
Volume 9, Issue 6, June – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24JUN1109

IJISRT24JUN1109 www.ijisrt.com 961

Comparison Study and Analysis of Implementing

Activation Function of Machine Learning in

MATLAB and FPGA

Mallika Roy1; Jishnu Nath Paul2; Josita Sengupta3; Swagata Bhattacharya4 (Assistant Professor)
1,2,3Department of Electronics & Communication Engineering, Guru Nanak Institute of Technology, Kolkata, India

4 Department of Electronics & Communication Engineering, Guru Nanak Institute of Technology, Kolkata, India

Abstract:- This study examines the implementation and

comparative analysis of sigmoid, approximation sigmoid,

and hard sigmoid activation functions on FPGA using

Verilog HDL and Xilinx ISE simulator and investigates

key performance parameters including device usage,

clock load, and time characteristics among. The findings

suggest that sigmoid functions provide greater accuracy

at the expense of larger processors. An approximate

sigmoid roughly strikes a balance between accuracy and

efficiency, whereas a hard sigmoid is more efficient but

imprecise. Comparison of MATLAB results showed the

effect of non-stationary computation and lower number,

where lower quantization level resulted in improved

accuracy. This study highlights the trade-off involved in

FPGA-based neural network implementations and fixed-

point emphasis. It also suggests future research on

reducing the representation and developing effective

activation algorithms.

Keywords:- Activation Function; FPGA; Verilog HDL;

Xilinx; MATLAB; Machine Learning.

I. INTRODUCTION

Implementation of activation functions in field

programmable gate arrays (FPGAs) is essential to improve

neural network performance and performance. Among many

activation functions, sigmoid functions and their derivatives

(approximately sigmoid and hard sigmoid) are of particular
utility in various neural network applications Each of these

functions has specific trade-offs between computational

complexity and accuracy, and making their application in

hardware an area of great interest.

Processing functions must be implemented in hardware

to implement hardware-based machine learning or AI

algorithms for edge computing, edge device, or IoT

applications These processing functions are important

components of machine learning or deep learning each way,

which provides the nonlinearity necessary for neural
networks to learn Similarly, activation functions representing

complex patterns in data are important in machine learning

because they enable networks to make complex and binding

decisions subtle interactions in the data.

The study of activation functions is important for

hardware applications because improving these functions can

significantly improve system performance and performance.

Hardware efficiency used in activation functions can reduce

computing load, power consumption, and processing speed,

all important considerations for edge devices with limited
resources .Furthermore, understanding and developing these

functions to include smart sensors, autonomous systems and

real-time data analysis. Extensive research and development

in this area is crucial to enhance edge computing technology

capabilities though has contributed to the development of

effective and responsive AI models capable of delivering

timely insights and actions across a variety of applications.

In order to bring neural networks to life in hardware, it

is necessary to implement activation functions in FPGAs.

Activation functions are important nonlinear features that add

complexity and learnability to artificial neural networks.
FPGA implementation is important from its ability to bridge

the gap between software simulation and real-time

application. While software can easily train and simulate

neural networks, FPGAs provide the hardware basis for

implementing these networks in real-world situations.

Engineers can create neural network accelerators that process

information faster than a conventional CPU or GPU by

adding activation functions to the fabric of the FPGA .This

hardware acceleration is important for applications that

require real-time feedback, such as graphics recognition,

language processing, and autonomous systems.

