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Abstract:- The most devastating natural disasters on earth 

are earthquakes that causes long-term effects on 

geography, civilization, and human life. These 

unpredictable events pose a serious threat to 

infrastructure. Furthermore, the current Earthquake 

Early Warning (EEW) systems are facing issues such as 

limited warning times, false alarms, maintenance costs, 

high construction costs, and data interpretation. 

Highlighting these as an urgent need for mitigation 

measures, there is a need to improve the effectiveness of 

electronic alerts and public safety measures. For this 

transformative machine learning techniques and the 

integration of disparate data, can embark on creating 

social security and lives protecting from major 

environmental disasters like earthquakes. This paper has 

compared various Machine Learning (ML) techniques by 

training them by using two datasets: one from India and 

another from India United States Geological from 

Research World Database to improve the robustness and 

generality of the earthquake prediction model in the 

Earthquake Early Warning (EEW) framework. This 

represents a major advance for earthquake detection and 

promises to reduce response time. Among various ML 

Techniques, Random Forest has performed well in 

earthquake warning with 96.06% accuracy and 98.6% 

precision.  
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I. INTRODUCTION 

 

Earthquakes occur due to the intense forces caused by 
shifting ground rocks. This is the result of the continuous 

movement of tectonic plates beneath the Earth's surface. These 

massive plates are always in motion, colliding and interacting 

along fault lines. Over time, this interaction builds up pressure. 

Eventually, this pressure reaches a critical point, leading to a 

sudden release of energy in the form of seismic waves. These 
waves then travel through the ground, causing it to shake and 

tremble. While the primary reason for earthquakes is the 

movement of tectonic plates, there are other contributing 

factors as well. These include volcanic eruptions, the 

movement of underground magma, significant earthquakes, 

and even human activities like hydraulic fracturing, though to 

a lesser extent. Earthquakes can have significant financial 

consequences, often leading to long-term economic challenges 

in the affected regions. Additionally, the psychological impact 

on survivors can be profound, with many experiencing anxiety 

and distress. To decrease earthquake harm, using early alert 
systems and following earthquake safety rules is crucial. These 

alert systems employ sensor networks in quake zones that 

steadily track seismic motion. When an earthquake strikes, the 

initial fastest “P waves” are identified by sensors that relay the 

data to a central site. By analyzing this information, the 

earthquake's location, strength, and anticipated arrival of 

larger tremors can be estimated. Alerts are then issued to 

impacted areas, enabling people time to seek refuge. However, 

as near the quake's epicenter, these early warning systems 

weaken in effectiveness, and false warnings detrimentally. 

Machine Learning has potential ways to improve earthquake 

detection, giving warnings faster. By looking at earthquake 
data records and current readings, special computer programs 

called algorithms learn patterns that may signal tremors 

happening. Looking back at past earthquake info helps ML 

models pinpoint locations, strengths, and arrival timings more 

accurately, resulting in better alert plans and less false alarms. 

ML algorithms also work through seismic readings quicker 

than old methods, meaning rapid analysis, and sending out 

alerts sooner, especially near epicenters. Machine learning 

models can better detect real earthquakes. They use extra data 

like GPS and ground changes. This helps tell ground quakes 

from other causes, cutting false alarms and boosting reliability 
for early warning. “Fig 1” shows stations tracking global 

seismic activity worldwide, on main-lands and islands. New 

stations face money troubles, though plans exist to build more. 

“Fig 2” maps the latest quake location from April 2024. 
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Fig 1 Map of Station Locations of the Global Seismographic Network [https://iris.edu/hq/programs/gsn]. 

 

The map illustrates the distribution of stations 

comprising the Global Seismographic Network (GSN), an 

international network of seismographic stations aimed at 

monitoring and studying seismic activity worldwide. These 

strategically positioned stations enable comprehensive seismic 

data collection for earthquake research and hazard assessment. 

The remaining paper is organized as follows. The second 

section consist of literature review providing  an overview of 

recent developments in earthquake detection techniques 

including machine learning algorithms, science related to 

earthquakes, seismic sensors, and data analysis techniques. 

