization Levels 

Output of neuron in 

MATLAB 

Output of neuron in 

FPGA(Q8) 

Output of neuron in 

FPGA(Q14) 

Output of neuron in 

FPGA(Q16) 

0.31 0.3 0.4 0.6 

0.98 0.6 0.4 0.7 

0.93 0.6 0.5 0.5 

0.89 0.8 0.7 0.5 

0.05 0.4 0.1 0.01 

 

All inputs and outputs from the neuron created in FPGA 

were recorded in binary format. The values in the table were 

displayed in decimal form to make them easier to understand. 

The table above demonstrates that the outputs of neurons 

estimated in MATLAB differ from those generated by FPGA 
implementations with varied quantization levels (Q8, Q14, 

and Q16). These variations are primarily due to the style of 

representation. In MATLAB, the sigmoid function is 

calculated using built-in techniques that employ floating-

point arithmetic for high precision and accuracy. On the other 

hand, the FPGA implementation uses fixed-point arithmetic 

with quantization levels, with inputs and intermediate values 
recorded in binary format. 
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This fixed-point encoding contains quantization errors, 

particularly at lower quantization levels like Q8, which result 

in slight discrepancies from the MATLAB findings. Figures 

13, 14 and 15 illustrate a comparison between MATLAB and 

FPGA at different quantization levels, as well as their errors. 

 

 
Fig 13 Graph showing Comparison of MATLAB and FPGA (Q8) Sigmoid Function Outputs for given Data Points, along with the 

Corresponding Error between them 

 

 
Fig 14 Graph showing Comparison of MATLAB and FPGA (Q8) Sigmoid Function Outputs for given Data Points, along with the 

Corresponding Error between them 
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Fig 15 Graph showing Comparison of MATLAB and FPGA (Q8) Sigmoid Function Outputs for given Data Points, along with the 

Corresponding Error between them 
 

The following table shows the mean square error (MSE) between the outputs of the neuron in MATLAB and the FPGA outputs 

with different quantization levels (Q8, Q14, and Q16) has been calculated. 

 

Table 3 Mean Square Error between MATLAB and FPGA 

Mean Square Error (Q8) Mean Square Error (Q14) Mean Square Error (Q16) 

0.0768 0.1136 0.10022 

 

The MSE for the Q8 quantization level is the lowest, at 

0.0768, as indicated in the table, showing that the Q8 

quantization level yields FPGA outputs that are most similar 

to MATLAB outputs. The MSE for the Q14 quantization 

level is the greatest, at 0.1136, indicating that it causes the 

most substantial mistake as compared to the MATLAB 

outputs. The MSE for the Q16 quantization level is 0.10022, 
which is greater than Q8 but lower than Q14, indicating a 

moderate margin of error. Lower quantization levels, such as 

Q8, produce more accurate outputs but may also need more 

FPGA resources.  

 

VI. CONCLUSION 

 

This report presented the implementation and 

comparative analysis of the sigmoid, approximate sigmoid, 

and hard sigmoid activation functions on an FPGA. The 

results demonstrated that while the original sigmoid function 
offers high accuracy, the approximate sigmoid provides a 

good balance between accuracy and computational 

efficiency. The hard sigmoid, on the other hand, is highly 

efficient in terms of computation but at the cost of reduced 

precision. Comparing the FPGA results with MATLAB 

implementations highlighted the impact of fixed-point 

arithmetic and quantization errors. The discrepancies 

observed were more pronounced at lower quantization levels. 
Future work could focus on optimizing the fixed-point 

representation and exploring other hardware-efficient 

activation functions. 

 

 The Key Findings from the Performance and Timing 

Analysis are: 

 

 Clock Load:  

The hard sigmoid function utilizes the most clock 

resources, while the approximate sigmoid requires the fewest. 
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 Maximum Frequency:  

The sigmoid and approximation sigmoid functions can 

work at higher frequencies than the hard sigmoid function. 

 

 Timing Metrics:  

The hard sigmoid function processes inputs quickly but 

less accurately. 

 
In addition to the performance and timing analysis, a 

Mean Square Error (MSE) analysis was performed between 

the MATLAB outputs and FPGA outputs for various 

quantization levels, revealing that the implementation with 

Q8 quantization level is the most accurate when compared to 

MATLAB, while Q14 introduces the most error. In 

conclusion, the MSE analysis highlights the trade-off 

between quantization levels and accuracy, which guides the 

selection of an optimal fixed-point representation for 

balancing precision and resource utilization in FPGA-based 

designs. 
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