The approximate sigmoid function is a feasible method

that uses simple mathematical approximations to reduce the

processing load. This approximation can significantly reduce

the resources used on FPGAs and has acceptable accuracy for

most real applications. Similarly, the complexity of the

sigmoid function, characteristic of its piecewise linear design,

provides additional reduction in complexity, allowing faster

and less wasteful implementation This study investigates

implementation strategies for such implementation these

three on FPGAs. It examines design issues, resource
allocations, and performance outcomes for each project. By

distinguishing between classic sigmoid and approximations

and tight variations, this research seeks to highlight the trade-

offs and potential benefits in terms of speed, resources, and

overall network performance.

https://doi.org/10.38124/ijisrt/IJISRT24JUN1109
http://www.ijisrt.com/

Volume 9, Issue 6, June – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24JUN1109

IJISRT24JUN1109 www.ijisrt.com 962

II. PRELIMINARIES OF ACTIVATION FUNCTION

Diagrams showing key components and connections can be used to visualize the structure of artificial tissues. The typical

structure of the artificial neuron diagram is illustrated below and categorized:

Fig 1 Artificial Neuron Diagram

The artificial neuron received several inputs (X1, X2,

X3, ….Xn), each representing an attribute or property of the

processed data, weights are assigned, which are shown as

W1j, W2j, W3j,…Wnj, indicating the relative importance of
the resulting neurons. The weights are learned in the training

phase of the neural network function, often abbreviated ∑.

S=∑ (𝑊𝑖𝑗. 𝑋𝑖)𝑛
𝑖=1 (1)

Where S represents the combination of outcomes, Wij is the

weight and Xi is the input.

The term ‘bias’ is added to the weighted sum, allowing
the neuron to adjust its output independently of the inputs and

can help in shifting the activation function.

Z= S + bias = ∑ (𝑊𝑖𝑗. 𝑋𝑖)𝑛
𝑖=1 + bias (2)

The weighted total plus bias is then transmitted through

the activation function denoted by f. Activation functions add

nonlinearity to the output of neurons, allowing them to detect

complex structures in the input and make nonlinear decisions.

Y=f(Z) (3)

Where Y denotes the final output of the root. The output

of the activation function represents the final output of the

artificial neuron, which can be propagated to other neurons in

the network.

This neural network approach was implemented using

FPGAs. The FPGA-based neuron part is shown in the figure

below.

Fig 2 Neuron Component Built in FPGA

The input signals are X[7:0], XX[7:0], and XXX[7:0],

while the weights of neurons are W[7:0], WW[7:0], and

WWW [. 7:0], each of 8 bits. BIAS[15:0] is the 16-bit bias

of the neuron, C is the input clock of the system, CE is the

chip enabler of the system and M[7:0] is the 8-bit output of

the neuron.

https://doi.org/10.38124/ijisrt/IJISRT24JUN1109
http://www.ijisrt.com/

Volume 9, Issue 6, June – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24JUN1109

IJISRT24JUN1109 www.ijisrt.com 963

This section contains three basic functions: the sigmoid

function, the approximate sigmoid function, and the hard

sigmoid function.

 Sigmoid Function

Sigmoid activation functions are commonly utilized in

neurons, particularly for binary classification issues. It maps

any real-valued number to a location (0,1). It is defined as-

F1(x) =
1

1+𝑒−𝑥 (4)

The sigmoid function is defined as a unique S-shaped

curve.

 Approximate Sigmoid

An approximate sigmoid function attempts to reduce

computational complexity while maintaining a close

approximation to the normal sigmoid function.

F2(x) =
1

2
[

𝑥

1+|𝑥|
+ 1] (5)

 Hard Sigmoid Function

The hard sigmoid function is computationally efficient

with binary-like results. It can be defined as a piecewise linear

function:

F3(x) = {
0 𝑖𝑓 𝑥 ≤ −2.5
1 𝑖𝑓 𝑥 ≥ 2.5

0.2𝑥 + 0.5 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

} (6)

Fig 3 Comparison of Sigmoid, Approximate Sigmoid and Hard Sigmoid Functions

III. SIMULATION AND RESULTS

All of the Artificial Neuron blocks, including the Sigmoid Function, Approximate Sigmoid, and Hard Sigmoid, are designed
in Verilog HDL and simulated with the Xilinx ISE simulator version 14.5. Figures 4, 5, and 6 demonstrate the device use for the

sigmoid function, approximate sigmoid, and hard sigmoid, respectively.