 

 
Fig 2 Recent Earthquakes as of Apr 2024. 
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The third section consist of effectiveness of earthquake 

research model development and training is explained and 

discusses the selection of algorithms, mathematical 

expressions, and computational methods used at the 

implementation level. The fourth section is results providing 

summary of the results obtained from testing and evaluation of 

earthquake models. Finally, the conclusion summarizes the 

main findings and insights of the study and the contributions 
of the work. It also suggests some avenues for future research, 

such as improving the detection algorithms, optimization of 

sensor networks, and data mining. 

 

II. LITERATURE SURVEY 

 

The literature review offers a concise overview of the 

many research materials, procedures, and methods employed 

in early earthquake research. CNNs along with other neural 

network models have been shown to be promising for seismic 

data analysis and earthquake prediction. Developing early 
warning systems that can deliver timely alerts to lessen the 

impact of earthquakes on buildings and society can be 

facilitated by combining machine learning and deep learning 

with sensor technology. 

 

Pal et al. (2023) [1] investigated the issue of seismic 

hotspots and coldspots, looking at patterns in space and the 

underlying reasons for variations in seismic activity. By 

applying geospatial analysis and data modeling, the study 

determines areas with significantly reduced seismicity 

(coldspots) and areas with increased seismic activity 

(hotspots). The study's findings improve our understanding of 
the spatial distribution of seismic activity and make it possible 

to put more targeted and effective mitigation measures in place 

in earthquake-prone areas. 

 

Cremen et al. (2022) [2] conducted a study to investigate 

the possible impact of seismic early warning systems across 

Europe. They undertook a rigorous analytical and modeling 

process to examine the viability of implementing these 

technologies in a variety of environments. Cremen et al.'s 

findings enable wise resource allocation and decision-making, 

opening the door for greater disaster resilience across the 
continent. A public earthquake early warning system based on 

smartphones [3] explored user input and system performance 

indicators to highlight the value of user-centered design and 

show how smartphone-based solutions can support public 

safety and preparedness against seismic events. Through the 

analysis of user feedback and system performance, their 

research provides insight into the dependability and usability 

of these systems. In order to determine the ability to predict of 

deep learning models, Shokouhi et al. (2021) [4] set out to 

examine their capacity to forecast laboratory earthquakes 

using seismic data from active sources. They demonstrated the 

untapped potential of deep learning algorithms for interpreting 
intricate seismic patterns and precisely forecast the occurrence 

of earthquakes through extensive experimentation and model 

training. 

 

 

 

A revolutionary journey was initiated by Munchmeyer et 

al. (2021) [5] when they presented a transformer network-

based technique for real-time seismic waveform-based 

earthquake location and size estimation. They used real 

seismic data to train their model and assess its performance, 

demonstrating how deep learning may improve the speed and 

accuracy of earthquake parameter estimate. Using the 

groundbreaking metrics τc and Pd, Kumar (2020) [6] started 
developing earthquake early warning systems specifically for 

Kachchh, Gujarat, India. Before formulating a plan to 

strengthen the region's seismic preparedness, which should 

decrease the consequences of earthquakes and safeguard 

people and property, Kumar carried out extensive research. A 

revolutionary machine learning method for assessing 

earthquake magnitudes—a crucial part of seismic event 

analysis—was introduced by Mousavi and Beroza (2020) [7]. 

Their research concentrated on applying machine learning 

techniques to enhance the accuracy and reliability of 

magnitude estimates. By using seismic waveform data and 
advanced algorithms, they were able to achieve notable 

accuracy advances that set the stage for more precise seismic 

hazard assessment and risk management. 

 

The Earthquake Transformer is a new deep learning 

model that was introduced by Mousavi et al. (2020) [8] that 

can concurrently identify and select different phases of 

earthquakes. Their work uses deep learning techniques to 

produce performance never before observed, which 

constitutes a significant leap in seismic event analysis. 

 

Using seismic station networks, Zhang et al. (2020) [9] 
presented a novel deep learning approach for the detection of 

induced earthquakes. Their method tackles the difficult 

problem of accurately locating generated seismic events, 

especially in regions that are prone to them. Their work 

improves our knowledge of and ability to control induced 

seismic risks by precisely localizing seismic data using deep 

learning. 

 

In 2020, Chin et al. (2020) [10] presented a cutting-edge 

earthquake detection system driven by recurrent neural 

networks (RNNs). This ground-breaking research not only 
shows the potential of state-of-the-art technology, but it also 

ushers in a new era of adaptable and responsive seismic 

monitoring, prepared to accurately and adaptively protect 

communities from seismic hazards. A novel deep learning 

method was created by Saad et al. (2020)[11] to categorize 

earthquake parameters in early warning systems. Their work 

aims to efficiently classify seismic features by utilizing deep 

learning's capabilities. By using seismic data to train deep 

neural networks, they show amazing advancements in 

classification precision that increase the dependability of early 

warning systems. 

 
A cutting-edge FPGA-based hardware solution was 

unveiled by Basu et al. (2019) [12] with the goal of enhancing 

seismic event identification and noise reduction. Their 

groundbreaking work highlights the importance of efficient 

hardware implementations for real-time seismic data 

processing, which offers significant technological 

breakthroughs in earthquake monitoring. Their work suggests 
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more robust earthquake early warning systems by 

demonstrating better performance and reliability in seismic 

event detection through the use of FPGA technology. A novel 

approach to earthquake detection was given by Chin et al. 

(2019) [13], which addressed the shortcomings of existing 

methods. Their research uses machine learning and data-

driven strategies to increase detection accuracy. In 2016, Kong 

et al. (2016) [14] introduced MyShake, a revolutionary 
concept in seismic identification. MyShake created a network 

that surpasses traditional monitoring methods by converting 

cellphones into earthquake sensors that can give out real-time 

notifications. MyShake brought in a new era of community 

protection through technology by enabling citizen-driven 

earthquake monitoring. 

 

III. PROPOSED METHDOLOGY 

 

The proposed architecture shown in “fig 3” follows a 

structured and sequential procedure, initially by following the 

seismic data collection from indian and usgs worldwide 

databases. then the collected seismic data undergoes a 

preprocessing to remove noisy data, null values, to normalize 

and  transform the data into an appropriate format for further 
analysis. then the machine learning techniques like naive 

bayes, svm, random forest, logistic regression, and knn, are 

trained, compared to learn and understand the underlying 

patterns and relationships. this leads to provide efficient 

machine learning technique to detect earthquake and aims to 

reduce the response time. these techniques are thoroughly 

tested on the two datasets to evaluate their performance. 

performance metrics, including accuracy, precision, recall, 

and f1-score are performed to assess the effectiveness of each 

model in earthquake detection. 

 

 
Fig 3 Proposed Architecture 

 

A. Data Collecion 

A vast network of seismic stations furnished with 

sensitive seismographs detects ground movement and converts 

it into electrical signals to capture the earthquake. These 

signals are transmitted to the USGS via satellites, internet, 

phone lines, or microwave telemetry in the remote areas. At 

USGS facility the powerful computers filter out noise and 
analyze the seismic wave characteristics. Finally, scientists 

pinpoint the earthquake's location and measure its magnitude. 

Then triangulating the data from multiple stations, this 

processed data is then readily available to the public through 

numerous USGS platforms for application of various 

technologies to understand the underlying patterns. The 

dataset for the Earthquake is collected from the United states 

geological survey (USGS). The size of overall dataset is 1525 
KB consisting of 8000+ records and it consists of 19 attributes. 
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B. Data Preprocessing and Model Traning  

The initial step involves inspecting the dataset for any 

missing values, commonly denoted as NaN values. Should 

such values be present, various techniques are employed to 

handle them effectively. These techniques include backfill , 

forward fill , mode, and mean imputation methods. This paper 

has opted to utilize the forward fill technique. This method 

involves replacement of missing values with the last observed 
non-null values along the corresponding column. By 

implementing this preprocessing step, it ensures the integrity 

and completeness of the dataset, thereby facilitating robust and 

accurate analysis in the subsequent stages of traning the 

model. In the training phase, the dataset is split into two 

distinct parts: training and testing which comprise of two 

variables “X” and “Y”. X representing the features utilized to 

predict the target variable Y. In the training phase, the dataset 

is split into two distinct parts: training and testing which 

comprise of two variables “X” and “Y”. X representing the 

features utilized to predict the target variable Y. Subsequently, 
.fit() on training and .predict() on testing the dataset to 

calculate necessary mathematical operations and predict the 

occurances of the earthquake to minimize the response time. 