Fig 4 Device Utilization for Sigmoid in FPGA

https://doi.org/10.38124/ijisrt/IJISRT24JUN1109
http://www.ijisrt.com/

Volume 9, Issue 6, June – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24JUN1109

IJISRT24JUN1109 www.ijisrt.com 964

Fig 5 Device Utilization for Approximate Sigmoid in FPGA

Fig 6 Device Utilization for Hard Sigmoid in FPGA

Figures 7, 8, and 9 illustrate simulation waveforms. Figure 7 depicts the simulated waveform of the Sigmoid function, which

is the original sigmoid function. Input X[7:0] is defined as 01100110, input XX[7:0] is specified as 00011001, and input XXX[7:0]

is defined as 01001100, with the observed output being M[7:0] = 01011000.

Fig 7 Simulation Waveform for Sigmoid Function in FPGA

Figure 8 depicts the simulation waveform for an

approximate sigmoid function. The output M[7:0] is shown

as 01011111, which looks to be significantly greater than the

initial sigmoid result. While both outputs follow similar
trends and respond to the same inputs, the approximate

sigmoid output produces slightly greater activation levels.

This disparity could be explained by the approximation

utilized to calculate the sigmoid function in the approximate

sigmoid implementation.

https://doi.org/10.38124/ijisrt/IJISRT24JUN1109
http://www.ijisrt.com/

Volume 9, Issue 6, June – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24JUN1109

IJISRT24JUN1109 www.ijisrt.com 965

Fig 8 Simulation Waveform for Approximate Sigmoid Function in FPGA

Figure 9 depicts the simulated waveform of a hard sigmoid function, with the output as result[7:0] = 00000000. The hard

sigmoid function is a computationally efficient approximation of the sigmoid function that trades off accuracy for speed. It produces

binary outputs (0 and 1) which can be useful for applications where a clear decision boundary is required.

Fig 9 Simulation Waveform for Hard Sigmoid in FPGA

The following table shows the neurons' output using the sigmoid, approximation sigmoid, and hard sigmoid functions achieved

with the FPGA technique.

Table 1 Results of Sigmoid, Approximation Sigmoid and Hard Sigmoid

X1 X2 X3 Sigmoid Approximate Sigmoid Hard Sigmoid

0.8 0.2 0.6 0.3 0.4 0

0.3 -0.7 -0.2 0.6 0.7 1

0.4 0.9 0.1 0.6 0.7 0.7

1.6 1.9 0.1 0.8 0.8 1

0.6 0.9 0.4 0.4 0.3 0.2

https://doi.org/10.38124/ijisrt/IJISRT24JUN1109
http://www.ijisrt.com/

Volume 9, Issue 6, June – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24JUN1109

IJISRT24JUN1109 www.ijisrt.com 966

All of the blocks are implemented on FPGA in

accordance with their respective requirements.

Family – Spartan3E

Device –XC3ES500E

Package – PQ208

Speed – -5

IV. PERFORMANCE AND TIMING ANALYSIS OF

SIGMOID FUNCTION IMPLEMENTATIONS

This section compares the performance and timing

properties of the sigmoid, approximation sigmoid, and hard

sigmoid function implementations. The following aspects are

analyzed.

 Clock Load Comparison:

This comparison compares the number of clock loads

required by each function, illustrating variances in resource

use.

 Maximum Frequency Comparison:

This analysis compares the maximum operating

frequency achieved by each function, providing information
on the speed and efficiency of the implementations.

 Timing Summary Comparison:

This comparison contains three key timing metrics:

 Minimum period required for each function.

 Minimum input arrival time before clock.

 Maximum output time after clock.

 The Graphs below Show these Comparisons:

Fig 10 Clock Load Comparison

The BUFGP buffer is used to load the sigmoid function at a clock rate of 24. The hard sigmoid function uses the BUFGP
buffer, which has a higher clock load of 61. The approximation sigmoid function uses the BUFGP buffer with a clock load of 21.