  

C. Machine Learning Techniques  

 

 Naive Bayes:  

A theorem with a "naive" assumption of feature 

independence, it assumes that features are conditionally 

independent given the class label. This assumption simplifies 

the computation, making Naive Bayes highly efficient and 

suitable for large datasets. The algorithm calculates the 
probability of each class given a set of feature values using 

Bayes' theorem.  

 

𝑃(𝐴/𝐵) = 𝑃(𝐵/𝐴) ∗ 𝑃(𝐴)/𝑃(𝐵)                                            (1) 

 

P(A/B) : Probability of event A  occurring given that 

event B has already occurred.  

 

P(B/A) : Probability of event B  occurring given that 

event A has already occurred.  

 

P(A) : Probability of event A  occurring, and is the 

probability of event B occurring. 

 

 K-Nearest Neighbors (KNN): 

In earthquake early warning systems, KNN plays a crucial 

role in analysing seismic data to predict potential earthquakes. 

By utilizing historical seismic data and its associated features, 
it categorizes new seismic events based on similarity to the past 

instances. This similarity-based classification enables the 

system to identify whether incoming seismic activity signifies 

an earthquake or not. KNN operates in real-time, swiftly 

processing incoming data and issuing warnings promptly when 

predefined thresholds for earthquake classification are met. 

 

 

 

 

 
 

𝑑𝑖𝑠𝑡 =  𝑠𝑞𝑟𝑡((𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2)                             (2) 

 

Where: 

 

𝑑𝑖𝑠𝑡is the distance between the two data points 

 

(𝑥1, 𝑦1) are the coordinates of the first data point 

 

(𝑥2, 𝑦2) are the coordinates of the second data point 

 

 Suppot Vector Machine(SVM):  

Earthquake detection, can be applied to classify seismic 

events based on features extracted from seismic wave 

recordings. Its ability to handle nonlinear relationships and 

robustness to outliers make it well-suited for accurately 

identifying earthquake events amidst noisy data. SVM remains 

a popular choice in earthquake detection systems due to its 

versatility, effectiveness, and ability to generalize well to 

unseen data. The equation of the main separator line is called a 
hyperplane equation. 

 

𝐻: 𝑤𝑇(𝑥)  +  𝑏 =  0                                                                (3) 

 

The distance of any line,  𝑎𝑥 +  𝑏𝑦 +  𝑐 =  0  from a 

given point say, (𝑥0 , 𝑦0) is given by d. 

 

Similarly, the distance of a hyperplane equation:  

 

𝐻: 𝑤𝑇𝛷(𝑥)  +  𝑏 =  0 from a given point vector 

𝛷(𝑥0) can be easily written as  

 

𝑑𝐻(𝜙(𝑥0)) = (|𝑤^𝑇 (𝜙(𝑥_0 )) + 𝑏|)/‖𝑤‖_2                     (4) 

 

Were ||𝑤||_2 is the Euclidean norm for the length of 𝑤 

given by : 

 

‖𝑤‖2 = √𝑤1
2 +  𝑤2

2 + 𝑤3
2 + ⋯ 𝑤𝑛

2                                         (5) 

 

 Logistic Regression:  

In earthquake detection system, it can be applied to 

classify seismic events as either earthquake or non-earthquake 
based on features extracted from seismic wave recordings. 

These features may include characteristics such as amplitude, 

frequency, and duration of seismic signals. One of the key 

advantages of Logistic Regression is its simplicity and 

interpretability. The model estimates the probability of 

occurrence of a particular event, allowing for straightforward 

interpretation of results. Additionally, it can also handle both 

linear and nonlinear relationships between predictor variables 

and the outcome, making it versatile for various types of data. 

 

𝑦 =  𝑒^(𝑏0 + 𝑏1 ∗ 𝑥) / (1 +  𝑒^(𝑏0 +  𝑏1 ∗ 𝑥))               (6) 
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Where: 

 

x is the input value 

 

y is the predicted output 

 

b0 is the bias or intercept term 

 

b1 is the coefficient for the single input value (x) 

 

 Random Forest:  

In earthquake detection systems, offers exceptional 

performance in accurately classifying seismic events, 

leveraging its ability to capture nonlinear relationships and 

handle noisy data. Its versatility, scalability, and robustness 

make it a popular choice for a wide range of classification 
tasks, including real-time earthquake detection within 

Earthquake Early Warning (EEW) frameworks. 