This means that the hard sigmoid function consumes the most clock resources, while the approximate sigmoid uses the fewest.

Fig 11 Maximum Frequency Comparison

https://doi.org/10.38124/ijisrt/IJISRT24JUN1109
http://www.ijisrt.com/

Volume 9, Issue 6, June – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24JUN1109

IJISRT24JUN1109 www.ijisrt.com 967

The minimum period for both the sigmoid and

approximation sigmoid functions is 3.492ns, which

corresponds to a maximum frequency of 286.369MHz.

The hard sigmoid function has a slightly longer

minimum period of 9.952ns, resulting in a maximum

frequency of 100.478MHz.

This indicates that the hard sigmoid function runs at a

slower rate than the sigmoid and approximate sigmoid

functions.

Fig 12 Timing Summary Comparison

The sigmoid function has a minimum input arrival time
of 12.000ns before the clock and a maximum output time of

4.040ns after the clock.

The lowest input arrival time for the hard sigmoid

function is 2.840ns, and the maximum output necessary time

after the clock is also 4.040ns.

The approximate sigmoid function has a minimum input

arrival time of 13.281ns before the clock and a maximum

output time of 4.040ns after the clock.

The hard sigmoid function has a faster input arrival time,

which means it can process inputs faster than the other two

functions.

V. COMPARATIVE ANALYSIS OF SIGMOID

FUNCTION IMPLEMENTATION IN MATLAB

AND FPGA

Experiments were carried out utilizing the sigmoid

functions on input data sets in both MATLAB and Xylinx

platforms. The MATLAB implementation relied on built-in

functions, whereas the Xylinx implementation used fixed-

point arithmetic with quantization levels of Q8, Q14, and

Q16.

The following table compares the output of neurons
calculated using the MATLAB program to those generated

using the FPGA technique.

Table 2 Results of MATLAB and FPGA with Different Quantization Levels

Output of neuron in

MATLAB

Output of neuron in

FPGA(Q8)

Output of neuron in

FPGA(Q14)

Output of neuron in

FPGA(Q16)

0.31 0.3 0.4 0.6

0.98 0.6 0.4 0.7

0.93 0.6 0.5 0.5

0.89 0.8 0.7 0.5

0.05 0.4 0.1 0.01

All inputs and outputs from the neuron created in FPGA

were recorded in binary format. The values in the table were

displayed in decimal form to make them easier to understand.

The table above demonstrates that the outputs of neurons

estimated in MATLAB differ from those generated by FPGA
implementations with varied quantization levels (Q8, Q14,

and Q16). These variations are primarily due to the style of

representation. In MATLAB, the sigmoid function is

calculated using built-in techniques that employ floating-

point arithmetic for high precision and accuracy. On the other

hand, the FPGA implementation uses fixed-point arithmetic

with quantization levels, with inputs and intermediate values
recorded in binary format.

https://doi.org/10.38124/ijisrt/IJISRT24JUN1109
http://www.ijisrt.com/

Volume 9, Issue 6, June – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24JUN1109

IJISRT24JUN1109 www.ijisrt.com 968

This fixed-point encoding contains quantization errors,

particularly at lower quantization levels like Q8, which result

in slight discrepancies from the MATLAB findings. Figures

13, 14 and 15 illustrate a comparison between MATLAB and

FPGA at different quantization levels, as well as their errors.

Fig 13 Graph showing Comparison of MATLAB and FPGA (Q8) Sigmoid Function Outputs for given Data Points, along with the

Corresponding Error between them

Fig 14 Graph showing Comparison of MATLAB and FPGA (Q8) Sigmoid Function Outputs for given Data Points, along with the

Corresponding Error between them

https://doi.org/10.38124/ijisrt/IJISRT24JUN1109
http://www.ijisrt.com/

Volume 9, Issue 6, June – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24JUN1109

IJISRT24JUN1109 www.ijisrt.com 969

Fig 15 Graph showing Comparison of MATLAB and FPGA (Q8) Sigmoid Function Outputs for given Data Points, along with the

Corresponding Error between them

The following table shows the mean square error (MSE) between the outputs of the neuron in MATLAB and the FPGA outputs

with different quantization levels (Q8, Q14, and Q16) has been calculated.