 

𝐺𝑖𝑛𝑖 𝐼𝑛𝑑𝑒𝑥 =  1 − 𝛴 (𝑝𝑖)2                                                       (7) 

 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =  −∑𝑝𝑖 ∗ 𝑙𝑜𝑔2(𝑝𝑖)                                                (8) 

 

IV. RESULTS AND DISCUSSION 

 

After the text edit In the proposed system for earthquake 

prediction, seismic data from India and globally were analysed 

using various machine learning algorithms. Among SVM, 

Naive Bayes, Logistic Regression, Random Forest, and KNN, 
Random Forest consistently outperformed others in accuracy 

and precision. It demonstrated high accuracy and low false 

positives. Random Forest was recommended for earthquake 

prediction tasks, suggesting the exploration of recall and F1 

score for deeper insights. Additionally, feature importance 

analysis was proposed to identify key factors influencing 

earthquake occurrences. 

 

A. Preprocessing Results 

Fig.4 showcases the accuracy and precision metrics for a 

Support Vector Machine (SVM) model. With an accuracy rate 
of 94.48%. Additionally, the precision of the SVM model is 

recorded at 95.33%. This suggests a maximum level of 

confidence in the model's ability to discern earthquake 

occurrences accurately from the dataset, and by offering 

valuable insights of earthquake prediction tasks. 

 

 
Fig 4 SVM for Indian Dataset 

Fig.5 showcases the report of classification that reveals a 

well-performing SVM model with accuracy around 95%. 

Indicating that the model makes very few mistakes in the 

classifications. Precision and recall, both averaging around 95-

96%. Naive Bayes model was trained on Indian and world 

wide datasets and the results are obtained. Fig.6 shows the 

Naive Bayes model has an accuracy of 94.4%.The model 

correctly classified nearly 94.4% of the data points and the 
precision is 1.0.This means that all the positive predictions 

made by the model were truly positive for the "earthquake" 

class. 

 

 
Fig 5 SVM for Worldwide Dataset 

 

Fig.6 shows the Naive Bayes model has an accuracy of 

94.4%.The model correctly classified nearly 94.4% of the data 

points and the precision is 1.0.This means that all the positive 

predictions made by the model were truly positive for the 

"earthquake" class. 

 

 
Fig 6 Naïve Bayes for Indian Dataset 

 
Fig.7 shows the performance of a Naive Bayes model on 

a classification task. The overall accuracy of the model is 

0.95.The precision for the class "earthquake" is 0.99, which 

means that out of all the instances classified as earthquakes by 

the model, 99% were actually earthquakes. 
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Fig 7 Naïve Bayes for Worldwide Dataset 

 

Fig.8 shows a Random Forest model's performance in 

classifying seismic events. With an accuracy of 0.9619, the 

model seems effective, achieving nearly 96% correct 

predictions. However, a closer look reveals a potential data 

imbalance issue. The model excels at identifying earthquakes, 

but struggles with explosions. This suggests the training data 
might favor earthquakes. Fig.9  shows the performance 

metrics for a Random Forest classification model, likely used 

for earthquake detection. 

 

 
Fig 8 Random Forest for Indian Dataset 

 

The model achieves a high overall accuracy of 0.9705, 

indicating it correctly classifies nearly 97% of the cases. 

However, it's important to consider precision as well. While 

the model has high precision for the "no" class (meaning it 

accurately identifies most negative cases), the precision for the 
"yes" class is lower. This suggests the model might make some 

false positive predictions for the "yes" class (e.g., classifying 

something as an earthquake when it's not). 

 

 
Fig 9 Random Forest for Worldwide Dataset 

 

Fig.10 reveals the performance of a Random Forest 

model for earthquake classification. It achieves a high 

accuracy of 0.9619, successfully classifying almost 96.2% of 

seismic events. However, the precision for explosions is 

concerning at 0.00, indicating all predicted explosions were 

wrong. This highlights a potential bias or limited data for 
classes like explosions. 