Table 3 Mean Square Error between MATLAB and FPGA

Mean Square Error (Q8) Mean Square Error (Q14) Mean Square Error (Q16)

0.0768 0.1136 0.10022

The MSE for the Q8 quantization level is the lowest, at

0.0768, as indicated in the table, showing that the Q8

quantization level yields FPGA outputs that are most similar

to MATLAB outputs. The MSE for the Q14 quantization

level is the greatest, at 0.1136, indicating that it causes the

most substantial mistake as compared to the MATLAB

outputs. The MSE for the Q16 quantization level is 0.10022,
which is greater than Q8 but lower than Q14, indicating a

moderate margin of error. Lower quantization levels, such as

Q8, produce more accurate outputs but may also need more

FPGA resources.

VI. CONCLUSION

This report presented the implementation and

comparative analysis of the sigmoid, approximate sigmoid,

and hard sigmoid activation functions on an FPGA. The

results demonstrated that while the original sigmoid function
offers high accuracy, the approximate sigmoid provides a

good balance between accuracy and computational

efficiency. The hard sigmoid, on the other hand, is highly

efficient in terms of computation but at the cost of reduced

precision. Comparing the FPGA results with MATLAB

implementations highlighted the impact of fixed-point

arithmetic and quantization errors. The discrepancies

observed were more pronounced at lower quantization levels.
Future work could focus on optimizing the fixed-point

representation and exploring other hardware-efficient

activation functions.

 The Key Findings from the Performance and Timing

Analysis are:

 Clock Load:

The hard sigmoid function utilizes the most clock

resources, while the approximate sigmoid requires the fewest.

https://doi.org/10.38124/ijisrt/IJISRT24JUN1109
http://www.ijisrt.com/

Volume 9, Issue 6, June – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24JUN1109

IJISRT24JUN1109 www.ijisrt.com 970

 Maximum Frequency:

The sigmoid and approximation sigmoid functions can

work at higher frequencies than the hard sigmoid function.

 Timing Metrics:

The hard sigmoid function processes inputs quickly but

less accurately.

In addition to the performance and timing analysis, a

Mean Square Error (MSE) analysis was performed between

the MATLAB outputs and FPGA outputs for various

quantization levels, revealing that the implementation with

Q8 quantization level is the most accurate when compared to

MATLAB, while Q14 introduces the most error. In

conclusion, the MSE analysis highlights the trade-off

between quantization levels and accuracy, which guides the

selection of an optimal fixed-point representation for

balancing precision and resource utilization in FPGA-based

designs.

REFERENCES

[1]. Bañuelos-Saucedo, M A, et al. “Implementation of a

Neuron Model Using FPGAS.” Journal of Applied

Research and Technology, vol. 1, no. 03, 1 Oct. 2003,

https://doi.org/10.22201/icat.16656423.2003.1.03.61

1. Accessed 25 Aug. 2023.

[2]. Beiu, Valeriu. Closse Approximations of Sigmoid

Functions by Sum of Step for VLSI Implementation of

Neural Networks. 2014.

[3]. Deng, Li. “A Tutorial Survey of Architectures,
Algorithms, and Applications for Deep Learning.”

APSIPA Transactions on Signal and Information

Processing, vol. 3, 2014, www.cambridge.org/core/

journals/apsipa-transactions-on-signal-and-

informationa-processing/article/tutorial-survey-of-

architectures-algorithms-and-applications-for-deep-

learning/023B6ADF962FA37F8EC684B209E3DFA

E, https://doi.org/10.1017/atsip.2013.9. Accessed 15

Aug. 2019.