 

 
Fig 10 Logistic Regression  for Indian Dataset 

 

Fig.11 shows the performance of a Logistic Regression 

model on a classification task. The accuracy is 0.9559, 
indicating the model predicts correctly 95.59% of the time. 

The table also includes a classification report that provides 

more details on the model's performance for different classes, 

but the specific classes are not shown in the part of the image. 
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Fig 11 Logistic Regression  for Worldwide Dataset 

 

Fig.12 depicts that KNN classifier model has an accuracy 

of 0.96, which is 96%. This means that the model correctly 

classified 96% of the 272 instances it was tested on.The 

precision of the model is 0.93, or 93%. Precision refers to the 

model’s ability to identify only relevant instances, and not 

incorrectly classify irrelevant instances as relevant. In this 

case, the model is good at both accuracy and precision. 

 

 
Fig 12 KNN  for Indian Dataset  

 

Fig.13 shows a classification report for a KNN 

model.The accuracy of the model is 0.9522.In simpler terms, 

the model correctly classified nearly 95% of the data 

points.The precision is 0.9286. This means that out of all the 

positive predictions made by the model, 92.86% were truly 

positive. 

 

 
Fig 13 KNN  for Worldwide Dataset 

 

Table 1 summarizes the performance of various machine 

learning models. It compares their accuracy (overall 

correctness) and precision (correctness of positive predictions)  

across different models. Random Forest seems to be the best 

performer with highest accuracy and precision.The 

classification report  evaluates the performance of our SVM 

model.  The high accuracy (around 97%) indicates the model 

can effectively differentiate between the positive and negative 
classes in our dataset.  This is further supported by the 

precision (around 96%) and recall (around 95%) metrics, 

which suggest the model is good at identifying true positives 

(correctly classifying positive cases) and minimizing false 

positives (incorrectly classifying negative cases as positive).  

In the context of our specific classification task (briefly 

describe your task here), this strong performance signifies the 

model's ability to accurately classify data points, making it a 

promising tool for (describe potential applications). 

 

Table 1 Machine Learning Models Summary  

Models 
Smmay 

Accuracy Precision 

SVM 0.9448 0.9533 

Naïve Bayes 0.9437 1 

RF 0.9618 0.986 

Logisric Regression 0.9558 0.92 

KNN 0.9522 0.92 

 

The bar graph in Fig.14 depicts a comparison of accuracy 

and precision for five machine learning models: SVM, Naive 

Bayes, Random Forest, Logistic Regression, and KNN. The x-

axis categorizes the models, while the y-axis represents two 

separate values: accuracy and precision. Each model is 

represented by a pair of bars, one for accuracy and another for 

precision. Random Forest stands out as the best performing 

model, achieving the highest accuracy of 0.96 that means 

Random Forest can identify the events of the earthquake better 

than the other Machine Learning Techniques. 
 

https://doi.org/10.38124/ijisrt/IJISRT24JUN1107
http://www.ijisrt.com/


Volume 9, Issue 6, June – 2024                                             International Journal of Innovative Science and Research Technology 

ISSN No:-2456-2165                                                                                                   https://doi.org/10.38124/ijisrt/IJISRT24JUN1107 

 

 

IJISRT24JUN1107                                                             www.ijisrt.com                                                                                    1500  

 
Fig 14 Comparison of Accuracy and Precision for Indian Dataset 

 

 
Fig 15 Comparison of Accuracy and Precision for World Dataset 

 

Fig.15 depicts the accuracy and precision of five 
Machine learning models used for earthquake prediction in 

terms of bar graph. Models on X-axis, accuracy and precision 

values on Y-axis. This visualization is instrumental in 

understanding the strengths and weaknesses of each model. It 

reveals whether a model prioritizes making a high number of 

overall correct classifications (earthquake vs non-earthquake) 

or focuses on highly precise classifications, even if fewer 

overall. This insight is crucial for selecting the optimal model 

for specific earthquake prediction needs. 

 

 

Fig 16 is a line graph showing the accuracy and precision 
of four machine learning models: SVM, Naive Bayes, Random 

Forest, and KNN. The x-axis of the graph is labeled "Model" 

and the y-axis is labeled "Score". The y-axis ranges from 0.92 

to 0.98. The graph shows that the Random Forest model has 

the highest accuracy, followed by SVM, Naive Bayes, and 

KNN. The accuracy of the Random Forest model is 

approximately 0.96, while the accuracy of the SVM model is 

approximately 0.94. The precision of the models is more 

varied. The Naive Bayes model has the highest precision, 

followed by Random Forest, KNN, and SVM. The precision 

of the Naive Bayes model is 1.0, while the precision of the 

SVM model is approximately 0.92. 
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Fig 16 Comparison of Accuracy and Precision for Worldwide Dataset 

 

Fig.17 is a line graph depicting the Accuracy, Recall, F1 

Score and precision of four machine learning models on a 

classification task. The models are Support Vector Machine 
(SVM), Naive Bayes, Random Forest, and K-Nearest 

Neighbors (KNN).  The x-axis labels the models, while the y-

axis represents the "Score" which ranges from 0.92 to 0.98. 

The graph indicates that Random Forest achieves the highest 

accuracy (around 0.96), followed by SVM (around 0.94), 

Naive Bayes (around 0.93), and KNN (around 0.92). Precision 

scores vary more across the models. Naive Bayes has the 

highest precision (1.0), followed by Random Forest (around 

0.95), KNN (around 0.94), and SVM (around 0.92). Overall, 
the graph suggests that Random Forest performs best for this 

specific classification task, while Naive Bayes delivers the 

most precise classifications. The bar graph in Fig.18 compares 

the performance of the best models obtained from training on 

two separate earthquake datasets: Indian and Worldwide. 

 

 
Fig 17 Comparison of Accuracy and Precision for Indian Dataset 
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In bar graph X-axis represents the dataset of Indian/ 

Worldwide Dataset, whereasY-axis represents 

Accuracy/Precession. The height of the bars in the graph 

indicates metrics for each of the model and also the model 

which has achived higher accuracy and precision in classifying 

the earthquake events. This comparison can also helps in 

understanding whether dataset selection would significantly 

impact the model performance for earthquake prediction. 

 

  
Fig 18 Comparison of best models of Indian & Worldwide Dataset. 

 

It is constantly demonstrated that Random Forest has 

significantly achieved highest accuracy around 96% amongst 

other machine learning techniques, including SVM, Naive 

Bayes, Logistic Regression, and KNN, with respective to the 
datasets of Indian dataset and the worldwide dataset. The 

dominance of accuracy can be attributed to several other 

factors like ensemble learning, integration of predictions from 

various decision trees to mitigate the overfitting and variance 

in more robust and accurate predictions. Furthermore, the 

model can effectively identify relevant features through 

feature importance calculation, to capture complex 

relationships in data and make accurate predictions. Moreover, 

Random Forest exhibits robustness and is suitable for 

analyzing seismic data prone to such challenges. Overall, 

Random Forest emerges as the preferred choice for earthquake 
prediction tasks due to its consistent high accuracy and robust 

performance across diverse datasets and scenarios. 

 

V. CONCLUSION 

 

In conclusion, the paper focus on providing an efficient 

machine Learning Technique for earthquake early warning. 

For this, seismic data from the USGS and Indian databases are 

used to examine the efficacy of each machine learning models. 

The data was then used to train the Machine learning models, 

that includes K-Nearest Neighbors, Support Vector Machines, 

Random Forest, Naive Bayes, and Logistic Regression. These 
models were compared to identify the efficient model as 

earthquake early warning system with performance metrics 

like Accuracy and Precession.  As a result, Random Forest has 

attained the highest accuracy exceeding 96%. There is also 

further scope to improve the system by building more complex 

warning system, by investigating additional sensors data, such 

as accelerometers from smartphones. For improving the 

accuracy and shorten warning times can be achieved by 
looking into the integration of deep learning systems with real-

time processing capabilities by integrating advanced data 

fusion techniques, including combining seismic data with 

other types of geospatial data such as land use, topography, 

and geological features, can provide a more comprehensive 

understanding of earthquake dynamics and improve prediction 

accuracy to mitigate the impact of seismic events on society. 
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