[4]. Dubey, Shiv Ram, et al. “Activation Functions in

Deep Learning: A Comprehensive Survey and
Benchmark.” Neurocomputing, vol. 503, Sept. 2022,

pp. 92–108, https://doi.org/10.1016/j.neucom.

2022.06.111. Accessed 28 May 2024.

[5]. Feng, Jianli, and Shengnan Lu. “Performance

Analysis of Various Activation Functions in Artificial

Neural Networks.” Journal of Physics: Conference

Series, vol. 1237, June 2019, p. 022030,

https://doi.org/10.1088/1742-6596/1237/2/022030.

[6]. Gustineli, Murilo. “A Survey on Recently Proposed

Activation Functions for Deep Learning.” ArXiv.org,

6 Apr. 2022, arxiv.org/abs/2204.02921. Accessed 2
July 2023.

[7]. Kwan, H.K. “Simple Sigmoid-like Activation

Function Suitable for Digital Hardware

Implementation.” Electronics Letters, vol. 28, no. 15,

1992, p. 1379, https://doi.org/10.1049/el:19920877.

[8]. Muhammed, Thamer, et al. IMPLEMENTATION of a

SIGMOID ACTIVATION FUNCTION for NEURAL

NETWORK USING FPGA IMPLEMENTATION of a

SIGMOID ACTIVATION FUNCTION for NEURAL

NETWORK USING FPGA. 2012.

[9]. Ngah, Syahrulanuar, and Rohani Abu Bakar. Sigmoid

Function Implementation Using the Unequal

Segmentation of Differential Lookup Table and
Second Order Nonlinear Function.

[10]. Reza Raeisi, and Armin Kabir. IMPLEMENTATION

of ARTIFICIAL NEURAL NETWORK on FPGA. 1

Jan. 2006. Accessed 3 June 2024.

https://doi.org/10.38124/ijisrt/IJISRT24JUN1109
http://www.ijisrt.com/
https://doi.org/10.22201/icat.16656423.2003.1.03.611
https://doi.org/10.22201/icat.16656423.2003.1.03.611
http://www.cambridge.org/core/%20journals/apsipa-transactions-on-signal-and-informationa-processing/article/tutorial-survey-of-architectures-algorithms-and-applications-for-deep-learning/023B6ADF962FA37F8EC684B209E3DFAE
http://www.cambridge.org/core/%20journals/apsipa-transactions-on-signal-and-informationa-processing/article/tutorial-survey-of-architectures-algorithms-and-applications-for-deep-learning/023B6ADF962FA37F8EC684B209E3DFAE
http://www.cambridge.org/core/%20journals/apsipa-transactions-on-signal-and-informationa-processing/article/tutorial-survey-of-architectures-algorithms-and-applications-for-deep-learning/023B6ADF962FA37F8EC684B209E3DFAE
http://www.cambridge.org/core/%20journals/apsipa-transactions-on-signal-and-informationa-processing/article/tutorial-survey-of-architectures-algorithms-and-applications-for-deep-learning/023B6ADF962FA37F8EC684B209E3DFAE
http://www.cambridge.org/core/%20journals/apsipa-transactions-on-signal-and-informationa-processing/article/tutorial-survey-of-architectures-algorithms-and-applications-for-deep-learning/023B6ADF962FA37F8EC684B209E3DFAE
http://www.cambridge.org/core/%20journals/apsipa-transactions-on-signal-and-informationa-processing/article/tutorial-survey-of-architectures-algorithms-and-applications-for-deep-learning/023B6ADF962FA37F8EC684B209E3DFAE
https://doi.org/10.1017/atsip.2013.9
https://doi.org/10.1016/j.neucom.%202022.06.111
https://doi.org/10.1016/j.neucom.%202022.06.111
https://doi.org/10.1088/1742-6596/1237/2/022030
https://doi.org/10.1049/el:19920877

	II. PRELIMINARIES OF ACTIVATION FUNCTION

